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1 The Sorites Paradox

1. On the left, we have a collection of 1,000,000 grains of sand. To its immediate
right, there is a collection of 999,999 grains of sand. To its immediate right,
there is a collection of 999,998 grains of sand, and so on. Finally, on the far
right, we have a single grain of sand. The sand on the far left is plainly a heap.
The single grain of sand on the far right is plainly not a heap.

2. Now, consider the following argument:

H (1,000,000)

(∀n)(H (n)→ H (n − 1))
H (1)

Alternatively, consider this argument:

¬H (1)
(∀n)(¬H (n)→¬H (n + 1))
¬H (1,000,000)

(a) The first premise of each of these arguments is plainly true. Their second
premises appear undeniable—how could adding or substracting a single
grain of sand transform a heap into a non-heap, or a non-heap into a
heap? And the argument form appears to be valid. But if we accept both
of these arguments, then we have accepted an explicit contradiction. So

we have a paradox. This paradox is known as the ‘sorites paradox’, since the
Greek word for ‘heap’ is ‘sorites’. We could easily run similar arguments
with redness, baldness, thinness, coldness, or just about any predicate from
English.

(b) Why not just reject the second premise of each argument? Given classical
logic, rejecting the second premise of these arguments commits you to

(∃n)(H (n)∧¬H (n − 1))
That is: it commits us to saying that there is a sharp cut off point for being
a heap—that, for some n, while n grains of sand is a heap, n−1 grains of
sand is not a heap. However, this appears false. There is no number n such
that n is a sharp cut off point for being a heap—one fewer, and you’re not
a heap.

3. The second premise of the sorites argument tells us that being a heap is a toler-
ant property—minor changes to the number of grains of sand do not make a
difference with respect to whether something is a heap or not. There are other
properties which appear to be tolerant in the same way, and corresponding to
each of them is a sorites argument. For instance,

(a) If a color is red, then, if you make an imperceptible change to the hue of
the color, it will still be red.

(b) If a person is tall, then, if you make them 0.0000001 cm shorter, they will
still be tall.

(c) If a person is rich, then, if you make them 1 cent poorer, they will still be
rich.
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(d) If a man is not bald, removing a single hair will not make him bald.
...

2 Truth-Gap Theories

4. A natural reaction to the sorites paradox is to think that, even though 1,000,000
grains of sand is clearly a heap, and 1 grain of sand is clearly not a heap, at some
point in the middle, it stops being clear whether what you have is a heap or
not. At some point in the middle, it is vague whether what we have is a heap
or not. (To use another common expression, at some point in the middle, we
have borderline cases of heaps.)

(a) When we say that it’s not clear whether we have a heap or not—when we
say that it is vague whether we have a heap or not—what does this mean?

(b) One possible answer: when it is vague whether we have a heap, it is neither
absolutely true nor absolutely false that what we have is a heap. Several
theories of vagueness are built around this idea.1 Let’s start with the sim-
plest way of cashing this idea out: the recognition of a new truth-value:
neither true nor false.

2.1 Łukasiewicz’s Trivalent Logic

5. Łukasiewicz developed a logic which denies bivalence and accepts a third truth-
value (‘#’, which we can think of as ‘neither true nor false’). Before getting to
this logic, a few points of clarification.

(a) Bivalence is the claim that every proposition is either true or false.

T 〈ϕ〉 ∨ F 〈ϕ〉
1 On an approach we won’t discuss, propositions have degrees of truth intermediate between 0 and 1.

On this treatment of vagueness, even though every premise of the sorites argument from point (3)
is very nearly true, each application of modus ponens leaves us with a conclusion slightly less true,
until eventually we end up with a conclusion which is completely false. See Dorothy Edgington’s
“Vagueness by Degrees”, in Vagueness: a Reader, edited by Rosanna Keefe and Peter Smith. MIT
Press, Cambridge, MA. Ch. 16 (pp. 294–316).

(where, recall, ð〈ϕ〉ñ denotes the proposition expressed by ðϕñ.) If we
identify falsehood with the truth of a negation, F 〈ϕ〉 ↔ T 〈¬ϕ〉, then
we may re-write bivalence as

T 〈ϕ〉 ∨T 〈¬ϕ〉 (Bivalence)

(b) This should be carefully distinguished from the law of excluded middle
(lem). Lem is the claim that ϕ∨¬ϕ is a tautology.

|=ϕ∨¬ϕ (lem)

as we’ll see, these two theses may come apart.

6. For Łukasiewicz’s logic, we’re going to assume that we have an infinite collec-
tion of atomic sentence letters,

p, q , r , p1, q1, r1, p2, q2, . . .

which we may combine with the following logical connectives to form com-
pound sentences in the usual way,

¬ , ∧ , ∨ ,→

7. In a trivalent logic, there are three possible truth-values, 1, 0, and #, which we
may understand as follows:

(a) If ðϕñ has the truth-value 1, then ðϕñ is true
(b) If ðϕñ has the truth-value 0, then ðϕñ is false
(c) If ðϕñ has the truth-value #, then ðϕñ is neither true nor false

8. A trivalent truth-value assignment, T , assigns one of these three truth-values
to every atomic sentence.

Trivalent Truth-Value Assignment
A trivalent truth-value assignment T is a function from atomic
sentences to {1,0,#}.
(a) If T (α) = 1, then ðαñ is true on T .
(b) If T (α) = 0, then ðαñ is false on T .
(c) If T (α) = #, then ðαñ is neither true nor false on T .
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9. A trivalent truth-value assignment only tells us the truth-values of the atomic
sentences. In classical logic, the standard truth-tables tell us how to determine
the truth-values of compound sentences from there. In Łukasiewicz’s trivalent
logic, we have the following truth-tables.

¬
1 0
0 1
# #

∧ 1 0 #
1 1 0 #
0 0 0 0
# # 0 #

∨ 1 0 #
1 1 1 1
0 1 0 #
# 1 # #

→ 1 0 #
1 1 0 #
0 1 1 1
# 1 # 1

(a) When reading these tables, the truth-value of the sentence to the left of
the connective is given in the rows, and the truth-value of the sentence to
the right of the connective is given in the columns.

(b) For instance, if ðϕñ is true and ðψñ is neither true nor false, then these
tables tell us that:
i. ð¬ψñ is neither true nor false,
ii. ðϕ∧ψñ is neither true nor false,
iii. ðϕ∨ψñ is true,
iv. ðϕ→ψñ is neither true nor false, and
v. ðψ→ϕñ is true.

10. We should also say something about which arguments are valid. Everything
the logic has to say about validity is encapsulated in a consequence relation |=Ł,
which is a binary relation between a set of sentences Γ and a sentenceϕ, written
Γ |=Ł ϕ.

(a) In classical logic, we say that a set of sentences Γ entails a sentence ϕ iff
every bivalent truth-value assignment which makes all the sentences in Γ
true makes ϕ true also.

(b) Thus, there is a designated truth-value (1), and entailment is understood
as the preservation of that designated truth-value.

(c) When we have three truth-values, we face a choice: we could say that the
designated truth-value is truth (1), or we could say that the designated
truth-value is non-falsehood (either 1 or #). For Łukasiewicz’s logic, we say
that 1 is the designated truth-value.

(d) Thus, we say that Γ |=Ł ϕ iff every trivalent truth-value assignment which
makes all the sentences in Γ true makes ðϕñ true also.

Exercises

Use the Łuksiewicz truth-tables to determined whether the following claims
are true:

(a) {p→ q} |=Ł ¬p ∨ q
(b) {¬(p ∨ q )} |=Ł ¬p ∧¬q
(c) |=Ł p→ p

11. What does this logic say about the sorites argument?

(a) It will say that one of its premises is not true (though no premise will be
false).

(b) For a simplistic case, suppose that we have only three cases: 1, 2, and 3.
And suppose that 3 is a clear case of the predicate H , 1 is a clear case of
something which is not H , and 2 is a borderline case. That is, we have the
following trivalent truth-value assignment, T ,2

x T (H (x ))
3 1
2 #
1 0

(c) Then, the sorites argument would be:

H (3)

H (3)→ H (2)

H (2)→ H (1)

H (1)

And, while the 1st premise is true, the 2nd and 3rd premises are neither
true nor false. So the argument is invalid, according to the Łukasiewicz
logic.

2 I’m carelessly flipping back and forth between propositional logic and predicate logic here. Things
get messier when we consider a trivalent predicate logic model—in rough outline, we have, for each
predicate F , an extension and an anti-extension, and while we require that the extension and the
anti-extension don’t overlap, we allow that they don’t cover the domain, so that some entities in the
domain could fail to fall in either. If ‘a’ refers to such an entity, then ‘F (a)’ is #.
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(d) In classical logic, saying that the 2nd premise is not true means saying that
it is false, which means saying that its negation is true, which means saying
that

H (3)∧¬H (2)
which is to say: removing a single grain of sand can turn a heap into a
non-heap. Notice that, in a trivalent logic, we no longer have to say this.
For we can deny that the 2nd premise is true without affirming that it is
false, or that its negation is true. In fact, if the 2nd premise is neither
true nor false, then its negation will also be neither true nor false. So, in
a trivalent logic, we do not have to affirm that removing a single grain of
sand can transform a heap into a non-heap.

2.2 Higher-Order Vagueness

12. Notice, however, that on this logic, removing a single grain of sand can trans-
form a clear heap into a borderline heap.

(a) Suppose we introduce the operator ‘∆’ for Determinacy. That is, ð∆ϕñ
means ðIt is determinately the case that ϕñ. We could give∆ the follow-
ing truth-table.

∆
1 1
0 0
# 0

Note: given this operator for ‘it is determinate that’, we may define a
corresponding operator for ‘it is indeterminate whether’:

∇ϕ def= ¬∆ϕ∧¬∆¬ϕ
(b) Then, in our simple case from above, we would accept that there is a sharp

cut-off point between being a determinate heap and not being a determi-
nate heap.

∆H (3)∧¬∆H (2)
13. However, it appears that we can construct a sorites argument with the property

of being a determinate heap.

∆H (1,000,000)

(∀n)(∆H (n)→∆H (n − 1))
∆H (1)

(a) Being a determinate heap also appears to be a tolerant property. If you
have a determinate heap, then, if you remove a single grain of sand, what
you get will also be a determinate heap.

(b) This is the problem of higher-order vagueness. There is not only first-order
vagueness, in the sense that there is some sand which is neither clearly a
heap nor clearly not a heap. There is additionally second-order vagueness,
in the sense that there is some sand which is neither clearly clearly a heap
nor clearly not clearly a heap.
i. So too does there appear to be third -order vagueness, and fourth-order

vagueness, and so on and so forth.
(c) The logic of Łukasiewicz does not appear to be able to accommodate the

phenomenon of higher-order vagueness; for that logic says it is a tautology
that, if it is determinate thatϕ, then it is determinate that it is determinate
that ϕ:

|=Ł ∆ϕ→∆∆ϕ

2.3 Penumbral Connections

14. Another problem for the Łukasiewicz logic: Suppose that ‘p ’ is neither true nor
false. Then, by Łukasiewicz table for ¬, ‘¬p ’ is neither true nor false. Then,

(a) By the by Łukasiewicz table for ∨, ‘p ∨¬p ’ is neither true nor false. So
lem is not a tautology.

̸|=Ł p ∨¬p
(b) By the by Łukasiewicz table for ∧, ‘p ∧¬p ’ is neither true nor false. So,

by the table for ¬, ‘¬(p ∧ ¬p)’ is neither true nor false. So the law of
noncontradiction is not a tautology, either.

̸|=Ł ¬(p ∧¬p)
15. Even when matters are indeterminate, there appear to be important connec-

tions between those indeterminate matters. For instance,
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(a) Either I’m bald or I’m not bald.

(b) If 55◦ is cold, then 50◦ is cold, too.

(c) John isn’t both rich and not rich.

These connections between indeterminate propositions are known as penum-
bral connections.

2.4 Supervaluationism

16. Supervaluationism attempts to accomodate these kinds of penumbral connec-
tions.

(a) A standard way of understanding supervaluationism is like this: vagueness
is a linguistic affair. What accounts for the vagueness of expressions like
‘red’, ‘heap’, ‘rich’, ‘bald’, and so on is that we haven’t made our minds up
about how exactly to use those terms. We’ve decided that we should use
the word ‘heap’ to describe 1,000,000 grains of sand, and we’ve decided
that we shouldn’t use it to describe 1 grain of sand, but we’ve not really
made up our minds about when something goes from a heap to a non-
heap.

(b) Nevertheless, we have made up our minds that, if n grains of sand is a
heap, then n+1 is, too. Likewise, we’ve made up our mind that any sand
either is or is not a heap. And we’ve made up our mind that no sand is
both a heap and not a heap.

17. More formally, the idea behind supervaluationism is this: when we use our
terms, we haven’t gotten precise about what they mean. So it’s not currently
settled what those terms mean. However, there are a bunch of acceptable ways
of taking our current usage and precisifying it. And a sentence is true if it comes
out true given every admissible precisification of our language.

Supervaluationism
A sentence is true iff it is true on every admissible precisification of
our language. A sentence is false iff it is false on every admissible
precisification of our language. Otherwise, the sentence is neither
true nor false.

18. We can develop this into a formal logic for our simple propositional language
as follows:

(a) Given a trivalent truth-value assignment T , we may define the notion of
a precisification, P , of that trivalent truth-value assignment:

Precisification
P is a bivalent precisification of a trivalent truth-value assignment
T iff, for all atomic sentences ðαñ,
i. Either P(α) = 1 or P(α) = 0
ii. If T (α) = 1, then P(α) = 1
iii. If T (α) = 0, then P(α) = 0

(b) That is, the precisification of a trivalent truth-value assignment agrees with
that trivalent truth-value assignment about the classical truth-values 1 and
0, but settles the indeterminacy one way or the other.

19. Supervaluationism then says that a sentence ðϕñ is true on the trivalent truth-
value assignment T iff ðϕñ is true on every precisification P of T . Similarly,
a sentence ðϕñ is false on T iff ðϕñ is false on every precisification P of T .
Finally, if ðϕñ is true on some precisifications of T and false on others, then
ðϕñ is neither true nor false on T .

(a) Now, consider a truth-value assignment T on which ‘p ’ is neither true
nor false, T (p) = #. One precisification of T is T1, according to which
‘p ’ is true; the other is T0, according to which p is false. On both these
precisifications, ‘p∨¬p ’ is true. So the supervaluationist says that ‘p∨¬p ’
is true on the trivalent truth-value assignment T .

(b) Similarly, on both T1 and T0, ‘p ∧¬p ’ is false. So the supervaluationist
says that ‘p ∧¬p ’ is false on the trivalent truth-value assignment T .

20. When it comes to the question of which arguments are valid and which are
invalid, the supervaluationist faces choices.

(a) In the first place, there is the choice of which truth-value to take as the
designated truth-value. We will assume that the supervaluationist says it
is truth, and not non-falsehood.
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(b) Then, the most natural thing for the supervaluationist to say is that a valid
argument is one that preserves truth—that is, the argument from the sen-
tences in Γ to ðϕñ is super-valuationistically valid,

Γ |=SV ϕ
iff every trivalent truth-value assignment which makes all the sentences in
Γ true makes ϕ true as well.

(c) However, they could attempt to super-valuate with respect to validity as
well. That is, they could attempt to say that Γ entails ðϕñ,

Γ |=∗SV ϕ
iff, for every trivalent truth-value assignment T , every precisification of
T which makes all of the sentences in Γ true makes ðϕñ true as well.

(d) The first of these approaches is called global validity, whereas the second
is called local validity. We will assume that the supervaluationist opts for
global validity in what follows.

21. Notice, then, that even though the supervaluationist denies bivalence, they still
accept the law of the excluded middle, lem.

(a) Take a borderline sentence ‘p ’. There will be some precisifications on
which ‘p ’ is true, and some on which it is false. On the precisifications
which make ‘p ’ true, ‘p ∨¬p ’ will be true. On the precisifications which
make ‘p ’ false, ‘¬p ’ will be true, so that ‘p∨¬p ’ will be true. So ‘p∨¬p ’
will be true even when ‘p ’ is neither true nor false.

(b) In general, prenumbral connections between sentences of the language will
be preserved on a supervaluationistic approach. On any precisification of
‘cold’, if 55◦ is cold, then 50◦ will be cold, also. So it will be true that, if 55◦
is cold, then 50◦ is cold as well. However, there are some precisifications
of ‘cold’ on which ‘if 50◦ is cold, then 55◦ is cold’ is false. So it will not be
true that, if 50◦ is cold, then 55◦ is cold, too.

22. In general, the supervaluationist’s logic is just classical logic. That is to say, an
argument is valid according to the supervaluationist iff that argument is valid
according to classical logic.

(a) That is, if we use ‘|=’ for the classical logician’s consequence relation, then

Γ |=ϕ ⇐⇒ Γ |=SV ϕ
23. What does the supervaluationist say about the sorites?

(a) They will say that the second premise of the argument,

(∀n)(H (n)→ H (n − 1))
is false (not only not true, but false). For this premise is false on every
precisification of the extension of H . Moreover, because they preserve
classical logic, they will assert the negation of the second premise,

(∃n)(H (n)∧¬H (n − 1))
That is, they will say that there is a sharp cut-off point between being a
heap and being a non-heap.

(b) However, there is no number n for which they will say that ‘H (n) ∧
¬H (n+1))’ is true. That is, they will say that an existential generalization
‘(∃x )ϕx ’ is true, even though there is nothing ‘x ’ could refer to such that
‘ϕx ’ is true. This is for essentially the same reason that they will endorse
‘p ∨ q ’ without endorsing either ‘p ’ or ‘q ’.

2.5 Supervaluationism with Determinacy

24. We may introduce an additional operator ‘∆’, for Determinacy. In order to
explain the logic of the determinacy operator, we should be a bit more explicit
and careful about how we are determining the truth-value of logically complex
sentences from a given truth-value assignment. To keep things simple, let’s
begin with the classical case.

(a) Given a classical, bivalent truth-value assignment P , which is just a func-
tion from atomic sentences to {1,0}, we may construct the valuation func-
tion, ⟦ ⟧P , which is a function from any sentence to {1,0}. In order to
count as a valuation function for the truth-value assignment P , V P must
satisfy the following conditions, for any atomic sentence ðαñ and any sen-
tences ðϕñ and ðψñ:
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α) ⟦α⟧P = P(α).
¬) ⟦¬ϕ⟧P = 1 iff ⟦ϕ⟧P = 0.
∨) ⟦ϕ∨ψ⟧P = 1 iff ⟦ϕ⟧P = 1 or ⟦ψ⟧P = 1.
∧) ⟦ϕ∧ψ⟧P = 1 iff ⟦ϕ⟧P = 1 and ⟦ψ⟧P = 1.
→) ⟦ϕ→ψ⟧P = 1 iff ⟦ϕ⟧P = 0 or ⟦ψ⟧P = 1.

(b) Now, given a trivalent truth-value assignment T , we may construct a su-
pervaluation function, ⟦ ⟧T . In order to count as a supervaluation for
truth-value assignment T , ⟦ ⟧T must satisfy the following conditions, for
any sentence ðϕñ:
0) If, for every precisification P of T , ⟦ϕ⟧P = 1, then ⟦ϕ⟧T = 1.
1) If, for every precisification P of T , ⟦ϕ⟧P = 0, then ⟦ϕ⟧T = 0.
#) If, for some precisification P of T , ⟦ϕ⟧P = 1, and, for some precisi-

fication P of T , ⟦ϕ⟧P = 0, then ⟦ϕ⟧T = #.
(c) Notice that we may think of each precisificationP ofT as a possible world.

Supervaluationist truth is then tantamount to necessary truth (truth at all
precisifications). Supervaluationist falsehood is tantamount to necessary
falsehood (falsehood at all precisifications). And the supervaluationist’s in-
determinacy is tantamount to contingency (truth at some precisifications,
falsehood at others).

25. Now, we may introduce the determinacy operator ∆. The trick is to think
about it as a necessity modal like �.
(a) Suppose we are given a trivalent truth-value assignment T . Then, we may

consider all the precisificationsP of T (think of each of these as a possible
world).

(b) On any particular one of those precisifications, in order for a function⟦ ⟧P , from sentences to {0,1}, to count as a valuation function, it must
satisfy the rules (α), (¬), (∨), (∧), and (→), as above, and it must also
satisfy the rule (∆), for any sentence ϕ:
∆) ⟦∆ϕ⟧P = 1 iff, for every precisification P∗ of T , ⟦ϕ⟧P∗ = 1.
(Once again, we may define an operator for ‘it is indeterminate whether’,
∇ϕ def= ¬∆ϕ∧¬∆¬ϕ.)

(c) And, once again, in order for a function ⟦ ⟧T , from sentences to {1,0,#},
to count as a supervaluation for the interpretation T , ⟦ ⟧T must satisfy
the following conditions, for any sentence ðϕñ:

0) If, for every precisification P of T , ⟦ϕ⟧P = 1, then ⟦ϕ⟧T = 1.
1) If, for every precisification P of T , ⟦ϕ⟧P = 0, then ⟦ϕ⟧T = 0.
#) If, for some precisification P of T , ⟦ϕ⟧P = 1, and, for some precisi-

fication P of T , ⟦ϕ⟧P = 0, then ⟦ϕ⟧T = #.
26. Is it true that p |=SV ∆p?

(a) Pick any trivalent truth-value assignment T . If p is to be true on T , then
p must be true on all of T ’s precisifications. So ∆p must be true on all
of T ’s precisifications. So∆p must be true on T . So any trivalent truth-
value assignment which makes the premise true must make the conclusion
true as well, and the argument is valid.

27. What about the argument ¬∆p |=SV ¬p?
(a) Consider a trivalent truth-value assignment T according to which p is

neither true nor false. Then, for every precisification P of T , ∆p will
be false. Thus, for every precisification P of T , ‘¬∆p ’ will be true. So
‘¬∆p ’ is true on T . However, for some precisification P of T , ‘p ’ will
be true, so that ‘¬p ’ will be false. So ‘¬p ’ will be neither true nor false.
So not every interpretation which makes the premise ‘¬∆p ’ true will also
make the conclusion ‘¬p ’ true. So the argument is invalid.

28. Now, again, we may say that an argument is valid according to the supervalua-
tionist iff every trivalent truth-value assignment which makes all of its premises
true makes its conclusion true also.

(a) That is, we once again opt for global validity.

29. Consider the sentence ‘p→∆p ’. Is this sentence valid (is it a tautology)?

(a) Consider a trivalent truth-value assignmentT according to whichT (p) =
#. Then, there is a precisification ofT ,P1, on which p is true, and there is
a precisification of T , P0, on which p is false. So, on every precisification,
∆p is false. On T0, ‘p → ∆p ’ is true because ‘p ’ is false. But, on T1,
‘p→∆p ’ is false, since ‘p ’ is true but ‘∆p ’ is false. So ‘p→∆p ’ is true
on some precisifications of T and false on others. So ‘p→∆p ’ is neither
true nor false on the interpretation T .
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30. What this shows us is that contraposition (ifϕ |=ψ, then ¬ψ |= ¬ϕ) and con-
ditional proof (ifϕ |=ψ, then |=ϕ→ψ) are invalid for the supervaluationist,
once we include the determinacy operator ∆ in our language.

31. How does the supervaluationist accommodate higher-order vagueness?

(a) Keefe says that we should recognize higher-order vagueness as stemming
from vagueness in the meta-language. According to the supervaluationist,
when they are speaking in the meta-language, there are a range of accept-
able, or admissible, precisifications of our language. However, the term
‘admissible precisification’ is itself vague. So it’s not determinate whether
this or that counts as an admissible precisification of our language, and so
it’s not determinate what the cut off is between the determinate and the
borderline.

(b) The maneuver could be iterated with respect to the meta-meta-language,
and with respect to the meta-meta-meta-language, and so on and so forth.

Figure 1: Higher-Order Vagueness
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