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1 THE LANGUAGE OF PROPOSITIONAL LOGIC

1. The primitive vocabulary of propositional logic is:

(a) Proposition letters: P,Q ,R ,P1,Q1,R1, . . .

(b) Logical operators: ¬,→
(c) Parenthases: (, )

2. The rules for well-formed formulae (‘wffs’) are as follows:

(a) Any proposition letter is a wff.

(b) If ðϕñ is a wff, then ð¬ϕñ is a wff.
(c) If ðϕñ and ðψñ are wffs, then ð(ϕ→ψ)ñ are wffs.
(d) Nothing else is a wff.

3. The following are introduced as stipulative definitions:

(ϕ∨ψ) def= ((ϕ→ψ)→ψ)
(ϕ∧ψ) def= ¬(ϕ→¬ψ)
(ϕ↔ψ) def= ¬((ϕ→ψ)→¬(ψ→ϕ))

2 THE AXIOMATIC SYSTEM PL

4. Here is a simple axiomatization of classical propositional logic:

P → (Q → P ) (A1)
(P → (Q → R))→ ((P →Q )→ (P → R)) (A2)
(¬Q →¬P )→ ((¬Q → P )→Q ) (A3)

To accept these as axioms means that, at any point in an axiomatic proof, you
may write down (A1), (A2), or (A3).
In this axiomatic proof system, in addition to writing down (A1), (A2), or
(A3), we are also allowed to write down anything permitted by the following
two rules of inference:

Uniform Substitution (US): You may uniformly replace any propositional
letter, ðαñ , occurring in a theorem of PL with another wff of PL, ðψñ .

from |−
PL
ϕ[α1,α2, . . . ,αN ], infer |−PL ϕ[ψ1/α1,ψ2/α2, . . . ,ψN /αN ]

Modus Ponens (MP): From a wff of the form ðϕ→ ψñ and a wff of the
form ðϕñ , you may infer ðψñ .

5. If, by writing down the axioms (A1), (A2), and (A3), together with all of the
sentences in Γ , and successively applying the rules of inference, we can even-
tually write down ðϕñ , then we will write

Γ |−
PL
ϕ
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and we will say that ðϕñ is PL-provable from the wffs in Γ . If ðϕñ is provable
in the system PL from no premises, then we say that ðϕñ is a theorem of PL,
and we write

|−
PL
ϕ

6. Here’s a sample axiomatic proof establishing that |−
PL

P → P :

1. |−
PL
(P → (Q → R))→ ((P →Q )→ (P → R)) (A2)

2. |−
PL
(P → ((P → P )→ P ))→ ((P → (P → P ))→ (P → P )) 1 (U S )

3. |−
PL

P → (Q → P ) (A1)
4. |−

PL
P → ((P → P )→ P ) 3 (U S )

5. |−
PL
(P → (P → P ))→ (P → P ) 2, 4 (MP )

6. |−
PL

P → (P → P ) 3 (U S )
7. |−

PL
P → P 5, 6 (MP )

2.1 SEMANTICS FOR PL

7. An interpretation function ⟦ ⟧ is a function from wffs of PL to {0,1}.
(a) We require that an interpretation satisfy the following conditions:

(¬) ⟦¬ϕ⟧ = 1 iff ⟦ϕ⟧ = 0.
(→) ⟦ϕ→ψ⟧ = 1 iff ⟦ϕ⟧ = 0 or ⟦ψ⟧ = 1.

8. We say that ðϕñ is a PL-consequence of a set of wffs Γ , or that the argument
from Γ to ðϕñ is PL-valid, written

Γ |=
PL
ϕ

iff there is no PL-interpretation ⟦ ⟧ such that ⟦γ ⟧ = 1 for every γ ∈ Γ , yet⟦ϕ⟧ = 0. Or, equivalently, iff, for every interpretation on which all of the
premises in Γ are true, ðϕñ is true as well.

9. Here’s an interesting and unexpected and fantastic fact: ðϕñ is PL-provable
from Γ iff the argument from Γ to ðϕñ is PL-valid:

Γ |−
PL
ϕ if and only if Γ |=

PL
ϕ

3 THE LANGUAGE OF PROPOSITIONAL MODAL LOGIC

10. The primitive vocabulary of propositional modal logic is exactly the language
of propositional logic, plus one additional logical operator, �.

11. We add the following to our rules for well-formed formulae from propositional
logic:

(a) If ðϕñ is a wff, then ð�ϕñ is a wff.
12. And we introduce the additional stipulative definition:

◊ϕ def= ¬�¬ϕ

4 THE SYSTEM K

13. The axiomatic system K is characterized by one additional axiom, K (the dis-
tribution axiom), and one additional rule of inference, N (the rule of necessi-
tation).

K : �(P →Q )→ (�P → �Q )
N : from |−

K
ϕ, infer |−

K
�ϕ

If we add K and N to the axioms and rules of inference for PL, we get the
axiomatic system K . Since we know that every theorem of PL can be proven
from the axioms and rules of inference for PL, we can make our axiomatic
system K a bit easier to work with by allowing ourselves to write down, as
an axiom, any theorem of PL, and allowing ourselves to appeal to any valid
PL rule of inference. Then, the axiomatic system K will have the following
axioms:

|−
K
ϕ, for all theorems of PL, ðϕñ (PLT )

|−
K
�(P →Q )→ (�P → �Q ) (K )

And the following rules of inference:

all valid PL inferences (PLR)
from |−

K
ϕ[α1,α2, . . . ,αN ], infer |−K ϕ[ψ1/α1,ψ2/α2, . . . ,ψN /αN ] (U S )

from |−
K
ϕ, infer |−

K
�ϕ (N )
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(PLR) allows you to appeal to any PL-valid rule of inference.

14. If ðϕñ is provable in the system K from the premises in Γ , then we write

Γ |−
K
ϕ

If ðϕñ is provable in the system K from no premises, then we say that ðϕñ is
a theorem of K , and we write

|−
K
ϕ

15. Here is a proof schema establishing that a wff of the form ð¬◊ϕñ is equivalent
to a wff of the form ð�¬ϕñ :

1) |−
K
¬¬P↔ P (PL)

2) |−
K
¬¬�¬ϕ↔ �¬ϕ 1 (U S )

3) |−
K
¬◊ϕ↔ �¬ϕ 2 def. ‘◊’

We may similarly establish that a wff of the form ð¬�ϕñ is equivalent to a wff
of the form ð◊¬ϕñ .1 Let’s introduce these as derived rules of inference, which
we may call ‘MN ’, for Modal Negation:

from ζ [¬�ϕ], infer ζ [◊¬ϕ]
from ζ [¬◊ϕ], infer ζ [�¬ϕ]
from ζ [�¬ϕ], infer ζ [¬◊ϕ]
from ζ [◊¬ϕ], infer ζ [¬�ϕ]

(MN )

(Here ðζ [¬�ϕ]ñ is just any wff, ðζ ñ , which contains the wff ð¬�ϕñ as a
sub-wff, and similarly for ðζ [◊¬ϕ]ñ , ðζ [¬◊ϕ]ñ , and ðζ [�¬ϕ]ñ .)

4.1 SEMANTICS FOR K

16. A K -frame is a pair < W ,R > consisting of a set of worlds W , a binary re-
lation R ⊆W ×W (known as the ‘accessibility relation’—though ‘Rww∗’ is
colloquially glossed as ‘w sees w∗’).

1 We may also prove that, if |−
K
ϕ↔ψ, then we may replace ðϕñ with ðψñ wherever it appears.

w1

w2 w3

w4

Figure 1: A K -frame consisting of the worlds w1,w2,w3, and w4, and the accessibility
relation R such that Rw1w1, Rw1w2, Rw1w3, Rw3w2, and Rw4w4.

Q

P

w1

w2 w3

w4

Figure 2: AK -model consisting of the frame from figure 1 together with an an interpretation⟦ ⟧ such that P is true in w1 and w2 and Q is true in w1 and w4.

17. A K -model is a triple <W ,R ,⟦ ⟧ > consisting of a K -frame and an interpre-
tation function ⟦ ⟧, from pairs of wffs and worlds w ∈W to {1,0}.
(a) We require that our interpretation function ⟦ ⟧ satisfy the following con-

ditions:

(¬) ⟦¬ϕ⟧w = 1 iff ⟦ϕ⟧w = 0.
(→) ⟦ϕ→ψ⟧w = 1 iff ⟦ϕ⟧w = 0 or ⟦ψ⟧w = 1.
(�) ⟦�ϕ⟧w = 1 iff, for every w∗ ∈W , if Rww∗, then ⟦ϕ⟧w∗ = 1.

Given this semantics for ‘¬’ and ‘�’, it is possible to show that, given our
definition of ð◊ϕñ ,

(◊) ⟦◊ϕ⟧w = 1 iff there is some w∗ such that Rww∗ and ⟦ϕ⟧w∗ = 1.
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18. We will say that ðϕñ is a K -consequence of a set of wffs Γ , or that the argument
from Γ to ðϕñ is K -valid, written

Γ |=
K
ϕ

iff there is no K -model <W ,R ,⟦ ⟧ >, with some w ∈W such that ⟦γ ⟧w = 1
for every γ ∈ Γ , yet ⟦ϕ⟧w = 0. Or, equivalently: iff for every world in every
K -model at which all the premises in Γ are true, ðϕñ is true as well.

19. Here’s an interesting and unexpected and fantastic fact: ðϕñ is K -provable
from the premises in Γ iff the argument from Γ to ðϕñ is K -valid.

Γ |−
K
ϕ if and only if Γ |=

K
ϕ

20. Notice that, in the K -model shown in figure 2, the wff ‘�P → ◊P ’ is false
at world w2. (All of the none of the worlds which w2 sees are P -worlds, so⟦�P ⟧w2 = 1. Yet there is no world which w2 sees which is a P -world, so⟦◊P ⟧w2 = 0.)

5 THE SYSTEM D

21. Suppose we add to our axiomatic system K the following axiom

D : �P → ◊P
This gives us the system D . The system D will have the following axioms:

|−
D
ϕ, for all theorems of PL, ðϕñ (PL)

|−
D
�(P →Q )→ (�P → �Q ) (K )

|−
D
�P → ◊Q (D)

And the following rules of inference:

all PL valid inferences (PLR)
from |−

D
ϕ[α1,α2, . . . ,αN ], infer |−D ϕ[ψ1/α1,ψ2/α2, . . . ,ψN /αN ] (U S )

from |−
D
ϕ, infer |−

D
�ϕ (N )

(We will still retain the derived rule of inference, MN .)

w1 w2 w3

Figure 3: A D-frame consisting of the worlds w1,w2, and w3, and an accessibility relation
R such that Rw1w1, Rw2w1, and Rw3w3.

22. Here is an axiomatic proof showing that |−
D
¬◊P → ◊¬P (this is not a theo-

rem in K ).

1. |−
D
�P → ◊P (D)

2. |−
D
�¬P → ◊¬P 1 (U S )

3. |−
D
¬◊P → ◊¬P 2 (MN )

5.1 SEMANTICS FOR D

Our semantics for K imposed absolutely no constraints on the accessibility
relation R . If we require that the accessibility relation R be serial—that is, that
every world sees at least one (not necessarily distinct) world—then we get a
semantics for the system D .

23. A D-frame is a pair <W ,R > of a set of worldsW and a serial binary relation
R ⊆W ×W . A binary relation R overW is serial iff every w ∈W bears R to
something.

Seriality
A binary relation R ⊆ A ×A is serial iff, for all a ∈ A, there is
some b ∈A such that Rab .

∀a ∃b Rab

24. A D model is a triple <W ,R ,⟦ ⟧ > consisting of a D-frame <W ,R > and an
interpretation function ⟦ ⟧, from pairs of wffs and worlds w ∈W to {1,0}.
(a) As with a K -model, we require that the interpretation function ⟦ ⟧ satisfy

these constraints:
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QP
w1 w2 w3

Figure 4: A D-model consisting of the frame from figure 3 together with an interpretation⟦ ⟧ such that P is true in w1 and Q is true in w2 and w3.

(¬) ⟦¬ϕ⟧w = 1 iff ⟦ϕ⟧w = 0
(→) ⟦ϕ→ψ⟧w = 1 iff ⟦ϕ⟧w = 0 or ⟦ψ⟧w = 1
(�) ⟦�ϕ⟧w = 1 iff ⟦ϕ⟧w∗ = 1 for all w∗ such that Rww∗.

25. We will say that ðϕñ is aD-consequence of a set of wffs Γ , or that the argument
from Γ to ðϕñ is D-valid,

Γ |=
D
ϕ

iff there is no D-model <W ,R ,⟦ ⟧ >, with some w ∈W , such that ⟦γ ⟧w = 1
for every γ ∈ Γ , yet ⟦ϕ⟧w = 0. Or, equivalently: iff for every world in every
D-model at which all the premises in Γ are true, ðϕñ is true as well.

26. Here’s an interesting and unexpected and fantastic fact: ðϕñ is D-provable
from the premises in Γ iff the argument from Γ to ðϕñ is D-valid.

Γ |−
D
ϕ if and only if Γ |=

D
ϕ

27. Notice that, in theD-model from figure 4, ‘�P → P ’ is false at world w2. (For,
at w2, ‘�P ’ is true—since ‘P ’ is true at every world that w2 sees. However, at
w2, ‘P ’ is false. So ‘�P → P ’ is false.)

6 THE SYSTEM T

28. Suppose we add to our axiomatic system K the following axiom

T : �P → P

or, equivalently,
T ∗ : P → ◊P

29. This gives us the axiomatic system T . T will have the following axioms:

|−
T
ϕ, for all theorems of PL, ðϕñ (PL)

|−
T
�(P →Q )→ (�P → �Q ) (K )

|−
T
�P → P (T )

And the following rules of inference:

all PL valid inferences (PLR)
from |−

T
ϕ[α1,α2, . . . ,αN ], infer |−T ϕ[ψ1/α1,ψ2/α2, . . . ,ψN /αN ] (U S )

from |−
T
ϕ, infer |−

T
�ϕ (N )

Since all the axioms and rules of inference of K are axioms and rules of infer-
ence of T , we retain the derived rule (MN ).

30. I say that adding ‘P → ◊P ’ as an axiom is equivalent to adding ‘�P → P ’
as an axiom. That’s because, given this axiomatic framework, we can derive
‘�P → P ’ as a theorem if we take ‘P → ◊P ’ as an axiom, like so:

1. |−
T ∗

P → ◊P (T ∗)
2. |−

T ∗
¬P → ◊¬P 1 (U S )

3. |−
T ∗
¬P →¬�P 2 (MN )

4. |−
T ∗
�P → P 3 (PLR)

And we can derive ‘P → ◊P ’ as a theorem if we take ‘�P → P ’ as an axiom,
like so:

1. |−
T
�P → P (T )

2. |−
T
�¬P →¬P 1 (U S )

3. |−
T
¬◊P →¬P 2 (MN )

4. |−
T
P → ◊P 3, (PLR)

31. Notice that I did not carry over the axiom D , ‘�P → ◊P ’. That is: (D) is
not among the axioms for the system T . The reason for this is that, given (T ),
(D) is redundant. We can derive (D) as a theorem within T . To see this,
just extend the second axiomatic proof from 30 above with an application of
hypothetical syllogism.

5. |−
T
�P → ◊P 1, 4 (PLR)
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w1 w2 w3

Figure 5: A T -frame consisting of the worlds w1,w2, and w3, and an accessibility relation
R such that Rw1w1, Rw2w2, Rw2w1, and Rw3w3.

QP
w1 w2 w3

Figure 6: A T -model consisting of the T -frame from figure 5, together with an interpreta-
tion, ⟦ ⟧, such that P is true in w1 and w2, and Q is true in w2 and w3.

6.1 SEMANTICS FOR T

If we require that the accessibility relation R be reflexive—that is, that every
world sees itself—then we get a semantics for the system T .

32. A T -frame is a pair < W ,R > of a set of worlds W and a reflexive binary
relation R ⊆W ×W . A relation R on W is reflexive iff every w ∈W bears R
to itself. More generally,

reflexivity
A binary relation R ⊆A×A is reflexive iff, for all a ∈A, Raa.

∀a Raa

33. A T -model is a triple <W ,R ,⟦ ⟧ > consisting of a T -frame <W ,R > and an
interpretation function ⟦ ⟧, from pairs of wffs and worlds w ∈W to {1,0}.
(a) As usual, we require that ⟦ ⟧ satisfy the following constraints.

(¬) ⟦¬ϕ⟧w = 1 iff ⟦ϕ⟧w = 0.
(→) ⟦ϕ→ψ⟧w = 1 iff ⟦ϕ⟧w = 0 or ⟦ψ⟧w = 1.
(�) ⟦�ϕ⟧w = 1 iff, for every w∗ such that Rww∗, ⟦ϕ⟧w∗ = 1.

34. We will say that ðϕñ is aT -consequence of a set of wffs Γ , or that the argument
from Γ to ðϕñ is T -valid,

Γ |=
T
ϕ

iff there is no T -model <W ,R ,⟦ ⟧ >, with some w ∈W , such that ⟦γ ⟧w = 1
for every γ ∈ Γ , yet ⟦ϕ⟧w = 0. Or, equivalently: iff for every world in every
T -model at which all the premises in Γ are true, ðϕñ is true as well.

35. Here’s an interesting and unexpected and fantastic fact: ðϕñ is T -provable
from the premises in Γ iff the argument from Γ to ðϕñ is T -valid.

Γ |−
T
ϕ if and only if Γ |=

T
ϕ

7 THE SYSTEM B

36. Suppose we add to our axiomatic system T the following axiom

B : P → �◊P
or, equivalently,

B ∗ : ◊�P → P

This gives us the axiomatic system B . B will have the following axioms:

|−
B
ϕ, for all theorems of PL, ðϕñ (PLT )

|−
B
�(P →Q )→ (�P → �Q ) (K )

|−
B
�P → P (T )

|−
B
P → �◊P (B )

And the following rules of inference:

all valid PL inferences (PLR)
from |−

B
ϕ[α1,α2, . . . ,αN ], infer |−B ϕ[ψ1/α1,ψ2/α2, . . . ,ψN /αN ] (U S )

from |−
B
ϕ, infer |−

B
�ϕ (N )

Since all the axioms and rules of inference of K are axioms and rules of infer-
ence of B , we retain the derived rule (MN ).
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37. I say that adding ‘◊�P → P ’ as an axiom is equivalent to adding ‘P → �◊P ’
as an axiom. That’s because, taking ‘P → �◊P ’ as an axiom, we can derive
‘◊�P → P ’, like so:

1. |−
B
P → �◊P (B )

2. |−
B
¬P → �◊¬P 1 (U S )

3. |−
B
¬P → �¬�P 2 (MN )

4. |−
B
¬P →¬◊�P 3 (MN )

5. |−
B
◊�P → P 4 (PLR)

And we can derive ‘P → �◊P ’ as a theorem if we take ‘◊�P → P ’ as an
axiom, like so:

1. |−
B∗
◊�P → P (B ′)

2. |−
B∗
◊�¬P →¬P 1 (U S )

3. |−
B∗
◊¬◊P →¬P 2 (MN )

4. |−
B∗
¬�◊P →¬P 3 (MN )

5. |−
B∗

P → �◊P 4 (PLR)

7.1 SEMANTICS FOR B

If we require that the accessibility relation R be reflexive and symmetric—that is,
that every world sees itself and every world sees all the worlds that see it—then
we get a semantics for the system B .

38. A B -frame is a pair <W ,R > of a set of worldsW and a reflexive and symmetric
binary relation R ⊆W×W . Requiring that R is reflexive and symmetric means
requiring that every world see itself and that, if w sees w∗, then w∗ must also
see w . More generally,

reflexivity
A binary relation R ⊆A×A is reflexive iff, for all a ∈A, Raa.

∀a Raa

symmetry
A binary relation R ⊆ A×A is symmetric iff, for all a, b ∈ A, if
Rab , then Rba.

∀a ∀b (Rab → Rba)

w1 w2 w3 w4

Figure 7: A B -frame consisting of the worlds w1,w2,, w3, and w4, and an accessibility rela-
tion R such that Rw1w1, Rw1w2, Rw2w2, Rw2w1, Rw2w3, Rw3w3, Rw3w2, and Rw4w4.

QP
w1 w2 w3 w4

Figure 8: A B -model consisting of the frame from figure 7, together with an interpretation,⟦ ⟧, according to which P is true at w1 and w2, and Q is true at w3 and w4.

39. A B -model is a triple <W ,R ,⟦ ⟧ > consisting of a B -frame <W ,R > and an
interpretation function, ⟦ ⟧, from pairs of wffs and worlds w ∈W to {1,0}.
(a) As usual, we require that ⟦ ⟧ satisfy the following constraints.

(¬) ⟦¬ϕ⟧w = 1 iff ⟦ϕ⟧w = 0.
(→) ⟦ϕ→ψ⟧w = 1 iff ⟦ϕ⟧w = 0 or ⟦ψ⟧w = 1.
(�) ⟦�ϕ⟧w = 1 iff, for every w∗ such that Rww∗, ⟦ϕ⟧w∗ = 1.

40. We will say that ðϕñ is a B -consequence of a set of wffs Γ , or that the argument
from Γ to ðϕñ is B -valid,

Γ |=
B
ϕ

iff there is no B -model <W ,R ,⟦ ⟧ >, with some w ∈W , such that ⟦γ ⟧w = 1
for every γ ∈ Γ , yet ⟦ϕ⟧w = 0. Or, equivalently: iff for every world in every
B -model at which all the premises in Γ are true, ðϕñ is true as well.

41. Here’s an interesting and unexpected and fantastic fact: ðϕñ is B -provable
from the premises in Γ iff the argument from Γ to ðϕñ is B -valid.

Γ |−
B
ϕ if and only if Γ |=

B
ϕ

42. Notice that, in the B -model from figure 8, ‘�P → ��P ’ is false at w1. (Since
‘P ’ is true at ever world that w1 sees, ‘�P ’ is true there. However, ‘�P ’ is false
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at w2, since ‘P ’ is false at w3, and w2 sees w3. So ‘�P ’ is not true at w2, and is
therefore not true at every world that w1 sees. So ‘��P ’ is false at w1. So, at
w1, ‘�P ’ is true while ‘��P ’ is false, so ‘�P → ��P ’ is false at w1.)

(a) Also note that, in the same B -model, ‘◊◊Q → ◊Q ’ is false at w1. (Since
w2 sees a Q -world, ‘◊Q ’ is true at w2. And since w1 sees w2, ‘◊◊Q ’ is
true at w1. However, w1 does not see any Q -worlds, so ‘◊Q ’ is false at
w1. So ‘◊◊Q → ◊Q ’ is false at w1.)

8 THE SYSTEM S4

43. Suppose we add to our axiomatic system T the following axiom

S4 : �P → ��P
or, equivalently,

S4∗ : ◊◊P → ◊P
This gives us the axiomatic system S4. S4 will have the following axioms:

|−
S4
ϕ, for all theorems of PL, ðϕñ (PL)

|−
S4
�(P →Q )→ (�P → �Q ) (K )

|−
S4
�P → P (T )

|−
S4
�P → ��P (S4)

And the following rules of inference:

all PL-valid inferences (PLR)
from |−

S4
ϕ[α1,α2, . . . ,αN ], infer |−S4 ϕ[ψ1/α1,ψ2/α2, . . . ,ψN /αN ] (U S )

from |−
S4
ϕ, infer |−

S4
�ϕ (N )

Since all the axioms and rules of inference of K are axioms and rules of infer-
ence of S4, we retain the derived rule (MN ).

(a) Notice that we did not include the axiom (B ). Nor is (B ) a theorem of
this system. For each of the previous axiomatic systems, we have been

enlarging the number of theorems. That is, for any ðϕñ of PML, if ðϕñ
is a theorem of K , then it is a theorem ofD ; if ðϕñ is a theorem ofD , then
it is a theorem of T ; and if ðϕñ is a theorem of T , then it is a theorem of
B .

|−
K
ϕ ⇒ |−

D
ϕ ⇒ |−

T
ϕ ⇒ |−

B
ϕ

This is not true of B and S4. Not every theorem of B is a theorem of S4,

|−
B
ϕ ̸⇒ |−

S4
ϕ

and not every theorem of S4 is a theorem of B

|−
S4
ϕ ̸⇒ |−

B
ϕ

Nevertheless, if ðϕñ is a theorem of T , then it is a theorem of S4:

|−
K
ϕ ⇒ |−

D
ϕ ⇒ |−

T
ϕ ⇒ |−

S4
ϕ

44. I say that adding ‘◊◊P → ◊P ’ as an axiom is equivalent to adding ‘�P →
��P ’ as an axiom. That’s because, given this axiomatic framework, we can
derive ‘◊◊P → ◊P ’ as a theorem if we take ‘�P → ��P ’ as an axiom, as
follows:

1. |−
S4
�P → ��P (S4)

2. |−
S4
�¬P → ��¬P 1 (U S )

3. |−
S4
¬◊P → �¬◊P 2 (MN )

4. |−
S4
¬◊P →¬◊◊P 3 (MN )

5. |−
S4
◊◊P → ◊P 4 (PLR)

And we can derive ‘�P → ��P ’ as a theorem if we take ‘◊◊P → ◊P ’ as an
axiom:

1. |−
S4∗
◊◊P → ◊P (S4∗)

2. |−
S4∗
◊◊¬P → ◊¬P 1 (U S )

3. |−
S4∗
◊¬�P →¬�P 2 (MN )

4. |−
S4∗
¬��P →¬�P 3 (MN )

5. |−
S4∗
�P → ��P 4 (PLR)

8



w1

w2

w3 w4

Figure 9: An S4-frame consisting of the worlds w1,w2,, w3, and w4, and an accessibility
relation R such that Rw1w1, Rw1w2, Rw2w2, Rw2w3, Rw1w3, Rw3w3, and Rw4w4.

8.1 SEMANTICS FOR S4

If we require that the accessibility relation R be reflexive and transitive—that is,
that every world sees itself and every world sees the worlds seen by the worlds
it sees—then we get a semantics for the system S4.

45. An S4-frame is a pair <W ,R > of a set of worlds W and a reflexive and tran-
sitive binary relation R ⊆W ×W . Requiring that R is reflexive and transitive
means requiring that every world see itself and that, if w sees w∗, and w∗ sees
w∗∗, then w must also see w∗∗. More generally,

reflexivity
A binary relation R ⊆A×A is reflexive iff, for all a ∈A, Raa.

∀a Raa

transitivity
A binary relation R ⊆A×A is transitive iff, for all a, b , c ∈A, if
Rab and Rbc , then Rac .

∀a ∀b ∀c ((Rab ∧ Rbc )→ Rac )

46. An S4-model is a triple <W ,R ,⟦ ⟧ > consisting of an S4-frame <W ,R > and
an interpretation function ⟦ ⟧, from pairs of wffs and worlds w ∈W to {1,0}.
(a) As usual, we require that ⟦ ⟧ satisfy the following constraints.

(¬) ⟦¬ϕ⟧w = 1 iff ⟦ϕ⟧w = 0.

QP
w1

w2

w3 w4

Figure 10: An S4-model consisting of the frame from figure 9, together with an interpreta-
tion on which P is true at w1 and Q is true at w3 and w4.

(→) ⟦ϕ→ψ⟧w = 1 iff ⟦ϕ⟧w = 0 or ⟦ψ⟧w = 1.
(�) ⟦�ϕ⟧w = 1 iff, for every w∗ such that Rww∗, ⟦ϕ⟧w∗ = 1.

47. We will say that ðϕñ is an S4-consequence of a set of wffs Γ , or that the
argument from Γ to ðϕñ is S4-valid,

Γ |=
S4
ϕ

iff there is no S4-model <W ,R ,⟦ ⟧ >, with some w ∈W , such that ⟦γ ⟧w = 1
for every γ ∈ Γ , yet ⟦ϕ⟧w = 0. Or, equivalently: iff for every world in every
S4-model at which all the premises in Γ are true, ðϕñ is true as well.

48. Here’s an interesting and unexpected and fantastic fact: ðϕñ is S4-provable
from the premises in Γ iff the argument from Γ to ðϕñ is S4-valid.

Γ |−
S4
ϕ if and only if Γ |=

S4
ϕ

49. (a) Note that the B -axiom, ‘P → �◊P ’, is false at world w1 of the S4-model
shown in figure 10. (‘P ’ is true at w1. At w3, ‘◊P ’ is false, since w3 does
not see any P -worlds. Since w1 sees w3, this means that ‘�◊P ’ is false at
w1. So ‘P → �◊P ’ is false at w1.)

(b) Note also that, for similar reasons, ‘◊P → �◊P ’ is false at w1.

9



9 THE SYSTEM S5

50. Suppose we add to our axiomatic system T the following axiom

S5 : ◊P → �◊P
or, equivalently,

S5∗ : ◊�P → �P
This gives us the axiomatic system S5. S5 will have the following axioms:

|−
S5
ϕ, for all theorems of PL, ðϕñ (PL)

|−
S5
�(P →Q )→ (�P → �Q ) (K )

|−
S5
�P → P (T )

|−
S5
◊P → �◊P (S5)

And the following rules of inference:

all PL-valid inferences (PLR)
from |−

S5
ϕ[α1,α2, . . . ,αN ], infer |−S5 ϕ[ψ1/α1,ψ2/α2, . . . ,ψN /αN ] (U S )

from |−
S5
ϕ, infer |−

S5
�ϕ (N )

Since all the axioms and rules of inference of K are axioms and rules of infer-
ence of S5, we retain all the derived rule (MN ).

51. I say that adding the axiom ‘◊�P → �P ’ to T is equivalent to adding ‘◊P →
�◊P ’ to T . That’s because we can derive ‘◊�P → �P ’ as a theorem in S5:

1. |−
S5
◊P → �◊P (S5)

2. |−
S5
◊¬P → �◊¬P 1 (U S )

3. |−
S5
¬�P → �¬�P 2 (MN )

4. |−
S5
¬�P →¬◊�P 3 (MN )

5. |−
S5
◊�P → �P 4 (PLR)

And, if we take ‘◊�P → �P ’ as an axiom, then we may derive ‘◊P → �◊P ’
as a theorem:

1. |−
S5∗
◊�P → �P (S5∗)

2. |−
S5∗
◊�¬P → �¬P 1 (U S )

3. |−
S5∗
◊¬◊P →¬◊P 2 (MN )

4. |−
S5∗
¬�◊P →¬◊P 3 (MN )

5. |−
S5∗
◊P → �◊P 4 (PLR)

52. Note that we didn’t include either the B axiom or the S4 axiom in the system
S5. However, both of these axioms are theorems of S5. Here is a proof showing
that the B axiom is a theorem in S5:

1. |−
S5
P → ◊P (T ∗)

2. |−
S5
◊P → �◊P (S5)

3. |−
S5
P → �◊P 1, 2 (PLR)

If we extend the above proof, we may derive the S4 axiom in S5:

4. |−
S5
�P → ◊�P 1 (U S )

5. |−
S5
◊�P → �P (S5∗)

6. |−
S5
�P↔ ◊�P 4, 5 (PLR)

7. |−
S5
�P → �◊�P 3 (U S )

8. |−
S5
�P → ��P 6, 7 (SE )

(On line 8, I used a rule ‘SE ’, for substitution of equivalents. It says that, if
ðϕ↔ ψñ is a theorem, then ðψñ may be replaced for ðϕñ wherever ðϕñ
appears as a subwff, and vice versa. This rule is derivable in K .)

(a) So both S4 and B are redundant axioms for the system S5. In fact, adding
the S5 axiom to the system T is equivalent to adding both the S4 axiom
and the B axiom to T . We have already shown that adding S5 to T brings
along both S4 and B as theorems. We will now show that adding to T
both the axiom S4 and the axiom B brings along S5 as a theorem:

10



1. |−
TBS4
◊◊P → ◊P (S4)

2. |−
TBS4

P → ◊P (T ∗)
3. |−

TBS4
◊P → ◊◊P 2 (U S )

4. |−
TBS4
◊P↔ ◊◊P 1, 3 (PLR)

5. |−
TBS4

P → �◊P (B )
6. |−

TBS4
◊P → �◊◊P 5 (U S )

7. |−
TBS4
◊P → �◊P 4, 6 (SE )

9.1 SEMANTICS FOR S5

If we require that the accessibility relation R be reflexive and euclidean—that is,
that every world sees itself and all the worlds that it sees see each other—then
we get a semantics for the system S5.

53. An S5-frame is a pair<W ,R > of a set of worldsW and a reflexive and euclidean
binary relation R ⊆W×W . Requiring that R is reflexive and Euclidean means
requiring that every world see itself and that, if w sees both w∗ and w∗∗, then
w∗ sees w∗∗. More generally,

reflexivity
A binary relation R ⊆A×A is reflexive iff, for all a ∈A, Raa.

∀a Raa

Euclideaness
A binary relation R ⊆ A×A is Euclidean iff, for all a, b , c ∈ A,
if Rab and Rac , then Rbc .

∀a ∀b ∀c ((Rab ∧ Rac )→ Rbc )

54. A binary relation is reflexive and Euclidean if and only if it is reflexive, sym-
metric, and transitive. So another, equivalent, definition of an S5-frame is this:
An S5-frame is a pair <W ,R > of a set of worldsW and a reflexive, symmetric,
and transitive binary relation R ⊆W ×W .

reflexivity
A binary relation R ⊆A×A is reflexive iff, for all a ∈A, Raa.

∀a Raa

w1

w2

w3 w4

Figure 11: An S5-frame consisting of the worlds w1,w2,, w3, and w4, and an accessibility
relation R such that Rw1w1, Rw1w2, Rw1w3, Rw2w1, Rw2w2, Rw2w3, Rw3w1, Rw3w2,
Rw3w3, and Rw4w4.

Q

P
w1

w2

w3 w4

Figure 12: An S5-model consisting of the frame from figure 11, together with an interpreta-
tion, ⟦ ⟧, according to which P is true at w1 and w3, and Q is true at w2.

symmetry
A binary relation R ⊆ A×A is symmetric iff, for all a, b ∈ A, if
Rab , then Rba.

∀a ∀b (Rab → Rba)

transitivity
A binary relation R ⊆A×A is transitive iff, for all a, b , c ∈A, if
Rab and Rbc , then Rac .

∀a ∀b ∀c ((Rab ∧ Rbc )→ Rac )

55. An S5-model is a triple <W ,R ,⟦ ⟧ > consisting of an S5-frame <W ,R > and
an interpretation function ⟦ ⟧, from pairs of wffs and worlds w ∈W to {1,0}.

11



(a) As usual, we require that ⟦ ⟧ satisfy the following constraints.
(¬) ⟦¬ϕ⟧w = 1 iff ⟦ϕ⟧w = 0.
(→) ⟦ϕ→ψ⟧w = 1 iff ⟦ϕ⟧w = 0 or ⟦ψ⟧w = 1.
(�) ⟦�ϕ⟧w = 1 iff, for every w∗ such that Rww∗, ⟦ϕ⟧w∗ = 1.

56. We will say that ðϕñ is an S5-consequence of a set of wffs Γ , or that the
argument from Γ to ðϕñ is S5-valid,

Γ |=
S5
ϕ

iff there is no S4-model <W ,R ,⟦ ⟧ >, with some w ∈W , such that ⟦γ ⟧w = 1
for every γ ∈ Γ , yet ⟦ϕ⟧w = 0. Or, equivalently: iff for every world in every
S5-model at which all the premises in Γ are true, ðϕñ is true as well.

57. Here’s an interesting and unexpected and fantastic fact: ðϕñ is S5-provable
from the premises in Γ iff the argument from Γ to ðϕñ is S5-valid.

Γ |−
S5
ϕ if and only if Γ |=

S5
ϕ

10 SUMMARY

58. In sum, here are the systems we’ve discussed characterized by the axioms they
add to the system K , along with the constraints on the accessibility relation R
those axioms imply.

System Additional Axioms Constraints on R
D �P → ◊P R is serial
T �P → P R is reflexive

�P → P R is reflexive
B P → �◊P & symmetric

(or: ◊�P → P )
�P → P R is reflexive

S4 �P → ��P & transitive
(or: ◊◊P → ◊P )

S5 �P → P R is reflexive
◊P → �◊P & Euclidean

(or: ◊�P → �P )

K

D

T

B S4

S5

Figure 13: Relationship between the systems of propositional modal logic.

11 RELATIONSHIPS BETWEEN THE SYSTEMS

59. We may visualize the relationship between the logical systems we have learned
with the graph from figure 13. There, the arrows correspond to relations of
validity preservation. The graph tells us that, if an argument or a wff of PML
is valid in K , then it will be valid in D . If it is valid in D , then it will be valid
in T . If it is valid in T , then it will be valid in B , and it will be valid in S4.
And, if an argument or a wff of PML is valid in either B or S4, then it will be
valid in S5.

Validity-preservation is transitive, so the graph also tells us, for instance, that
if an argument or wff of PML is valid in K , then it is valid in B ; and that, if
it is valid in D , then it is valid in S5.

60. There are other modal systems out there. Some of these are weaker than the
system K . That is, there are arguments or wffs that are valid in K which are
not valid in these modal logics. Such modal logics are known as non-normal
modal logics. Any modal logic which is at least as strong as K is known as

12



K

D

T B (= TB )

(T4 =) S4 S5 (= T5)

4

B

DB
B5

5

D5

45

D45
D4

Figure 14: Some other normal modal logics.

a normal modal logic. That is: any modal logic L which is such that all the
arguments or wffs which are valid in K are valid in L is a normal modal logic.

(a) Even amongst the normal modal logics, there are a great many which we
have not explored here. For a taste, figure 14 shows some of the possible
modal logics which we can get just from mixing and matching the modal
axioms we have already seen—namely, D , T , B , S4, and S5. Each of the
systems shown below has the axioms and rules of system K , plus some
combination of the axioms D , T , B , S4, and S5. In the figure, they are
ordered in terms of validity preservation, or strength.

(b) In that figure, The boldfaced logics are the ones we have studied. ‘D4’ is
the logic that you get if you add D and S4 to the system K ; ‘B5’ is the
logic that you get if you add B and S5 to K ; and so on. For each of these
normal modal logics, you may get a possible worlds semantics for the logic
which is sound and complete by imposing constraints on the accessibility
relation corresponding to those axioms. So, for instance, to get a semantics

for the logic 45, you simply define a 45-frame to be a pair < W ,R > of
a set of worlds and a binary relation R which is transitive and Euclidean;
and a 45-model is defined in the usual way.
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