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Preface

As the title indicates, this is a textbook on formal logic. Formal logic concerns the
study of a certain kind of language which, like any language, can serve to express
states of affairs. It is a formal language, i.e., its expressions (such as sentences) are de-
fined formally. This makes it a very useful language for being very precise about the
states of affairs its sentences describe. In particular, in formal logic it is impossible to
be ambiguous. The study of these languages centres on the relationship of entailment
between sentences, i.e., which sentences follow from which other sentences. Entail-
ment is central because by understanding it better we can tell when some states of
affairs must obtain provided some other states of affairs obtain. But entailment is not
the only important notion. We will also consider the relationship of being satisfiable,
i.e., of not being mutually contradictory. These notions can be defined semantically,
using precise definitions of entailment based on interpretations of the language—or
proof-theoretically, using formal systems of deduction.

Formal logic is of course a central sub-discipline of philosophy, where the logical
relationship of assumptions to conclusions reached from them is important. Philoso-
phers investigate the consequences of definitions and assumptions and evaluate these
definitions and assumptions on the basis of their consequences. It is also important
in mathematics and computer science. In mathematics, formal languages are used to
describe not “everyday” states of affairs, but mathematical states of affairs. Mathe-
maticians are also interested in the consequences of definitions and assumptions, and
for them it is equally important to establish these consequences (which they call “the-
orems”) using completely precise and rigorous methods. Formal logic provides such
methods. In computer science, formal logic is applied to describe the state and be-
haviours of computational systems, e.g., circuits, programs, databases, etc. Methods
of formal logic can likewise be used to establish consequences of such descriptions,
such as whether a circuit is error-free, whether a program does what it’s intended to
do, whether a database is consistent or if something is true of the data in it.

The book is divided into seven parts. Part I introduces the topic and notions of
logic in an informal way, without introducing a formal language yet. Parts II–IV con-
cern the formal language of sentence logic. In it, sentences are formed from basic sen-
tences using a number of operators (‘or’, ‘and’, ‘not’, ‘if …then’) which just combine
sentences into more complicated ones. We discuss logical notions such as entailment
in two ways: semantically, using the method of truth tables (in Part III) and proof-
theoretically, using a system of formal derivations (in Part IV). PartsV–VII deal with a
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PREFACE vi

more complicated language, that of predicate logic. It includes, in addition to the con-
nectives of sentence logic, also names, predicates, and the so-called quantifiers. These
additional elements of the languagemake itmuchmore expressive than sentence logic,
and we’ll spend a fair amount of time investigating just how much one can express in
it. Again, logical notions for the language of predicate logic are defined semantically,
using interpretations, and proof-theoretically, using a more complex version of the
formal derivation system introduced in Part IV.

In the appendices you’ll find a discussion of alternative notations for the languages
we discuss in this text, of alternative derivation systems, and a quick reference listing
most of the important rules and definitions.



PART I

Key notions of
logic

1



1 | Arguments

Logic is the business of evaluating arguments; sorting the good from the bad.
In everyday language, we sometimes use the word ‘argument’ to talk about bel-

ligerent shouting matches. If you and a friend have an argument in this sense, things
are not going well between the two of you. Logic is not concerned with such teeth-
gnashing and hair-pulling. They are not arguments, in our sense; they are just dis-
agreements.

An argument, as we will understand it, is something more like this:

It is raining heavily.
If you do not take an umbrella, you will get soaked.

.˙. You should take an umbrella.

We here have a series of sentences. The three dots on the third line of the argument
are read ‘therefore.’ They indicate that the final sentence expresses the conclusion of
the argument. The two sentences before that are the premises of the argument. If
you believe the premises, then the argument (perhaps) provides you with a reason to
believe the conclusion.

This is the sort of thing that logicians are interested in. We will say that an argu-
ment is any collection of premises, together with a conclusion.

This Part discusses some basic logical notions that apply to arguments in a natural
language like English. It is important to begin with a clear understanding of what
arguments are and of what it means for an argument to be valid. Later wewill translate
arguments from English into a formal language. We want formal validity, as defined
in the formal language, to have at least some of the important features of natural-
language validity.

In the example just given, we used individual sentences to express both of the
argument’s premises, and we used a third sentence to express the argument’s conclu-
sion. Many arguments are expressed in this way, but a single sentence can contain a
complete argument. Consider:

I was wearing my sunglasses; so it must have been sunny.

This argument has one premise followed by a conclusion.
Many arguments start with premises, and end with a conclusion, but not all of

them. The argument with which this section beganmight equally have been presented
with the conclusion at the beginning, like so:
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1.1. SENTENCES 3

You should take an umbrella. After all, it is raining heavily. And if you
do not take an umbrella, you will get soaked.

Equally, it might have been presented with the conclusion in the middle:

It is raining heavily. Accordingly, you should take an umbrella, given that
if you do not take an umbrella, you will get soaked.

When approaching an argument, we want to know whether or not the conclusion
follows from the premises. So the first thing to do is to separate out the conclusion
from the premises. As a guide, these words are often used to indicate an argument’s
conclusion:

so, therefore, hence, thus, accordingly, consequently

By contrast, these expressions often indicate that we are dealing with a premise, rather
than a conclusion:

since, because, given that

But in analysing an argument, there is no substitute for a good nose.

1.1 Sentences
To be perfectly general, we can define an argument as a series of sentences. The
sentences at the beginning of the series are premises. The final sentence in the series
is the conclusion. If the premises are true and the argument is a good one, then you
have a reason to accept the conclusion.

In logic, we are only interested in sentences that can figure as a premise or con-
clusion of an argument. So we will say that a sentence is something that can be true
or false.

You should not confuse the idea of a sentence that can be true or false with the
difference between fact and opinion. Often, sentences in logic will express things that
would count as facts— such as ‘Kierkegaard was a hunchback’ or ‘Kierkegaard liked
almonds.’ They can also express things that youmight think of asmatters of opinion—
such as, ‘Almonds are tasty.’

Also, there are things that would count as ‘sentences’ in a linguistics or grammar
course that we will not count as sentences in logic.

Questions In a grammar class, ‘Are you sleepy yet?’ would count as an interrogative
sentence. Although you might be sleepy or you might be alert, the question itself is
neither true nor false. For this reason, questions will not count as sentences in logic.
Suppose you answer the question: ‘I am not sleepy.’ This is either true or false, and so
it is a sentence in the logical sense. Generally, questions will not count as sentences,
but answers will.

‘What is this course about?’ is not a sentence (in our sense). ‘No one knows what
this course is about’ is a sentence.
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Imperatives Commands are often phrased as imperatives like ‘Wake up!’, ‘Sit up
straight’, and so on. In a grammar class, these would count as imperative sentences.
Although it might be good for you to sit up straight or it might not, the command
is neither true nor false. Note, however, that commands are not always phrased as
imperatives. ‘You will respect my authority’ is either true or false— either you will or
you will not— and so it counts as a sentence in the logical sense.

Exclamations ‘Ouch!’ is sometimes called an exclamatory sentence, but it is neither
true nor false. We will treat ‘Ouch, I hurt my toe!’ as meaning the same thing as ‘I
hurt my toe.’ The ‘ouch’ does not add anything that could be true or false.

Practice exercises
At the end of some chapters, there are exercises that review and explore the mate-
rial covered in the chapter. There is no substitute for actually working through some
problems, because learning logic is more about developing a way of thinking than it
is about memorizing facts.

So here’s the first exercise. Highlight the phrase which expresses the conclusion of
each of these arguments:

1. It is sunny. So I should take my sunglasses.
2. It must have been sunny. I did wear my sunglasses, after all.
3. No one but you has had their hands in the cookie-jar. And the scene of the

crime is littered with cookie-crumbs. You’re the culprit!
4. Miss Scarlett and Professor Plum were in the study at the time of the murder.

Reverend Green had the candlestick in the ballroom, and we know that there is
no blood on his hands. Hence Colonel Mustard did it in the kitchen with the
lead-piping. Recall, after all, that the gun had not been fired.



2 | Valid arguments

In §1, we gave a very permissive account of what an argument is. To see just how
permissive it is, consider the following:

There is a bassoon-playing dragon in the Cathedra Romana.
.˙. Salvador Dali was a poker player.

We have been given a premise and a conclusion. So we have an argument. Admittedly,
it is a terrible argument, but it is still an argument.

2.1 Two ways that arguments can go wrong
It is worth pausing to ask what makes the argument so weak. In fact, there are two
sources of weakness. First: the argument’s (only) premise is obviously false. ThePope’s
throne is only ever occupied by a hat-wearing man. Second: the conclusion does
not follow from the premise of the argument. Even if there were a bassoon-playing
dragon in the Pope’s throne, we would not be able to draw any conclusion about Dali’s
predilection for poker.

What about the main argument discussed in §1? The premises of this argument
might well be false. It might be sunny outside; or it might be that you can avoid getting
soaked without taking an umbrella. But even if both premises were true, it does not
necessarily show you that you should take an umbrella. Perhaps you enjoy walking in
the rain, and you would like to get soaked. So, even if both premises were true, the
conclusion might nonetheless be false.

The general point is that, for any argument, there are two ways that it might go
wrong:

• One or more of the premises might be false.
• The conclusion might not follow from the premises.

It is often important to determine whether or not the premises of an argument are
true. However, that is normally a task best left to experts in the field: as it might be
historians, scientists, or whomever. In our role as logicians, we are more concerned
with arguments in general. So we are (usually) more concerned with the second way
in which arguments can go wrong.

So: we are interested in whether or not a conclusion follows from some premises.
Don’t, though, say that the premises infer the conclusion. Entailment is a relation
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CHAPTER 2. VALID ARGUMENTS 6

between premises and conclusions; inference is something we do. So if you want to
mention inference when the conclusion follows from the premises, you could say that
one may infer the conclusion from the premises.

2.2 Validity
As logicians, we want to be able to determine when the conclusion of an argument
follows from the premises. Oneway to put this is as follows. Wewant to knowwhether,
if all the premises were true, the conclusion would also have to be true. This motivates
a definition:

An argument is valid if and only if it is impossible for all of the premises to be
true and the conclusion false.

And we will say that an argument is invalid iff it is not valid.

An argument is invalid if and only if it is possible for all of the premises to be
true and the conclusion false.

The crucial thing about a valid argument is that it is impossible for the premises
to be true while the conclusion is false. Consider this example:

Oranges are either fruits or musical instruments.
Oranges are not fruits.

.˙. Oranges are musical instruments.

The conclusion of this argument is ridiculous. Nevertheless, it follows from the
premises. If both premises are true, then the conclusion just has to be true. So the
argument is valid.

This highlights that valid arguments do not need to have true premises or true
conclusions. Conversely, having true premises and a true conclusion is not enough to
make an argument valid. Consider this example:

London is in England.
Beijing is in China.

.˙. Paris is in France.

The premises and conclusion of this argument are, as a matter of fact, all true, but the
argument is invalid. If Paris were to declare independence from the rest of France,
then the conclusion would be false, even though both of the premises would remain
true. Thus, it is possible for the premises of this argument to be true and the conclusion
false. So the argument is invalid.

The important thing to remember is that validity is not about the actual truth
or falsity of the sentences in the argument. It is about whether it is possible for all the
premises to be true and the conclusion false. Nonetheless, wewill say that an argument
is sound if and only if it is both valid and all of its premises are true.
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2.3 Inductive arguments

Many good arguments are invalid. Consider this one:

In January 1997, it rained in London.
In January 1998, it rained in London.
In January 1999, it rained in London.
In January 2000, it rained in London.

.˙. It rains every January in London.

This argument generalises fromobservations about several cases to a conclusion about
all cases. Such arguments are called inductive arguments. The argument could be
made stronger by adding additional premises before drawing the conclusion: In Jan-
uary 2001, it rained in London; In January 2002…. But, however many premises of
this form we add, the argument will remain invalid. Even if it has rained in London
in every January thus far, it remains possible that London will stay dry next January.

The point of all this is that inductive arguments—even good inductive
arguments—are not valid. They are not watertight. Unlikely though it might be,
it is possible for their conclusion to be false, even when all of their premises are true.
In this book, we will set aside (entirely) the question of what makes for a good induc-
tive argument. Our interest is simply in sorting the valid arguments from the invalid
ones.

2.4 Proving Invalidity

Suppose you wanted to persuade someone that an argument was invalid. How would
you do that? Well, what it is for an argument to be invalid is for it to be possible that
all of the argument’s premises are true, while its conclusion is simultaneously false.
So, if you wanted to show that the argument is invalid, you could simply describe that
possibility in enough detail to persuade a reasonable person that the premises of an
argument could be true while the conclusion is false.

Consider the following arguments:

The earth moves around the sun.
.˙. The sun does not move.

Raising the minimum wage reduces employment.
Bernie wants to raise the minimum wage.

.˙. Bernie wants to reduce employment.

We have not discovered life on other planets.
.˙. There is no life on other planets.

Each of these arguments is invalid. And we may demonstrate that they are invalid
by describing possibilities in which their premises are true while their conclusions
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are false. For the first argument, consider the following possibility: the earth rotates
around the sun, and the sun itself rotates around the black hole at the center of the
milky way galaxy. This is possible (in fact, it’s actual), and, in this possibility, the
premise of the first argument is true, yet the conclusion is false. So, the argument is
invalid.

For the second argument, consider the following possibility: raising theminimum
wage does reduce employment; however, Bernie does not know this. He incorrectly
believes that raising the minimum wage wouldn’t affect employment. Bernie wants
to raise the minimum wage, but does not want to reduce employment. Since this is
possible (though perhaps not actual), the argument is invalid.

It’s important to appreciate that, when it comes to figuring out whether the argu-
ment is valid or invalid, it simply doesn’t matter whether the premises or the conclu-
sion are in fact true or false. Perhaps raising theminimumwage reduces employment;
perhaps not. Perhaps Bernie wants to lower employment; perhaps not. When it comes
to figuring out whether the argument is valid, these questions are simply irrelevant.

For the third argument, consider the following possibility: life on other planets is
hidden somewhere we would be unlikely to have yet found it. Though we have not yet
found it, it is still out there. In this possibility, the premise of the argument is true, yet
its conclusion is false. Since this is possible (though perhaps not actual), the argument
is invalid.

Practice exercises
A. Which of the following arguments are valid? Which are invalid?

Socrates is a man.
All men are carrots.

.˙. Socrates is a carrot.

Abe Lincoln was either born in Illinois or he was once president.
Abe Lincoln was never president.

.˙. Abe Lincoln was born in Illinois.

If I pull the trigger, Abe Lincoln will die.
I do not pull the trigger.

.˙. Abe Lincoln will not die.

Abe Lincoln was either from France or from Luxemborg.
Abe Lincoln was not from Luxemborg.

.˙. Abe Lincoln was from France.

If the world were to end today, then I would not need to get up tomorrowmorn-
ing.
I will need to get up tomorrow morning.

.˙. The world will not end today.
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Joe is now 19 years old.
Joe is now 87 years old.

.˙. Bob is now 20 years old.

B. Could there be:

1. A valid argument that has one false premise and one true premise?
2. A valid argument that has only false premises?
3. A valid argument with only false premises and a false conclusion?
4. An invalid argument that can be made valid by the addition of a new premise?
5. A valid argument that can be made invalid by the addition of a new premise?

In each case: if so, give an example; if not, explain why not.

C. For each of the following arguments, if it is invalid, say which of the possibilities
show that it is invalid (there may be more than one).

1. Sammy loves everyone who owns a horse.
Bobby doesn’t own a horse.

.˙. Sammy doesn’t love Bobby.

a. The argument is valid.
b. Cameron is the only person who owns a horse, and Sammy loves Cameron.

Bobby doesn’t own a horse, and Sammy doesn’t love him.
c. Cameron is the only person who owns a horse, but Sammy doesn’t love

Cameron. Bobby doesn’t own a horse, and Sammy doesn’t love him.
d. Cameron is the only person who owns a horse, but Sammy doesn’t love

Cameron. Bobby doesn’t own a horse, and Sammy loves him.
e. Cameron is the only person who owns a horse, and Sammy loves Cameron.

Bobby doesn’t own a horse, but Sammy still loves him.

2. Margaret Thatcher doesn’t live in New York City.
New York City is located in New York State.

.˙. Margaret Thatcher doesn’t live in New York State.

a. The argument is valid.
b. Margaret Thatcher is dead, so she doesn’t live anywhere any longer.
c. Margaret Thatcher lives in London, which is not in New York State.
d. Margaret Thatcher lives in Buffalo, which is in New York State, but not in New

York City.
e. MargaretThatcher lives inManhattan, which is in bothNewYork City andNew

York State.

3. All humans are mammals.
Some mammals have hair.
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.˙. All humans have hair.

a. The argument is valid. Therefore, there is no possibility in which the premises
are true and the conclusion false.

b. All humans are mammals and all whales are mammals. Whales have hair, but
humans do not.

c. Humans are not mammals, and even though all mammals have hair, humans
do not have hair.

d. Who’s to say that all humans are mammals? Some humans believe that they are
immortal spirits.

e. Humans aremammals, but they are hairless; so too is every othermammal—no
mammals have any hair.



3 | Other logical notions

In §2, we introduced the idea of a valid argument. This is one of the most important
ideas in logic. In this section, we will introduce are some similarly important ideas.

3.1 Joint possibility

Consider these two sentences:

B1. Jane’s only brother is shorter than her.
B2. Jane’s only brother is taller than her.

Logic alone cannot tell us which, if either, of these sentences is true. Yet we can say that
if the first sentence (B1) is true, then the second sentence (B2) must be false. Similarly,
if B2 is true, thenB1must be false. It is impossible that both sentences are true together.
These sentences are jointly impossible; they cannot all be true at the same time. This
motivates the following definitions:

Sentences are jointly possible if and only if it is possible for them all to be
true together.

Sentences are jointly impossible if and only if it is impossible for them all to
be true together.

B1 and B2 are jointly impossible.
We can ask about the joint possibility of any number of sentences. For example,

consider the following four sentences:

G1. There are at least four giraffes at the wild animal park.
G2. There are exactly seven gorillas at the wild animal park.
G3. There are not more than two martians at the wild animal park.
G4. Every giraffe at the wild animal park is a martian.

G1 and G4 together entail that there are at least four martian giraffes at the park. This
conflictswithG3, which implies that there are nomore than twomartian giraffes there.
So the sentences G1–G4 are jointly impossible. They cannot all be true together. (Note
that the sentences G1, G3 and G4 are jointly impossible. But if sentences are already

11
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jointly impossible, adding an extra sentence to the mix will not make them jointly
possible!)

3.2 Necessary truths, necessary falsehoods, and
contingencies

In assessing arguments for validity, we care about what would be true if the premises
were true, but some sentences just must be true. Consider these sentences:

1. It is raining.
2. Either it is raining here, or it is not.
3. It is both raining here and not raining here.

In order to know if sentence 1 is true, you would need to look outside or check the
weather channel. It might be true; it might be false. A sentence which is capable of
being true and capable of being false (in different circumstances, of course) is called
contingent.

Sentence 2 is different. You do not need to look outside to know that it is true. Re-
gardless of what the weather is like, it is either raining or it is not. That is a necessary
truth.

Equally, you do not need to check the weather to determine whether or not sen-
tence 3 is true. It must be false, simply as amatter of logic. It might be raining here and
not raining across town; it might be raining now but stop raining even as you finish
this sentence; but it is impossible for it to be both raining and not raining in the same
place and at the same time. So, whatever the world is like, it is not both raining here
and not raining here. It is a necessary falsehood.

Necessary equivalence

We can also ask about the logical relations between two sentences. For example:

John went to the store after he washed the dishes.
John washed the dishes before he went to the store.

These two sentences are both contingent, since John might not have gone to the store
or washed dishes at all. Yet they must have the same truth-value. If either of the
sentences is true, then they both are; if either of the sentences is false, then they both
are. When two sentences necessarily have the same truth value, we say that they are
necessarily equivalent.

Summary of logical notions

◃ An argument is (deductively) valid if it is impossible for the premises to be true
and the conclusion false; it is invalid otherwise.
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◃ A necessary truth is a sentence that must be true, that could not possibly be
false.

◃ A necessary falsehood is a sentence that must be false, that could not possi-
bly be true.

◃ A contingent sentence is neither a necessary truth nor a necessary false-
hood. It may be true but could have been false, or vice versa.

◃ Two sentences are necessarily equivalent if they must have the same truth
value.

◃ A collection of sentences are jointly possible if it is possible for all these sen-
tences to be true together; it is jointly impossible otherwise.

Practice exercises

A. For each of the following: Is it a necessary truth, a necessary falsehood, or contin-
gent?

1. Caesar crossed the Rubicon.
2. Someone once crossed the Rubicon.
3. No one has ever crossed the Rubicon.
4. If Caesar crossed the Rubicon, then someone has.
5. Even though Caesar crossed the Rubicon, no one has ever crossed the Rubicon.
6. If anyone has ever crossed the Rubicon, it was Caesar.

B. For each of the following: Is it a necessary truth, a necessary falsehood, or contin-
gent?

1. Elephants dissolve in water.
2. Wood is a light, durable substance useful for building things.
3. If wood were a good building material, it would be useful for building things.
4. I live in a three story building that is two stories tall.
5. If gerbils were mammals they would nurse their young.

C. Which of the following pairs of sentences are necessarily equivalent?

1. Elephants dissolve in water.
If you put an elephant in water, it will disintegrate.

2. All mammals dissolve in water.
If you put an elephant in water, it will disintegrate.

3. George Bush was the 43rd president.
Barack Obama is the 44th president.

4. Barack Obama is the 44th president.
Barack Obama was president immediately after the 43rd president.
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5. Elephants dissolve in water.
All mammals dissolve in water.

D. Which of the following pairs of sentences are necessarily equivalent?

1. Thelonious Monk played piano.
John Coltrane played tenor sax.

2. Thelonious Monk played gigs with John Coltrane.
John Coltrane played gigs with Thelonious Monk.

3. All professional piano players have big hands.
Piano player Bud Powell had big hands.

4. Bud Powell suffered from severe mental illness.
All piano players suffer from severe mental illness.

5. John Coltrane was deeply religious.
John Coltrane viewed music as an expression of spirituality.

E. Consider the following sentences:

G1 There are at least four giraffes at the wild animal park.

G2 There are exactly seven gorillas at the wild animal park.

G3 There are not more than two Martians at the wild animal park.

G4 Every giraffe at the wild animal park is a Martian.

Now consider each of the following collections of sentences. Which are jointly
possible? Which are jointly impossible?

1. Sentences G2, G3, and G4
2. Sentences G1, G3, and G4
3. Sentences G1, G2, and G4
4. Sentences G1, G2, and G3

F. Consider the following sentences.

M1 All people are mortal.

M2 Socrates is a person.

M3 Socrates will never die.

M4 Socrates is mortal.

Which combinations of sentences are jointly possible? Mark each “possible” or “im-
possible.”

1. Sentences M1, M2, and M3
2. Sentences M2, M3, and M4
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3. Sentences M2 and M3
4. Sentences M1 and M4
5. Sentences M1, M2, M3, and M4

G. Which of the following is possible? If it is possible, give an example. If it is not
possible, explain why.

1. A valid argument that has one false premise and one true premise
2. A valid argument that has a false conclusion
3. A valid argument, the conclusion of which is a necessary falsehood
4. An invalid argument, the conclusion of which is a necessary truth
5. A necessary truth that is contingent
6. Two necessarily equivalent sentences, both of which are necessary truths
7. Two necessarily equivalent sentences, one of which is a necessary truth and one

of which is contingent
8. Two necessarily equivalent sentences that together are jointly impossible
9. A jointly possible collection of sentences that contains a necessary falsehood

10. An jointly impossible collection of sentences that contains a necessary truth

H. Which of the following is possible? If it is possible, give an example. If it is not
possible, explain why.

1. A valid argument, whose premises are all necessary truths, and whose conclu-
sion is contingent

2. A valid argument with true premises and a false conclusion
3. A jointly possible collection of sentences that contains two sentences that are

not necessarily equivalent
4. A jointly possible collection of sentences, all of which are contingent
5. A false necessary truth
6. A valid argument with false premises
7. A necessarily equivalent pair of sentences that are jointly impossible
8. A necessary truth that is also a necessary falsehood
9. A jointly possible collection of sentences that are all necessary falsehoods



PART II

Sentence Logic
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4 | First steps to symbolization

4.1 Validity in virtue of form
Consider this argument:

It is raining outside.
If it is raining outside, then Jenny is miserable.

.˙. Jenny is miserable.

and another argument:

Jenny is an anarcho-syndicalist.
If Jenny is an anarcho-syndicalist, then Dipan is an avid reader of Tolstoy.

.˙. Dipan is an avid reader of Tolstoy.

Both arguments are valid, and there is a straightforward sense in which we can say
that they share a common structure. We might express the structure thus:

A
If A, thenC

.˙. C

This looks like an excellent argument structure. Indeed, surely any argument with this
structure will be valid, and this is not the only good argument structure. Consider an
argument like:

Jenny is either happy or sad.
Jenny is not happy.

.˙. Jenny is sad.

Again, this is a valid argument. The structure here is something like:

A or B
not-A

.˙. B

A superb structure! Here is another example:

It’s not the case that Jim both studied hard and acted in lots of plays.

17
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Jim studied hard
.˙. Jim did not act in lots of plays.

This valid argument has a structure which we might represent thus:

not-(A and B)
A

.˙. not-B

These examples illustrate an important idea, which we might describe as validity in
virtue of form. The validity of the arguments just considered has nothing very much
to do with the meanings of English expressions like ‘Jenny is miserable’, ‘Dipan is an
avid reader of Tolstoy’, or ‘Jim acted in lots of plays’. If it has to do with meanings at
all, it is with the meanings of phrases like ‘and’, ‘or’, ‘not,’ and ‘if…, then…’.

In Parts II–IV, we are going to develop a formal language which allows us to sym-
bolize many arguments in such a way as to show that they are valid in virtue of their
form. That language will be sentence logic, or SL.

4.2 Validity for special reasons

There are plenty of arguments that are valid, but not for reasons relating to their form.
Take an example:

Juanita is a vixen
.˙. Juanita is a fox

It is impossible for the premise to be true and the conclusion false. So the argument
is valid. However, the validity is not related to the form of the argument. Here is an
invalid argument with the same form:

Juanita is a vixen
.˙. Juanita is a cathedral

This might suggest that the validity of the first argument is keyed to the meaning of
the words ‘vixen’ and ‘fox’. But, whether or not that is right, it is not simply the shape
of the argument that makes it valid. Equally, consider the argument:

The sculpture is green all over.
.˙. The sculpture is not red all over.

Again, it seems impossible for the premise to be true and the conclusion false, for
nothing can be both green all over and red all over. So the argument is valid, but here
is an invalid argument with the same form:

The sculpture is green all over.
.˙. The sculpture is not shiny all over.
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Theargument is invalid, since it is possible to be green all over and shiny all over. (One
might paint their nails with an elegant shiny green varnish.) Plausibly, the validity of
the first argument is keyed to the way that colours (or colour-words) interact, but,
whether or not that is right, it is not simply the shape of the argument that makes it
valid.

The importantmoral can be stated as follows. At best, SL will help us to understand
arguments that are valid due to their form.

4.3 Atomic sentences
We started isolating the form of an argument, in §4.1, by replacing subsentences of
sentences with individual letters. Thus in the first example of this section, ‘it is raining
outside’ is a subsentence of ‘If it is raining outside, then Jenny is miserable’, and we
replaced this subsentence with ‘A’.

Our artificial language, SL, pursues this idea absolutely ruthlessly. We start with
some sentence letters. These will be the basic building blocks out of which more com-
plex sentences are built. We will use single uppercase letters as sentence letters of SL.
There are only twenty-six letters of the alphabet, but there is no limit to the number
of sentence letters that we might want to consider. By adding subscripts to letters, we
obtain new sentence letters. So, here are five different sentence letters of SL:

A,P,P1,P2,A234

We will use sentence letters to represent, or symbolize, certain English sentences. To
do this, we provide a symbolization key, such as the following:

A: It is raining outside
C : Jenny is miserable

In doing this, we are not fixing this symbolization once and for all. We are just saying
that, for the time being, wewill think of the sentence letter of SL, ‘A’, as symbolizing the
English sentence ‘It is raining outside’, and the sentence letter of SL, ‘C ’, as symbolizing
the English sentence ‘Jenny is miserable’. Later, when we are dealing with different
sentences or different arguments, we can provide a new symbolization key; as it might
be:

A: Jenny is an anarcho-syndicalist
C : Dipan is an avid reader of Tolstoy

It is important to understand that whatever structure an English sentence might have
is lost when it is symbolized by a sentence letter of SL. From the point of view of SL,
a sentence letter is just a letter. It can be used to build more complex sentences, but it
cannot be taken apart.



5 | Logical Operators

In the previous chapter, we considered symbolizing fairly basic English sentences with
sentence letters of SL.This leaves us wanting to deal with the English expressions ‘and’,
‘or’, ‘not’, and so forth. These are logical operators—they can be used to form new
sentences out of old ones. In SL, wewillmake use of logical operators to build complex
sentences from atomic components. There are five logical operators in SL. This table
summarizes them, and they are explained throughout this section.

symbol what it is called rough meaning
¬ negation ‘It is not the case that. . .’
∧ conjunction ‘Both. . . and . . .’
∨ disjunction ‘Either. . . or . . .’
→ conditional ‘If . . . then . . .’
↔ biconditional ‘. . . if and only if . . .’

These are not the only English operators of interest. Others are, e.g., ‘unless’, ‘nei-
ther … nor …’, and ‘because’. We will see that the first two can be expressed by the
operators we will discuss, while the last cannot. ‘Because’, in contrast to the others, is
not truth functional.

5.1 Negation
Consider how we might symbolize these sentences:

1. Mary is in Barcelona.
2. It is not the case that Mary is in Barcelona.
3. Mary is not in Barcelona.

In order to symbolize sentence 1, we will need a sentence letter. We might offer this
symbolization key:

B : Mary is in Barcelona.

Since sentence 2 is obviously related to sentence 1, we will not want to symbolize it
with a completely different sentence. Roughly, sentence 2 means something like ‘It is
not the case that B’. In order to symbolize this, we need a symbol for negation. We will
use ‘¬’. Now we can symbolize sentence 2 with ‘¬B ’.

20
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Sentence 3 also contains the word ‘not’, and it is obviously equivalent to sentence
2. As such, we can also symbolize it with ‘¬B ’.

A sentence can be symbolized as ¬A if it can be paraphrased in English as ‘It
is not the case that…’.

It will help to offer a few more examples:

4. The widget can be replaced.
5. The widget is irreplaceable.
6. The widget is not irreplaceable.

Let us use the following representation key:

R: The widget is replaceable

Sentence 4 can now be symbolized by ‘R’. Moving on to sentence 5: saying the widget
is irreplaceable means that it is not the case that the widget is replaceable. So even
though sentence 5 does not contain the word ‘not’, we will symbolize it as follows:
‘¬R’.

Sentence 6 can be paraphrased as ‘It is not the case that the widget is irreplace-
able.’ Which can again be paraphrased as ‘It is not the case that it is not the case that
the widget is replaceable’. So we might symbolize this English sentence with the SL
sentence ‘¬¬R’.

But some care is needed when handling negations. Consider:

7. Jane is happy.
8. Jane is unhappy.

If we let the SL-sentence ‘H ’ symbolize ‘Jane is happy’, then we can symbolize sentence
7 as ‘H ’. However, it would be a mistake to symbolize sentence 8 with ‘¬H ’. If Jane is
unhappy, then she is not happy; but sentence 8 does not mean the same thing as ‘It is
not the case that Jane is happy’. Jane might be neither happy nor unhappy; she might
be in a state of blank indifference. In order to symbolize sentence 8, then, we would
need a new sentence letter of SL.

5.2 Conjunction
Consider these sentences:

9. Adam is athletic.
10. Barbara is athletic.
11. Adam is athletic, and Barbara is also athletic.

We will need separate sentence letters of SL to symbolize sentences 9 and 10; perhaps

A: Adam is athletic.
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B : Barbara is athletic.

Sentence 9 can now be symbolized as ‘A’, and sentence 10 can be symbolized as ‘B ’.
Sentence 11 roughly says ‘A and B’. We need another symbol, to deal with ‘and’. We will
use ‘∧’. Thus we will symbolize it as ‘(A ∧ B)’. This operator is called conjunction.
We also say that ‘A’ and ‘B ’ are the two conjuncts of the conjunction ‘(A ∧ B)’.

Notice that wemake no attempt to symbolize the word ‘also’ in sentence 11. Words
like ‘both’ and ‘also’ function to draw our attention to the fact that two things are being
conjoined. Maybe they affect the emphasis of a sentence, but we will not (and cannot)
symbolize such things in SL.

Some more examples will bring out this point:

12. Barbara is athletic and energetic.
13. Barbara and Adam are both athletic.
14. Although Barbara is energetic, she is not athletic.
15. Adam is athletic, but Barbara is more athletic than him.

Sentence 12 is obviously a conjunction. The sentence says two things (about Barbara).
In English, it is permissible to refer to Barbara only once. It might be tempting to
think that we need to symbolize sentence 12 with something along the lines of ‘B and
energetic’. This would be a mistake. Once we symbolize part of a sentence as ‘B ’, any
further structure is lost, as ‘B ’ is a sentence letter of SL. Conversely, ‘energetic’ is not
an English sentence at all. What we are aiming for is something like ‘B and Barbara
is energetic’. So we need to add another sentence letter to the symbolization key. Let
‘E ’ symbolize ‘Barbara is energetic’. Now the entire sentence can be symbolized as
‘(B ∧ E)’.

Sentence 13 says one thing about two different subjects. It says of both Barbara
andAdam that they are athletic, even though in English we use the word ‘athletic’ only
once. The sentence can be paraphrased as ‘Barbara is athletic, and Adam is athletic’.
We can symbolize this in SL as ‘(B ∧ A)’, using the same symbolization key that we
have been using.

Sentence 14 is slightly more complicated. The word ‘although’ sets up a contrast
between the first part of the sentence and the second part. Nevertheless, the sentence
tells us both that Barbara is energetic and that she is not athletic. In order to make
each of the conjuncts a sentence letter, we need to replace ‘she’ with ‘Barbara’. So we
can paraphrase sentence 14 as, ‘Both Barbara is energetic, and Barbara is not athletic’.
The second conjunct contains a negation, so we paraphrase further: ‘Both Barbara is
energetic and it is not the case that Barbara is athletic’. Now we can symbolize this
with the SL sentence ‘(E ∧ ¬B)’. Note that we have lost all sorts of nuance in this
symbolization. There is a distinct difference in tone between sentence 14 and ‘Both
Barbara is energetic and it is not the case that Barbara is athletic’. SL does not (and
cannot) preserve these nuances.

Sentence 15 raises similar issues. There is a contrastive structure, but this is not
something that SL can deal with. So we can paraphrase the sentence as ‘Both Adam is
athletic, and Barbara is more athletic than Adam’. (Notice that we once again replace
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the pronoun ‘him’ with ‘Adam’.) How should we deal with the second conjunct? We
already have the sentence letter ‘A’, which is being used to symbolize ‘Adam is athletic’,
and the sentence ‘B ’ which is being used to symbolize ‘Barbara is athletic’; but neither
of these concerns their relative athleticity. So, to symbolize the entire sentence, we
need a new sentence letter. Let the SL sentence ‘R’ symbolize the English sentence
‘Barbara is more athletic than Adam’. Now we can symbolize sentence 15 by ‘(A ∧R)’.

A sentence can be symbolized as (A∧ B) if it can be paraphrased in English
as ‘Both…, and…’, or as ‘…, but …’, or as ‘although …, …’.

You might be wondering why we put parentheses around the conjunctions. The
reason for this is brought out by considering how negation might interact with con-
junction. Consider:

16. It’s not the case that you will get both soup and salad.
17. You will not get soup but you will get salad.

Sentence 16 can be paraphrased as ‘It is not the case that: both you will get soup and
you will get salad’. Using this symbolization key:

S1: You will get soup.
S2: You will get salad.

We would symbolize ‘both you will get soup and you will get salad’ as ‘(S1 ∧ S2)’. To
symbolize sentence 16, then, we simply negate the whole sentence, thus: ‘¬(S1 ∧ S2)’.

Sentence 17 is a conjunction: you will not get soup, and you will get salad. ‘You
will not get soup’ is symbolized by ‘¬S1’. So to symbolize sentence 17 itself, we offer
‘(¬S1 ∧ S2)’.

These English sentences are very different, and their symbolizations differ accord-
ingly. In one of them, the entire conjunction is negated. In the other, just one conjunct
is negated. Parentheses help us to keep track of things like the scope of the negation.

5.3 Disjunction

Consider these sentences:

18. Either Fatima will play videogames, or she will watch movies.
19. Either Fatima or Omar will play videogames.

For these sentences we can use this symbolization key:

F : Fatima will play videogames.
O : Omar will play videogames.
M : Fatima will watch movies.
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However, we will again need to introduce a new symbol. Sentence 18 is symbolized by
‘(F ∨M )’. The operator is called disjunction. We also say that ‘F ’ and ‘M ’ are the
disjuncts of the disjunction ‘(F ∨M )’.

Sentence 19 is only slightly more complicated. There are two subjects, but the
English sentence only gives the verb once. However, we can paraphrase sentence 19
as ‘Either Fatima will play videogames, or Omar will play videogames’. Now we can
obviously symbolize it by ‘(F ∨O )’ again.

A sentence can be symbolized as (A∨ B) if it can be paraphrased in English
as ‘Either…, or….’ Each of the disjuncts must be a sentence.

Sometimes in English, the word ‘or’ is used in a way that excludes the possibility
that both disjuncts are true. This is called an exclusive or. An exclusive or is clearly
intended when it says, on a restaurant menu, ‘Entrees come with either soup or salad’:
you may have soup; you may have salad; but, if you want both soup and salad, then
you have to pay extra.

At other times, the word ‘or’ allows for the possibility that both disjuncts might be
true. This is probably the case with sentence 19, above. Fatima might play videogames
alone, Omar might play videogames alone, or they might both play. Sentence 19
merely says that at least one of them plays videogames. This is called an inclusive
or. The SL symbol ‘∨’ always symbolizes an inclusive or.

It might help to see negation interact with disjunction. Consider:

20. Either you will not have soup, or you will not have salad.
21. You will have neither soup nor salad.
22. You get either soup or salad, but not both.

Using the same symbolization key as before, sentence 20 can be paraphrased in this
way: ‘Either it is not the case that you get soup, or it is not the case that you get salad’.
To symbolize this in SL, we need both disjunction and negation. ‘It is not the case that
you get soup’ is symbolized by ‘¬S1’. ‘It is not the case that you get salad’ is symbolized
by ‘¬S2’. So sentence 20 itself is symbolized by ‘(¬S1 ∨ ¬S2)’.

Sentence 21 also requires negation. It can be paraphrased as, ‘It is not the case
that either you get soup or you get salad’. Since this negates the entire disjunction, we
symbolize sentence 21 with ‘¬(S1 ∨ S2)’.

Sentence 22 is an exclusive or. We can break the sentence into two parts. The first
part says that you get one or the other. We symbolize this as ‘(S1 ∨ S2)’. The second
part says that you do not get both. We can paraphrase this as: ‘It is not the case both
that you get soup and that you get salad’. Using both negation and conjunction, we
symbolize this with ‘¬(S1 ∧ S2)’. Now we just need to put the two parts together.
As we saw above, ‘but’ can usually be symbolized with ‘∧’. Sentence 22 can thus be
symbolized as ‘((S1 ∨ S2) ∧ ¬(S1 ∧ S2))’.

This last example shows something important. Although the SL symbol ‘∨’ always
symbolizes inclusive or, we can symbolize an exclusive or in SL. We just have to use a
few of our other symbols as well.
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5.4 Conditional

Consider these sentences:

23. If Jean is in Paris, then Jean is in France.
24. Jean is in France only if Jean is in Paris.

Let’s use the following symbolization key:

P : Jean is in Paris.
F : Jean is in France

Sentence 23 is roughly of this form: ‘if P, then F’. We will use the symbol ‘→’ to sym-
bolize this ‘if…, then…’ structure. So we symbolize sentence 23 by ‘(P → F )’. The
operator is called the conditional. Here, ‘P ’ is called the antecedent of the con-
ditional ‘(P → F )’, and ‘F ’ is called the consequent.

Sentence 24 is also a conditional. Since the word ‘if ’ appears in the second half
of the sentence, it might be tempting to symbolize this in the same way as sentence
23. That would be a mistake. Your knowledge of geography tells you that sentence
23 is unproblematically true: there is no way for Jean to be in Paris that doesn’t in-
volve Jean being in France. But sentence 24 is not so straightforward: were Jean in
Dieppe, Lyons, or Toulouse, Jean would be in France without being in Paris, thereby
rendering sentence 24 false. Since geography alone dictates the truth of sentence 23,
whereas travel plans (say) are needed to know the truth of sentence 24, they must
mean different things.

In fact, sentence 24 can be paraphrased as ‘If Jean is in France, then Jean is in Paris’.
So we can symbolize it by ‘(F → P )’.

A sentence can be symbolized as A→ B if it can be paraphrased in English
as ‘If A, then B’ or ‘A only if B’.

In fact, many English expressions can be represented using the conditional. Consider:

25. For Jean to be in Paris, it is necessary that Jean be in France.
26. It is a necessary condition on Jean’s being in Paris that she be in France.
27. For Jean to be in France, it is sufficient that Jean be in Paris.
28. It is a sufficient condition on Jean’s being in France that she be in Paris.

If we think deeply about it, all four of these sentences mean the same as ‘If Jean is in
Paris, then Jean is in France’. So they can all be symbolized by ‘P → F ’.

It is important to bear in mind that the operator ‘→’ tells us only that, if the an-
tecedent is true, then the consequent is true. It says nothing about a causal connection
between two events (for example). In fact, we lose a huge amount when we use ‘→’ to
symbolize English conditionals. We will return to this in §§9.3 and 11.5.
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5.5 Biconditional

Consider these sentences:

29. Laika is a dog only if she is a mammal
30. Laika is a dog if she is a mammal
31. Laika is a dog if and only if she is a mammal

We will use the following symbolization key:

D : Laika is a dog
M : Laika is a mammal

Sentence 29, for reasons discussed above, can be symbolized by ‘D → M ’.
Sentence 30 is importantly different. It can be paraphrased as, ‘If Laika is a mam-

mal then Laika is a dog’. So it can be symbolized by ‘M → D ’.
Sentence 31 says something stronger than either 29 or 30. It can be paraphrased

as ‘Laika is a dog if Laika is a mammal, and Laika is a dog only if Laika is a mammal’.
This is just the conjunction of sentences 29 and 30. So we can symbolize it as ‘(D →
M ) ∧ (M → D)’. We call this a biconditional, because it entails the conditional in
both directions.

We could treat every biconditional this way. So, just as we do not need a new SL
symbol to deal with exclusive or, we do not really need a new SL symbol to deal with
biconditionals. Because the biconditional occurs so often, however, we will use the
symbol ‘↔’ for it. We can then symbolize sentence 31 with the SL sentence ‘D ↔ M ’.

The expression ‘if and only if ’ occurs a lot especially in philosophy, mathematics,
and logic. For brevity, we can abbreviate it with the snappier word ‘iff ’. We will follow
this practice. So ‘if ’ with only one ‘f ’ is the English conditional. But ‘iff ’ with two ‘f ’s
is the English biconditional. Armed with this we can say:

A sentence can be symbolized as A↔ B if it can be paraphrased in English
as ‘A iff B’; that is, as ‘A if and only if B’.

Aword of caution. Ordinary speakers of English oftenuse ‘if…, then…’when they
really mean to use something more like ‘…if and only if …’. Perhaps your parents told
you, when you were a child: ‘if you don’t eat your greens, you won’t get any dessert’.
Suppose you ate your greens, but that your parents refused to give you any dessert,
on the grounds that they were only committed to the conditional (roughly ‘if you get
dessert, then you will have eaten your greens’), rather than the biconditional (roughly,
‘you get dessert iff you eat your greens’). Well, a tantrum would rightly ensue. So, be
aware of this when interpreting people; but in your own writing, make sure you use
the biconditional iff you mean to.
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5.6 Unless
We have now introduced all of the operators of SL. We can use them together to sym-
bolizemany kinds of sentences. An especially difficult case is whenweuse the English-
language operator ‘unless’:

32. Unless you wear a jacket, you will catch a cold.
33. You will catch a cold unless you wear a jacket.

These two sentences are clearly equivalent. To symbolize them, we will use the sym-
bolization key:

J : You will wear a jacket.
D : You will catch a cold.

Both sentences mean that if you do not wear a jacket, then you will catch a cold. With
this in mind, we might symbolize them as ‘¬ J → D ’.

Equally, both sentences mean that if you do not catch a cold, then you must have
worn a jacket. With this in mind, we might symbolize them as ‘¬D → J ’.

Equally, both sentences mean that either you will wear a jacket or you will catch a
cold. With this in mind, we might symbolize them as ‘ J ∨D ’.

All three are correct symbolizations. Indeed, in chapter 11 we will see that all three
symbolizations are equivalent in SL.

If a sentence can be paraphrased as ‘Unless A, B,’ then it can be symbolized as
‘A∨ B’.

Again, though, there is a little complication. ‘Unless’ can be symbolized as a con-
ditional; but as we said above, people often use the conditional (on its own) when they
mean to use the biconditional. Equally, ‘unless’ can be symbolized as a disjunction;
but there are two kinds of disjunction (exclusive and inclusive). So it will not surprise
you to discover that ordinary speakers of English often use ‘unless’ tomean something
more like the biconditional, or like exclusive disjunction. Suppose someone says: ‘I
will go running unless it rains’. They probably mean something like ‘I will go running
iff it does not rain’ (i.e. the biconditional), or ‘either I will go running or it will rain,
but not both’ (i.e. exclusive disjunction). Again: be aware of this when interpreting
what other people have said, but be precise in your writing.

Practice exercises
A. Using the symbolization key given, symbolize each English sentence in SL.

M : Those creatures are men in suits.
C : Those creatures are chimpanzees.
G : Those creatures are gorillas.
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1. Those creatures are not men in suits.
2. Those creatures are men in suits, or they are not.
3. Those creatures are either gorillas or chimpanzees.
4. Those creatures are neither gorillas nor chimpanzees.
5. If those creatures are chimpanzees, then they are neither gorillas nor men in

suits.
6. Unless those creatures are men in suits, they are either chimpanzees or they are

gorillas.

B. Using the symbolization key given, symbolize each English sentence in SL.

A: Mister Ace was murdered.
B : The butler did it.
C : The cook did it.
D : The Duchess is lying.
E : Mister Edge was murdered.
F : The murder weapon was a frying pan.

1. Either Mister Ace or Mister Edge was murdered.
2. If Mister Ace was murdered, then the cook did it.
3. If Mister Edge was murdered, then the cook did not do it.
4. Either the butler did it, or the Duchess is lying.
5. The cook did it only if the Duchess is lying.
6. If the murder weapon was a frying pan, then the culprit must have been the

cook.
7. If the murder weapon was not a frying pan, then the culprit was either the cook

or the butler.
8. Mister Ace was murdered if and only if Mister Edge was not murdered.
9. The Duchess is lying, unless it was Mister Edge who was murdered.

10. If Mister Ace was murdered, he was done in with a frying pan.
11. Since the cook did it, the butler did not.
12. Of course the Duchess is lying!

C. Using the symbolization key given, symbolize each English sentence in SL.

E1: Ava is an electrician.
E2: Harrison is an electrician.
F1: Ava is a firefighter.
F2: Harrison is a firefighter.
S1: Ava is satisfied with her career.
S2: Harrison is satisfied with his career.

1. Ava and Harrison are both electricians.
2. If Ava is a firefighter, then she is satisfied with her career.
3. Ava is a firefighter, unless she is an electrician.
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4. Harrison is an unsatisfied electrician.
5. Neither Ava nor Harrison is an electrician.
6. Both Ava and Harrison are electricians, but neither of them find it satisfying.
7. Harrison is satisfied only if he is a firefighter.
8. If Ava is not an electrician, then neither is Harrison, but if she is, then he is too.
9. Ava is satisfied with her career if and only if Harrison is not satisfied with his.

10. If Harrison is both an electrician and a firefighter, then hemust be satisfied with
his work.

11. It cannot be that Harrison is both an electrician and a firefighter.
12. Harrison and Ava are both firefighters if and only if neither of them is an elec-

trician.

D. Using the symbolization key given, symbolize each English-language sentence in
SL.

J1: John Coltrane played tenor sax.
J2: John Coltrane played soprano sax.
J3: John Coltrane played tuba
M1: Miles Davis played trumpet
M2: Miles Davis played tuba

1. John Coltrane played tenor and soprano sax.
2. Neither Miles Davis nor John Coltrane played tuba.
3. John Coltrane did not play both tenor sax and tuba.
4. John Coltrane did not play tenor sax unless he also played soprano sax.
5. John Coltrane did not play tuba, but Miles Davis did.
6. Miles Davis played trumpet only if he also played tuba.
7. If Miles Davis played trumpet, then John Coltrane played at least one of these

three instruments: tenor sax, soprano sax, or tuba.
8. If John Coltrane played tuba then Miles Davis played neither trumpet nor tuba.
9. Miles Davis and John Coltrane both played tuba if and only if Coltrane did not

play tenor sax and Miles Davis did not play trumpet.

E. Give a symbolization key and symbolize the following English sentences in SL.

1. Alice and Bob are both spies.
2. If either Alice or Bob is a spy, then the code has been broken.
3. If neither Alice nor Bob is a spy, then the code remains unbroken.
4. TheGerman embassy will be in an uproar, unless someone has broken the code.
5. Either the code has been broken or it has not, but the German embassy will be

in an uproar regardless.
6. Either Alice or Bob is a spy, but not both.

F. Give a symbolization key and symbolize the following English sentences in SL.

1. If there is food to be found in the pridelands, then Rafiki will talk about
squashed bananas.
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2. Rafiki will talk about squashed bananas unless Simba is alive.
3. Rafiki will either talk about squashed bananas or he won’t, but there is food to

be found in the pridelands regardless.
4. Scar will remain as king if and only if there is food to be found in the pridelands.
5. If Simba is alive, then Scar will not remain as king.

G. For each argument, write a symbolization key and symbolize all of the sentences of
the argument in SL.

1. If Dorothy plays the piano in the morning, then Roger wakes up cranky.
Dorothy plays piano in the morning unless she is distracted. So if Roger does
not wake up cranky, then Dorothy must be distracted.

2. It will either rain or snow on Tuesday. If it rains, Neville will be sad. If it snows,
Neville will be cold. Therefore, Neville will either be sad or cold on Tuesday.

3. If Zoog remembered to do his chores, then things are clean but not neat. If he
forgot, then things are neat but not clean. Therefore, things are either neat or
clean; but not both.

H. For each argument, write a symbolization key and symbolize the argument as well
as possible in SL. The part of the passage in italics is there to provide context for the
argument, and doesn’t need to be symbolized.

1. It is going to rain soon. I know because my leg is hurting, and my leg hurts if
it’s going to rain.

2. Spider-man tries to figure out the bad guy’s plan. If Doctor Octopus gets the ura-
nium, he will blackmail the city. I am certain of this because if Doctor Octopus
gets the uranium, he can make a dirty bomb, and if he can make a dirty bomb,
he will blackmail the city.

3. A westerner tries to predict the policies of the Chinese government. If the Chinese
government cannot solve the water shortages in Beijing, they will have to move
the capital. They don’t want to move the capital. Therefore they must solve
the water shortage. But the only way to solve the water shortage is to divert
almost all the water from the Yangzi river northward. Therefore the Chinese
government will go with the project to divert water from the south to the north.

I. We symbolized an exclusive or using ‘∨’, ‘∧’, and ‘¬’. How could you symbolize an
exclusive or using only two operators? Is there any way to symbolize an exclusive or
using only one operator?
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In general, we can specify a language by doing three things: 1) giving the vocabulary
for the language, 2) giving the grammar of the language—that is, specifying which
ways of sticking together the expressions from the vocabulary count as grammatical
sentences, and 3) saying what the meaning of every grammatical expression is. For
instance, in English, the vocabulary consists of all of the words of English. The gram-
mar for English consists of rules saying when various strings of English words count
as grammatical English sentences. ‘Bubbie makes pickles’ and ‘Colorless green ideas
sleep furiously’ will count as sentences, whereas ‘Up bouncy ball door John variously
catapult’ does not count as a sentence. Finally, the meaning of every English sentence
is given by providing a dictionary entry for every word of English and providing rules
for understanding the meaning of sentences in terms of the meanings of the words
appearing in the sentence. The first two tasks are the tasks of specifying the syntax of
the language. The final task is the fast of specifying the semantics of the language.

syntax −−
{

1. Vocabulary
2. Grammar

semantics −−3. Meaning

That’s exactly what we’re going to do for our artificial language SL. However, our task
will be much simpler than the task of specifying English, as we will have a far simpler
vocabulary, a far simpler grammar, and a far simpler semantics.

In this chapter, we will provide a syntax for SL. In chapters 8–10 we will build up
SL’s semantics.

6.1 Vocabulary

The vocabulary of SL includes the following symbols:

Atomic sentences A,B,C, . . . ,Z
with subscripts, as needed A1,B1,Z1,A2,A25, J375, . . .

Operators ¬,∧,∨,→,↔

Parentheses ( , )
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Wedefine an expression of sl as any string of symbols of SL. Take any of the symbols
of SL and write them down, in any order, and you have an expression of SL.

6.2 Sentences

Of course, many expressions of SL will be total gibberish. For instance, all of the
following are expressions of SL:

((()A23 ∧ ∧ →→ Z

P → (Q ) → ∧())
(P → (Q → (R → (S → T ))))

A ∧ B ∧ (C¬D)))

However, only one—the third—is a sentence of SL. We want to know: when does an
expression of SL amount to a sentence?

Obviously, individual sentence letters like ‘A’ and ‘G13’ should count as sentences.
(We’ll also call them atomic sentences.) We can form further sentences out of these
by using the various operators. Using negation, we can get ‘¬A’ and ‘¬G13’. Using
conjunction, we can get ‘(A ∧ G13)’, ‘(G13 ∧ A)’, ‘(A ∧ A)’, and ‘(G13 ∧ G13)’. We
could also apply negation repeatedly to get sentences like ‘¬¬A’ or apply negation
along with conjunction to get sentences like ‘¬(A ∧G13)’ and ‘¬(G13 ∧ ¬G13)’. The
possible combinations are endless, even starting with just these two sentence letters,
and there are infinitely many sentence letters. So there is no point in trying to list all
the sentences one by one.

Instead, we will describe the process by which sentences can be constructed. Con-
sider negation: Given any sentence Aof SL, ¬A is a sentence of SL. (Why the funny
fonts? We return to this in §7.3.)

We can say similar things for each of the other operators. For instance, if A and
Bare sentences of SL, then (A∧B) is a sentence of SL. Providing clauses like this for
all of the operators, we arrive at the following formal definition for a sentence of sl:

A) Every sentence letter is a sentence.

¬) If A is a sentence, then ¬A is a sentence.

∧) If Aand B are sentences, then (A∧ B) is a sentence.

∨) If Aand B are sentences, then (A∨ B) is a sentence.

→) If Aand B are sentences, then (A→ B) is a sentence.

↔) If Aand B are sentences, then (A↔ B) is a sentence.

−) Nothing else is a sentence.
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Definitions like this are called recursive. Recursive definitions begin with some
specifiable base elements, and then present ways to generate indefinitely many more
elements by compounding together previously established ones. To give you a better
idea of what a recursive definition is, we can give a recursive definition of the idea of
an ancestor of mine. We specify a base clause.

• My parents are ancestors of mine.

and then offer further clauses like:

• If x is an ancestor of mine, then x ’s parents are ancestors of mine.
• Nothing else is an ancestor of mine.

Using this definition, we can easily check to see whether someone is my ancestor: just
check whether she is the parent of the parent of…one of my parents. And the same
is true for our recursive definition of sentences of SL. Just as the recursive definition
allows complex sentences to be built up from simpler parts, the definition allows us to
decompose sentences into their simpler parts. Once we get down to sentence letters,
then we know we are ok.

Let’s consider some examples.
Suppose we want to know whether or not ‘¬¬¬D ’ is a sentence of SL. Looking at

the second clause of the definition, we know that ‘¬¬¬D ’ is a sentence if ‘¬¬D ’ is a
sentence. So now we need to ask whether or not ‘¬¬D ’ is a sentence. Again looking
at the second clause of the definition, ‘¬¬D ’ is a sentence if ‘¬D ’ is. So, ‘¬D ’ is a
sentence if ‘D ’ is a sentence. Now ‘D ’ is a sentence letter of SL, so we know that ‘D ’
is a sentence by the first clause of the definition (A). So for a compound sentence like
‘¬¬¬D ’, we must apply the definition repeatedly. Eventually we arrive at the sentence
letters from which the sentence is built up.

Alternatively, to show that ‘¬¬¬D ’ is a sentence of SL, we could show how it could
be built up from the rules for sentences, as follows.

a) ‘D ’ is a sentence [from (A)]

b) So, ‘¬D ’ is a sentence [from (a) and (¬)]

c) So, ‘¬¬D ’ is a sentence [from (b) and (¬)]

d) So, ‘¬¬¬D ’ is a sentence [from (c) and (¬)]

That is, we may build up to a longer, more complicated sentence by first establishing
that some of its sub-expressions are sentences, and then using this to establish that the
expression itself is a sentence.

Next, consider the example ‘¬(P ∧ ¬(¬Q ∨R))’. Looking at the second clause of
the definition, (¬), this is a sentence if ‘(P ∧ ¬(¬Q ∨ R))’ is, and this is a sentence
if both ‘P ’ and ‘¬(¬Q ∨ R)’ are sentences. The former is a sentence letter, and the
latter is a sentence if ‘(¬Q ∨R)’ is a sentence. It is—looking at the fourth clause of the
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definition, this is a sentence if both ‘¬Q ’ and ‘R’ are sentences. ‘R’ is a sentence letter,
and, since ‘Q ’ is a sentence letter, ‘¬Q ’ is a sentence by clause (¬).

Or, alternatively, we could persuade ourselves that ‘¬(P∧¬(¬Q∨R))’ is a sentence
by building it up according to the rules:

a) ‘Q ’ is a sentence [from (A)]
b) So, ‘¬Q ’ is a sentence [from (a) and (¬)]
c) ‘R’ is a sentence [from (A)]
d) So, ‘(¬Q ∨R)’ is a sentence [from (b), (c), and (∨)]
e) So ‘¬(¬Q ∨R)’ is a sentence [from (d) and (¬)]
f) ‘P ’ is a sentence [from (A)]
g) So, ‘(P ∧ ¬(¬Q ∨R))’ is a sentence [from (e), (f), and (∧)]
h) So, ‘¬(P ∧ ¬(¬Q ∨R))’ is a sentence [from (g) and (¬)]

Ultimately, every sentence is constructed nicely out of sentence letters. When we
are dealing with a sentence other than a sentence letter, we can see that there must
be some sentential operator that was introduced last, when constructing the sentence.
We call that operator the main operator of the sentence.

The main operator of a sentence of SL is the operator which would be added
last, when building the sentence up according to the rules for sentences.

In the case of ‘¬¬¬D ’, the main operator is the very first ‘¬’ sign. In the case of
‘(P ∧ ¬(¬Q ∨ R))’, the main operator is ‘∧’. In the case of ‘((¬E ∨ F ) → ¬¬G )’, the
main operator is ‘→’.

The sentence’smain operator is just the operator associatedwith the last rule which
would have to be applied if we were building the formula up by applying the rules for
sentences above. For instance, if we want to know what the main operator is for the
sentence ‘(¬P ∧Q )’, we would just imagine running through the following proof that
‘(¬P ∧Q )’ is a sentence of SL, by applying to the rules for sentences, i.e.,

a) ‘P ’ is a sentence [from (A)]
b) So, ‘¬P ’ is a sentence [from (a) and (¬)]
c) ‘Q ’ is a sentence [from (A)]
d) So, ‘(¬P ∧Q )’ is a sentence [from (b), (c), and (∧)]

Here, the fact that we had to appeal to the rule (∧) in the final step of building up
‘¬P ∧ Q ’ tells us that ∧ is the main operator. Imagine that we had tried to build up
the formula in some other way. For instance, suppose we had attempted to first apply
the rule (∧) and then the rule (¬). Then, our proof would have gone line this.

a) ‘P ’ is a sentence [from (A)]
b) ‘Q ’ is a sentence [from (A)]
c) So, ‘(P ∧Q )’ is a sentence [from (a), (b), and (∧)]
d) So, ‘¬(P ∧Q )’ is a sentence [from (c) and (¬)]



6.2. SENTENCES 35

This is an entirely different sentence. ‘¬(P ∧Q )’ is not the same as ‘(¬P ∧Q )’. While
the main operator of ‘(¬P ∧Q )’ is ∧, the main operator of ‘¬(P ∧Q )’ is ¬.

We can also use the rules for sentences to give a definition of what a sentence’s
subsentences are. B is a subsentence of A if and only if, in the course of building up
Aby applying the rules for sentences, B appears on a line before A. So, for instance
‘¬P ’ is a subsentence of ‘(¬P ∧Q )’ (because it shows up on line (b) of our proof that
‘(¬P ∧ Q )’ is a sentence), whereas ‘¬P ’ is not a subsentence of ‘¬(P ∧ Q )’ (since it
does not show up at any point in our proof that ‘¬(P ∧Q )’ is a sentence).

A sentences’s immediate subsentences are those sentences whose lines would be
appealed to in the final step of building the sentence up. For instance, the immediate
subsentences of ‘(¬P ∧ Q )’ are ‘¬P ’ and ‘Q ’, whereas the immediate subsentence of
‘¬(P ∧Q )’ is ‘(P ∧Q )’. A sentence’s immediate subsentences are just those sentences
on which the sentence’s main operator operates.

Another way of notating the proofs that certain expressions are sentences of SL is
with syntax trees. For instance, we could represent a proof that ‘(¬(P ∨Q ) → R)’
is a sentence of SL with the following syntax tree.

(¬(P ∨Q ) → R)

(→)

¬(P ∨Q )

(¬)

(P ∨Q )

(∨)

P

(A)

Q

(A)

R

(A)

This tree tells us, firstly, that ‘P ’ and ‘Q ’ are sentences of PL (by rule (A)). Then,
by rule (∨), ‘(P ∨Q )’ is a sentence. Then, by rule (¬), ‘¬(P ∨Q )’ is a sentence. And,
since ‘R’ is a sentence, by (A), ‘(¬(P ∨Q ) → R)’ is a sentence (by rule (→)).

If we want to leave out the rules, we can represent this syntax tree more simply as
follows.

(¬(P ∨Q ) → R)

¬(P ∨Q )

(P ∨Q )

P Q

R
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We can similarly write out the syntax trees for ‘(¬P ∧Q )’ and ‘¬(P ∧Q )’ like so.

(¬P ∧Q )

¬P

P

Q

¬(P ∧Q )

(P ∧Q )

P Q

These trees give us the syntactic structure of a sentence of SL. They highlight what
the parentheses were already telling us about what the main operator of the sentence
is, what its subformulae are, and how the various subformulae are interrelated (how
the sentence is built up out of its subformulae). For instance, the tree on the left tells
us that the immediate subformulae of ‘(¬P ∧ Q )’ are ‘¬P ’ and ‘Q ’. And the tree on
the right tells us that the immediate subformula of ‘¬(P ∧Q )’ is ‘(P ∧Q )’.

The recursive structure of sentences in SL will be important when we consider the
circumstances under which a particular sentence would be true or false. The sentence
‘¬¬¬D ’ is true if and only if the sentence ‘¬¬D ’ is false, and so on through the struc-
ture of the sentence, until we arrive at the atomic components. We will return to this
point in Part III.

The recursive structure of sentences in SL also allows us to give a formal definition
of the scope of a negation (mentioned in §5.2). The scope of a ‘¬’ is the subsentence
for which ‘¬’ is the main logical operator. Consider a sentence like:

(P ∧ (¬(R ∧ B) ↔ Q ))

which was constructed by conjoining ‘P ’ with ‘(¬(R ∧ B) ↔ Q )’. This last sentence
was constructed by placing a biconditional between ‘¬(R ∧ B)’ and ‘Q ’. The former
of these sentences—a subsentence of our original sentence—is a sentence for which
‘¬’ is the main logical operator. So the scope of the negation is just ‘¬(R ∧ B)’. More
generally:

The scope of an operator (in a sentence) is the sub-sentence for which that
operator is the main operator.

6.3 Parenthesis conventions

Strictly speaking, the parentheses in ‘(Q∧R)’ are an indispensable part of the sentence.
Part of this is because we might use ‘(Q ∧R)’ as a subsentence in a more complicated
sentence. For example, we might want to negate ‘(Q ∧R)’, obtaining ‘¬(Q ∧R)’. If we
just had ‘Q ∧ R’ without the parentheses and put a negation in front of it, we would
have ‘¬Q ∧R’. It is most natural to read this as meaning the same thing as ‘(¬Q ∧R)’,
but as we saw in §5.2, this is very different from ‘¬(Q ∧R)’.

Strictly speaking, then, ‘Q ∧R’ is not a sentence. It is a mere expression.
When working with SL, however, it will make our lives easier if we are sometimes

a little less than strict. So, here are some convenient conventions.
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First, we allow ourselves to omit the outermost parentheses of a sentence. Thus we
allow ourselves to write ‘Q ∧ R’ instead of the sentence ‘(Q ∧ R)’. However, we must
remember to put the parentheses back in, when we want to embed the sentence into
a more complicated sentence!

Second, it can be a bit painful to stare at long sentences with many nested pairs
of parentheses. To make things a bit easier on the eyes, we will allow ourselves to use
square parentheses, ‘[’ and ‘]’, instead of rounded ones. So there is no logical difference
between ‘(P ∨Q )’ and ‘[P ∨Q ]’, for example.

Combining these two conventions, we can rewrite the unwieldy sentence

(((H → I ) ∨ (I → H )) ∧ ( J ∨ K ))

rather more clearly as follows:[
(H → I ) ∨ (I → H )

]
∧ ( J ∨ K )

The scope of each operator is now much easier to pick out.

Practice exercises
A. For each of the following: (a) Is it a sentence of SL, strictly speaking? (b) Is it a
sentence of SL, allowing for our relaxed parenthesis conventions?

1. (A)
2. J374 ∨ ¬ J374
3. ¬¬¬¬F
4. ¬ ∧ S
5. (G ∧ ¬G )
6. (A → (A ∧ ¬F )) ∨ (D ↔ E)
7. [(Z ↔ S ) →W ] ∧ [ J ∨ X ]
8. (F ↔ ¬D → J ) ∨ (C ∧D)

B.Are there any sentences of SL that contain no sentence letters? Explain your answer.

C. What is the scope of each connective in the sentence[
(H → I ) ∨ (I → H )

]
∧ ( J ∨ K )
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In this Part, we have talked a lot about sentences. So we should pause to explain an
important, and very general, point.

7.1 Quotation conventions

Consider these two sentences:

• Justin Trudeau is the Prime Minister.
• The expression ‘Justin Trudeau’ is composed of two uppercase letters and eleven

lowercase letters

When we want to talk about the Prime Minister, we use his name. When we want to
talk about the Prime Minister’s name, we mention that name, which we do by putting
it in quotation marks.

There is a general point here. When we want to talk about things in the world, we
just use words. When we want to talk about words, we typically have to mention those
words. We need to indicate that we are mentioning them, rather than using them. To
do this, some convention is needed. We can put them in quotation marks, or display
them centrally in the page (say). So this sentence:

• ‘Justin Trudeau’ is the Prime Minister.

says that some expression is the Prime Minister. That’s false. The man is the Prime
Minister; his name isn’t. Conversely, this sentence:

• Justin Trudeau is composed of two uppercase letters and eleven lowercase let-
ters.

also says something false: Justin Trudeau is a man, made of flesh rather than letters.
One final example:

• “ ‘Justin Trudeau’ ” is the name of ‘Justin Trudeau’.

On the left-hand-side, here, we have the name of a name. On the right hand side, we
have a name. Perhaps this kind of sentence only occurs in logic textbooks, but it is
true nonetheless.

38
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Those are just general rules for quotation, and you should observe them carefully
in all yourwork! To be clear, the quotation-marks here do not indicate indirect speech.
They indicate that you are moving from talking about an object, to talking about the
name of that object.

7.2 Object language and metalanguage

These general quotation conventions are of particular importance for us. After all, we
are describing a formal language here, SL, and so we are often mentioning expressions
from SL.

When we talk about a language, the language that we are talking about is called
the object language. The language that we use to talk about the object language is
called the metalanguage.

For themost part, the object language in this chapter has been the formal language
that we have been developing: SL. The metalanguage is English. Not conversational
English exactly, but English supplemented with some additional vocabulary which
helps us to get along.

Now, we have used uppercase letters as sentence letters of SL:

A,B,C,Z,A1,B4,A25, J375, . . .

These are sentences of the object language (SL). They are not sentences of English. So
we must not say, for example:

• D is a sentence letter of SL.

Obviously, we are trying to come out with an English sentence that says something
about the object language (SL), but ‘D ’ is a sentence of SL, and not part of English. So
the preceding is gibberish, just like:

• Schnee ist weiß is a German sentence.

What we surely meant to say, in this case, is:

• ‘Schnee ist weiß’ is a German sentence.

Equally, what we meant to say above is just:

• ‘D ’ is a sentence letter of SL.

The general point is that, whenever we want to talk in English about some specific
expression of SL, we need to indicate that we are mentioning the expression, rather
than using it. We can either deploy quotation marks, or we can adopt some similar
convention, such as placing it centrally in the page.
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7.3 Metavariables
However, we do not just want to talk about specific expressions of SL. We also want to
be able to talk about any arbitrary sentence of SL. Indeed, we had to do this in §6.2,
when we presented the recursive definition of a sentence of SL. We used uppercase
script letters to do this, namely:

A,B, C, D, . . .

These symbols do not belong to SL. Rather, they are part of our (augmented) meta-
language that we use to talk about any expression of SL. To repeat the second clause
of the recursive definition of a sentence of SL, we said:

2. If A is a sentence, then ¬A is a sentence.

This talks about arbitrary sentences. If we had instead offered:

• If ‘A’ is a sentence, then ‘¬A’ is a sentence.

this would not have allowed us to determinewhether ‘¬B ’ is a sentence. To emphasize,
then:

‘A’ is a symbol (called a metavariable) in augmented English, which we use
to talk about any SL expression. ‘A’ is a particular sentence letter of SL.

But this last example raises a further complication for our quotation conventions.
We have not included any quotation marks in the second clause of our recursive def-
inition. Should we have done so?

The problem is that the expression on the right-hand-side of this rule is not a
sentence of English, since it contains ‘¬’. So we might try to write:

2′. If A is a sentence, then ‘¬A’ is a sentence.

But this is no good: ‘¬A’ is not a SL sentence, since ‘A’ is a symbol of (augmented)
English rather than a symbol of SL.

What we really want to say is something like this:

2′′. If A is a sentence, then the result of concatenating the symbol ‘¬’ with the sen-
tence A is a sentence.

This is impeccable, but rather long-winded. But we can avoid long-windedness by
creating our own conventions. We can perfectly well stipulate that an expression like
‘¬A’ should simply be read directly in terms of rules for concatenation. So, officially,
the metalanguage expression ‘¬A’ simply abbreviates:

the result of concatenating the symbol ‘¬’ with the sentence A

and similarly, for expressions like ‘(A∧ B)’, ‘(A∨ B)’, etc.
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7.4 Quotation conventions for arguments
One of ourmain purposes for using SL is to study arguments, and that will be our con-
cern in Parts III and IV. In English, the premises of an argument are often expressed by
individual sentences, and the conclusion by a further sentence. Since we can symbol-
ize English sentences, we can symbolize English arguments using SL. Thus we might
ask whether the argument whose premises are the SL sentences ‘A’ and ‘A → C ’, and
whose conclusion is the SL sentence ‘C ’, is valid. However, it is quite a mouthful to
write that every time. So instead we will introduce another bit of abbreviation. This:

A1,A2, . . . ,An .˙. C

abbreviates:

the argument with premises A1,A2, . . . ,An and conclusion C

To avoid unnecessary clutter, we will not regard this as requiring quotation marks
around it. (Note, then, that ‘.˙.’ is a symbol of our augmented metalanguage, and not
a new symbol of SL.)



PART III

Semantics for
Sentence Logic
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Any sentence of SL is composed of sentence letters, possibly combined using sentential
operators. The truth value of the compound sentence depends only on the truth value
of the sentence letters that comprise it. In order to know the truth value of ‘(D ∧ E)’,
for instance, you only need to know the truth value of ‘D ’ and the truth value of ‘E ’.

We introduced five operators in chapter 5, so we simply need to explain how they
map between truth values. For convenience, we will abbreviate ‘True’ with ‘T’ and
‘False’ with ‘F’. (But just to be clear, the two truth values are True and False; the truth
values are not letters!)

Negation. For any sentence A: If A is true, then ¬A is false. If ¬A is true, then A is
false. We can summarize this in the characteristic truth table for negation:

A ¬A
T F
F T

Conjunction. For any sentences Aand B, A∧B is true if and only if both Aand B

are true. We can summarize this in the characteristic truth table for conjunction:

A B A∧ B

T T T
T F F
F T F
F F F

Note that conjunction is symmetrical. The truth value for A∧B is always the same as
the truth value for B∧ A.

Disjunction. Recall that ‘∨’ always represents inclusive or. So, for any sentences A
and B, A∨ B is true if and only if either Aor B is true. We can summarize this in
the characteristic truth table for disjunction:
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A B A∨ B

T T T
T F T
F T T
F F F

Like conjunction, disjunction is symmetrical.

Conditional. We’re just going to come clean and admit it: Conditionals are a right
old mess in SL. Exactly how much of a mess they are is philosophically contentious.
We’ll discuss a few of the subtleties in §§9.3 and 11.5. For now, we are going to stipulate
the following: A→ Bis false if and only ifAis true andBis false. We can summarize
this with a characteristic truth table for the conditional.

A B A→ B

T T T
T F F
F T T
F F T

The conditional is asymmetrical. You cannot swap the antecedent and consequent
without changing the meaning of the sentence, because A→ B has a very different
truth table from B→ A.

Biconditional. Since a biconditional is to be the same as the conjunction of a con-
ditional running in each direction, we will want the truth table for the biconditional
to be:

A B A↔ B

T T T
T F F
F T F
F F T

Unsurprisingly, the biconditional is symmetrical.
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9.1 The idea of truth-functionality
Let’s introduce an important idea.

An operator is truth-functional iff the truth value of a sentence with that
operator as its main operator is uniquely determined by the truth value(s) of
the constituent subsentence(s).

Every operator in SL is truth-functional. The truth value of a negation is uniquely
determined by the truth value of the unnegated sentence. The truth value of a con-
junction is uniquely determined by the truth value of both conjuncts. The truth value
of a disjunction is uniquely determined by the truth value of both disjuncts, and so
on. To determine the truth value of some SL sentence, we only need to know the truth
value of its components.

In plenty of languages there are operators that are not truth-functional. In English,
for example, we can form a new sentence from any simpler sentence by prefixing it
with ‘It is necessarily the case that…’. The truth value of this new sentence is not fixed
solely by the truth value of the original sentence. For consider two true sentences:

1. 2 + 2 = 4
2. Shostakovich wrote fifteen string quartets

Whereas it is necessarily the case that 2 + 2 = 4, it is not necessarily the case that
Shostakovich wrote fifteen string quartets. If Shostakovich had died earlier, he would
have failed to finish Quartet no. 15; if he had lived longer, he might have written a
few more. So ‘It is necessarily the case that…’ is an operator of English, but it is not
truth-functional.

Because the operators of SL are truth-functional, if we know the truth-value of all
of the atomic sentences appearing in a complex sentence of SL, then we can use our
knowledge of the syntactic structure of the complex sentence to determine its truth-
value. For instance, suppose that we know that ‘P ’ is true and ‘Q ’ is false. Then, we
know that ‘¬P ∧Q ’ is false and that ‘¬(P ∧Q )’ is true: we simply plug in the truth-value
T for ‘P ’ and the truth-value F for ‘Q ’ and work our way up the syntax tree:

45
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(¬P ∧Q )[F ]

¬P [F ]

P [T ]

Q [F ]

¬(P ∧Q )[T ]

(P ∧Q )[F ]

P [T ] Q [F ]

This is one reason why it is so important for us to be precise about the syntac-
tic structure represented with the parentheses—it makes a difference with respect to
whether a sentence of SL is true or false.

9.2 Symbolizing versus translating

All of the operators of SL are truth-functional, but more than that: they really do
nothing but map us between truth values.

Whenwe symbolize a sentence or an argument in SL, we ignore everything besides
the contribution that the truth values of a component might make to the truth value
of the whole. There are subtleties to our ordinary claims that far outstrip their mere
truth values. Sarcasm; poetry; snide implicature; emphasis; these are important parts
of everyday discourse, but none of this is retained in SL. As remarked in §5, SL cannot
capture the subtle differences between the following English sentences:

1. Dana is a logician and Dana is a nice person
2. Although Dana is a logician, Dana is a nice person
3. Dana is a logician despite being a nice person
4. Dana is a nice person, but also a logician
5. Dana’s being a logician notwithstanding, he is a nice person

All of the above sentences will be symbolized with the same SL sentence, perhaps
‘L ∧ N ’.

We keep saying that we use SL sentences to symbolize English sentences. Many
other textbooks talk about translating English sentences into SL. However, a good
translation should preserve certain facets of meaning, and—as we have just pointed
out—SL just cannot do that. This is why we will speak of symbolizing English sen-
tences, rather than of translating them.

This affects how we should understand our symbolization keys. Consider a key
like:

L: Dana is a logician.
N : Dana is a nice person.

Other textbooks will understand this as a stipulation that the SL sentence ‘L’ should
mean that Dana is a logician, and that the SL sentence ‘N ’ should mean that Dana is
a nice person, but SL just is totally unequipped to deal with meaning. The preceding
symbolization key is doing no more and no less than stipulating that the SL sentence
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‘L’ should take the same truth value as the English sentence ‘Dana is a logician’ (what-
ever that might be), and that the SL sentence ‘N ’ should take the same truth value as
the English sentence ‘Dana is a nice person’ (whatever that might be).

When we treat a SL sentence as symbolizing an English sentence, we are stipu-
lating that the SL sentence is to take the same truth value as that English sen-
tence.

9.3 Indicative versus subjunctive conditionals

Wewant to bring home the point that SL can only deal with truth functions by consid-
ering the case of the conditional. When we introduced the characteristic truth table
for the material conditional in §8, we did not say anything to justify it. Let’s now offer
a justification, which follows Dorothy Edgington.1

Suppose that Lara has drawn some shapes on a piece of paper, and coloured some
of them in. We have not seen them, but nevertheless claim:

If any shape is grey, then that shape is also circular.

As it happens, Lara has drawn the following:

A C D

In this case, our claim is surely true. Shapes C and D are not grey, and so can hardly
present counterexamples to our claim. ShapeA is grey, but fortunately it is also circular.
So my claim has no counterexamples. It must be true. That means that each of the
following instances of our claim must be true too:

• If A is grey, then it is circular (true antecedent, true consequent)
• If C is grey, then it is circular (false antecedent, true consequent)
• If D is grey, then it is circular (false antecedent, false consequent)

However, if Lara had drawn a fourth shape, thus:

A B C D

then our claim would be false. So it must be that this claim is false:

• If B is grey, then it is circular (true antecedent, false consequent)
1 Dorothy Edgington, ‘Conditionals’, 2006, in the Stanford Encyclopedia of Philosophy (http://plato.

stanford.edu/entries/conditionals/).

http://plato.stanford.edu/entries/conditionals/
http://plato.stanford.edu/entries/conditionals/
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Now, recall that every operator of SL has to be truth-functional. This means that
merely the truth values of the antecedent and consequent must uniquely determine
the truth value of the conditional as a whole. Thus, from the truth values of our four
claims—which provide us with all possible combinations of truth and falsity in an-
tecedent and consequent—we can read off the truth table for the material conditional.

What this argument shows is that ‘→’ is the best candidate for a truth-functional
conditional. Otherwise put, it is the best conditional that SL can provide. But is it any
good, as a surrogate for the conditionals we use in everyday language? Consider two
sentences:

1. If Mitt Romney had won the 2012 election, then he would have been the 45th
President of the USA.

2. If Mitt Romney had won the 2012 election, then he would have turned into a
helium-filled balloon and floated away into the night sky.

Sentence 1 is true; sentence 2 is false, but both have false antecedents and false con-
sequents. So the truth value of the whole sentence is not uniquely determined by the
truth value of the parts. Do not just blithely assume that you can adequately symbolize
an English ‘if …, then …’ with SL’s ‘→’.

The crucial point is that sentences 1 and 2 employ subjunctive conditionals, rather
than indicative conditionals. They ask us to imagine something contrary to fact—Mitt
Romney lost the 2012 election—and then ask us to evaluatewhatwould have happened
in that case. Such considerations just cannot be tackled using ‘→’.

We will say more about the difficulties with conditionals in §11.5. For now, we
will content ourselves with the observation that ‘→’ is the only candidate for a truth-
functional conditional for SL, but that many English conditionals cannot be repre-
sented adequately using ‘→’. SL is an intrinsically limited language.



10 | Complete truth tables

So far, we have considered assigning truth values to SL sentences indirectly. We have
said, for example, that a SL sentence such as ‘B ’ is to take the same truth value as the
English sentence ‘Big Ben is in London’ (whatever that truth value may be), but we
can also assign truth values directly. We can simply stipulate that ‘B ’ is to be true, or
stipulate that it is to be false.

A valuation is any assignment of truth values to particular sentence letters of
SL.

The power of truth tables lies in the following. Each row of a truth table represents
a possible valuation. The entire truth table represents all possible valuations; thus the
truth table provides uswith ameans to calculate the truth values of complex sentences,
on each possible valuation. This is easiest to explain by example.

10.1 A worked example

Consider the sentence ‘(H ∧ I ) → H ’. There are four possible ways to assign True
and False to the sentence letter ‘H ’ and ‘I ’—four possible valuations—which we can
represent as follows:

H I (H ∧I )→H
T T
T F
F T
F F

To calculate the truth value of the entire sentence ‘(H ∧I ) → H ’, we first copy the truth
values for the sentence letters and write them underneath the letters in the sentence:

H I (H ∧I )→H
T T T T T
T F T F T
F T F T F
F F F F F
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Now consider the subsentence ‘(H ∧ I )’. This is a conjunction, (A∧ B), with ‘H ’
as Aand with ‘I ’ as B. The characteristic truth table for conjunction gives the truth
conditions for any sentence of the form (A∧ B), whatever A and Bmight be. It
represents the point that a conjunction is true iff both conjuncts are true. In this case,
our conjuncts are just ‘H ’ and ‘I ’. They are both true on (and only on) the first line of
the truth table. Accordingly, we can calculate the truth value of the conjunction on all
four rows.

A ∧B

H I (H ∧I )→H
T T T T T T
T F T F F T
F T F F T F
F F F F F F

Now, the entire sentence that we are dealing with is a conditional, A → B, with
‘(H ∧ I )’ as Aand with ‘H ’ as B. On the second row, for example, ‘(H ∧ I )’ is false
and ‘H ’ is true. Since a conditional is true when the antecedent is false, we write a
‘T’ in the second row underneath the conditional symbol. We continue for the other
three rows and get this:

A →B

H I (H ∧ I )→H
T T T T T
T F F T T
F T F T F
F F F T F

The conditional is the main logical operator of the sentence, so the column of ‘T’s
underneath the conditional tells us that the sentence ‘(H ∧ I ) → H ’ is true regardless
of the truth values of ‘H ’ and ‘I ’. They can be true or false in any combination, and the
compound sentence still comes out true. Since we have considered all four possible
assignments of truth and falsity to ‘H ’ and ‘I ’—since, that is, we have considered all
the different valuations—we can say that ‘(H ∧ I ) → H ’ is true on every valuation.

In this example, we have not repeated all of the entries in every column in every
successive table. When actually writing truth tables on paper, however, it is imprac-
tical to erase whole columns or rewrite the whole table for every step. Although it is
more crowded, the truth table can be written in this way:

H I (H ∧I )→H
T T T T T T T
T F T F F T T
F T F F T T F
F F F F F T F
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Most of the columns underneath the sentence are only there for bookkeeping pur-
poses. The column that matters most is the column underneath the main logical op-
erator for the sentence, since this tells you the truth value of the entire sentence. We
have emphasized this, by putting this column in bold. When you work through truth
tables yourself, you should similarly emphasize it (perhaps by underlining).

10.2 Building complete truth tables
A complete truth table has a line for every possible assignment of True and False
to the relevant sentence letters. Each line represents a valuation, and a complete truth
table has a line for all the different valuations.

The size of the complete truth table depends on the number of different sentence
letters in the table. A sentence that contains only one sentence letter requires only two
rows, as in the characteristic truth table for negation. This is true even if the same
letter is repeated many times, as in the sentence ‘[(C ↔ C ) → C ] ∧ ¬(C → C )’. The
complete truth table requires only two lines because there are only two possibilities:
‘C ’ can be true or it can be false. The truth table for this sentence looks like this:

C [(C↔C )→C ]∧¬(C→C )

T T T T T T F F T T T
F F T F F F F F F T F

Looking at the column underneath the main logical operator, we see that the sentence
is false on both rows of the table; i.e., the sentence is false regardless of whether ‘C ’ is
true or false. It is false on every valuation.

A sentence that contains two sentence letters requires four lines for a complete
truth table, as in the characteristic truth tables for our binary operators, and as in the
complete truth table for ‘(H ∧ I ) → H ’.

A sentence that contains three sentence letters requires eight lines:

M N P M ∧(N ∨P )
T T T T T T T T
T T F T T T T F
T F T T T F T T
T F F T F F F F
F T T F F T T T
F T F F F T T F
F F T F F F T T
F F F F F F F F

From this table, we know that the sentence ‘M ∧ (N ∨ P )’ can be true or false, de-
pending on the truth values of ‘M ’, ‘N ’, and ‘P ’.

A complete truth table for a sentence that contains four different sentence letters
requires 16 lines. Five letters, 32 lines. Six letters, 64 lines. And so on. To be perfectly
general: If a complete truth table has n different sentence letters, then it must have 2n
lines.
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In order to fill in the columns of a complete truth table, begin with the right-most
sentence letter and alternate between ‘T’ and ‘F’. In the next column to the left, write
two ‘T’s, write two ‘F’s, and repeat. For the third sentence letter, write four ‘T’s followed
by four ‘F’s. This yields an eight line truth table like the one above. For a 16 line truth
table, the next column of sentence letters should have eight ‘T’s followed by eight ‘F’s.
For a 32 line table, the next column would have 16 ‘T’s followed by 16 ‘F’s, and so on.

10.3 More about parentheses
Consider these two sentences:

((A ∧ B) ∧C )
(A ∧ (B ∧C ))

These are truth functionally equivalent. Consequently, it will never make any differ-
ence from the perspective of truth value – which is all that SL cares about (see §9) –
which of the two sentences we assert (or deny). Even though the order of the paren-
theses does not matter as to their truth, we should not just drop them. The expression

A ∧ B ∧C

is ambiguous between the two sentences above. The same observation holds for dis-
junctions. The following sentences are logically equivalent:

((A ∨ B) ∨C )
(A ∨ (B ∨C ))

But we should not simply write:

A ∨ B ∨C

In fact, it is a specific fact about the characteristic truth table of ∨ and ∧ that guar-
antees that any two conjunctions (or disjunctions) of the same sentences are truth
functionally equivalent, however you place the parentheses. But be careful. These two
sentences have different truth tables:

((A → B) → C )

(A → (B → C ))

So if we were to write:

A → B → C

it would be dangerously ambiguous. So we must not do the same with conditionals.
Equally, these sentences have different truth tables:

((A ∨ B) ∧C )
(A ∨ (B ∧C ))
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So if we were to write:

A ∨ B ∧C

it would be dangerously ambiguous. Never write this. The moral is: never drop paren-
theses. (Except, of course, for the outermost parentheses, which we allow ourselves to
omit—omitting the outermost parentheses will never lead to this kind of ambiguity.)

Practice exercises
A. Offer complete truth tables for each of the following:

1. A → A
2. C → ¬C
3. (A ↔ B) ↔ ¬(A ↔ ¬B)
4. (A → B) ∨ (B → A)
5. (A ∧ B) → (B ∨ A)
6. ¬(A ∨ B) ↔ (¬A ∧ ¬B)
7.

[
(A ∧ B) ∧ ¬(A ∧ B)

]
∧C

8. [(A ∧ B) ∧C ] → B
9. ¬

[
(C ∨ A) ∨ B

]
B. Check all the claims made in introducing the new notational conventions in §10.3,
i.e. show that:

1. ‘((A ∧ B) ∧C )’ and ‘(A ∧ (B ∧C ))’ have the same truth table
2. ‘((A ∨ B) ∨C )’ and ‘(A ∨ (B ∨C ))’ have the same truth table
3. ‘((A ∨ B) ∧C )’ and ‘(A ∨ (B ∧C ))’ do not have the same truth table
4. ‘((A → B) → C )’ and ‘(A → (B → C ))’ do not have the same truth table

Also, check whether:

5. ‘((A ↔ B) ↔ C )’ and ‘(A ↔ (B ↔ C ))’ have the same truth table

C. Write complete truth tables for the following sentences and mark the column that
represents the possible truth values for the whole sentence.

1. ¬(S ↔ (P → S ))
2. ¬[(X ∧Y ) ∨ (X ∨Y )]
3. (A → B) ↔ (¬B ↔ ¬A)
4. [C ↔ (D ∨ E)] ∧ ¬C
5. ¬(G ∧ (B ∧H )) ↔ (G ∨ (B ∨H ))

D. Write complete truth tables for the following sentences and mark the column that
represents the possible truth values for the whole sentence.

1. (D ∧ ¬D) → G
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2. (¬P ∨ ¬M ) ↔ M
3. ¬¬(¬A ∧ ¬B)
4. [(D ∧R) → I ] → ¬(D ∨R)
5. ¬[(D ↔ O ) ↔ A] → (¬D ∧O )

If you want additional practice, you can construct truth tables for any of the sen-
tences and arguments in the exercises for the previous chapter.



11 | Semantic concepts

In the previous section, we introduced the idea of a valuation and showed how to
determine the truth value of any SL sentence, on any valuation, using a truth table. In
this section, we will introduce some related ideas, and show how to use truth tables to
test whether or not they apply.

11.1 Tautologies and contradictions

In §3, we explained necessary truth and necessary falsity. Both notions have surrogates
in SL. We will start with a surrogate for necessary truth.

A is a tautology (in SL) iff it is true on every valuation.

We can determine whether a sentence is a tautology (in SL) just by using truth
tables. If the sentence is true on every line of a complete truth table, then it is true
on every valuation, so it is a tautology. In the example of §10, ‘(H ∧ I ) → H ’ is a
tautology.

This is only, though, a surrogate for necessary truth. There are some necessary
truths that we cannot adequately symbolize in SL. An example is ‘2 + 2 = 4’. This
must be true, but if we try to symbolize it in SL, the best we can offer is an sentence
letter, and no sentence letter is a tautology. Still, if we can adequately symbolize some
English sentence using an SL sentence which is a tautology, then that English sentence
expresses a necessary truth.

We have a similar surrogate for necessary falsity:

A is a contradiction (in SL) iff it is false on every valuation.

We can determine whether a sentence is a contradiction just by using truth tables.
If the sentence is false on every line of a complete truth table, then it is false on every
valuation, so it is a contradiction. In the example of §10, ‘[(C ↔ C ) → C ] ∧ ¬(C →
C )’ is a contradiction.
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11.2 Equivalence
Here is a similar useful notion:

A and B are equivalent (in SL) iff, for every valuation, their truth values
agree, i.e. if there is no valuation in which they have opposite truth values.

We have already made use of this notion, in effect, in §10.3; the point was that
‘(A ∧ B) ∧ C ’ and ‘A ∧ (B ∧ C )’ are equivalent in SL. Again, it is easy to test for
equivalence using truth tables. Consider the sentences ‘¬(P ∨Q )’ and ‘¬P ∧¬Q ’. Are
they equivalent? To find out, we construct a truth table.

P Q ¬(P ∨Q ) ¬P ∧¬Q
T T F T T T F T F F T
T F F T T F F T FT F
F T F F T T T F F F T
F F T F F F T F TT F

Look at the columns for the main logical operators; negation for the first sentence,
conjunction for the second. On the first three rows, both are false. On the final row,
both are true. Since they match on every row, the two sentences are equivalent.

11.3 Satisfiability
In §3, we said that sentences are jointly possible iff it is possible for all of them to be
true at once. We can offer a surrogate for this notion too:

A1,A2, . . . ,An are satisfiable (in SL) iff there is some valuation whichmakes
them all true.

Derivatively, sentences are unsatisfiable in SL if there is no valuation that makes
them all true. Again, it is easy to test for satisfiability in SL using truth tables.

11.4 Entailment and validity
The following idea is closely related to that of satisfiability in SL:

The sentences A1,A2, . . . ,An entail the sentence C(in SL) iff there is no val-
uation of the sentence letters which makes all of A1,A2, . . . ,An true and C

false.

Again, it is easy to test this with a truth table. Let us checkwhether ‘¬L → ( J ∨L)’
and ‘¬L’ entail ‘ J ’, we simply need to check whether there is any valuation which
makes both ‘¬L → ( J ∨ L)’ and ‘¬L’ true whilst making ‘ J ’ false. So we use a truth
table:
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J L ¬L→( J ∨L) ¬L J
T T FT T T T T FT T
T F TF T T T F TF T
F T FT T F T T FT F
F F TF F F F F TF F

The only row on which both‘¬L → ( J ∨ L)’ and ‘¬L’ are true is the second row, and
that is a row on which ‘ J ’ is also true. So ‘¬L → ( J ∨ L)’ and ‘¬L’ entail ‘ J ’.

We now make an important observation:

If A1,A2, . . . ,An entail C, then A1,A2, . . . ,An .˙. C is valid.

Here’s why. If A1,A2, . . . ,An entail C, then there is no valuation which makes all
of A1,A2, . . . ,An true whilst making C false. This means that it is logically impossible
for A1,A2, . . . ,An all to be true whilst C is false. But this is just what it takes for an
argument, with premises A1,A2, . . . ,An and conclusion C, to be valid!

In short, we have a way to test for the validity of English arguments. First, we
symbolize them in SL, as having premises A1,A2, . . . ,An , and conclusion C. Then
we test for entailment using truth tables.

11.5 The limits of these tests

We have reached an important milestone: a test for the validity of arguments! How-
ever, we should not get carried away just yet. It is important to understand the limits
of our achievement. We will illustrate these limits with three examples.

First, consider the argument:

1. Daisy has four legs. So Daisy has more than two legs.

To symbolize this argument in SL, we would have to use two different sentence
letters—perhaps ‘F ’ and ‘T ’—for the premise and the conclusion respectively. Now,
it is obvious that ‘F ’ does not entail ‘T ’. The English argument surely seems valid,
though!

Second, consider the sentence:

2. Jan is neither bald nor not-bald.

To symbolize this sentence in SL, we would offer something like ‘¬ J ∧ ¬¬ J ’. This a
contradiction (check this with a truth-table), but sentence 2 does not itself seem like
a contradiction; for we might have happily go on to add ‘Jan is on the borderline of
baldness’!

Third, consider the following sentence:

3. It’s not the case that, if God exists, She answers malevolent prayers.
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Symbolizing this in SL, we would offer something like ‘¬(G → M )’. Now, ‘¬(G →
M )’ entails ‘G ’ (again, check this with a truth table). So if we symbolize sentence 3
in SL, it seems to entail that God exists. But that’s strange: surely even an atheist can
accept sentence 3, without contradicting herself!

One lesson of this is that the symbolization of 3 as ‘¬(G → M )’ shows that 3 does
not express what we intend. Perhaps we should rephrase it as

3. If God exists, She does not answer malevolent prayers.

and symbolize 3 as ‘G → ¬M ’. Now, if atheists are right, and there is no God, then ‘G ’
is false and so ‘G → ¬M ’ is true, and the puzzle disappears. However, if ‘G ’ is false,
‘G → M ’, i.e. ‘If God exists, She answers malevolent prayers’, is also true!

In different ways, these four examples highlight some of the limits of working with
a language (like SL) that can only handle truth-functional operators. Moreover, these
limits give rise to some interesting questions in philosophical logic. The case of Jan’s
baldness (or otherwise) raises the general question of what logic we should use when
dealing with vague discourse. The case of the atheist raises the question of how to
deal with the (so-called) paradoxes of the material conditional. Part of the purpose of
this course is to equip you with the tools to explore these questions of philosophical
logic. But we have to walk before we can run; we have to become proficient in using
SL, before we can adequately discuss its limits, and consider alternatives.

11.6 The double-turnstile

We are going to use the notion of entailment rather a lot in this course. It will help
us, then, to introduce a symbol that abbreviates it. Rather than saying that the SL
sentences A1,A2, . . . and An together entail C, we will abbreviate this by:

A1,A2, . . . ,An � C

The symbol ‘�’ is known as the double-turnstile, since it looks like a turnstile with two
horizontal beams.

Letme be clear. ‘�’ is not a symbol of SL. Rather, it is a symbol of ourmetalanguage,
augmented English (recall the difference between object language and metalanguage
from §7). So the metalanguage sentence:

• P,P → Q � Q

is just an abbreviation for the English sentence:

• The SL sentences ‘P ’ and ‘P → Q ’ entail ‘Q ’

Note that there is no limit on the number of SL sentences that can bementioned before
the symbol ‘�’. Indeed, we can even consider the limiting case:

� C



11.7. ‘�’ VERSUS ‘→’ 59

This says that there is no valuation which makes all the sentences mentioned on the
left hand side of ‘�’ true whilst making C false. Since no sentences are mentioned on
the left hand side of ‘�’ in this case, this just means that there is no valuation which
makes C false. Otherwise put, it says that every valuation makes C true. Otherwise
put, it says that C is a tautology. Equally:

A �

says that A is a contradiction.

11.7 ‘�’ versus ‘→’
We now want to compare and contrast ‘�’ and ‘→’.

Observe: A � C iff there is no valuation of the sentence letters that makes A true
and C false.

Observe: A→ C is a tautology iff there is no valuation of the sentence letters that
makes A→ C false. Since a conditional is true except when its antecedent is true and
its consequent false, A→ C is a tautology iff there is no valuation that makes A true
and C false.

Combining these two observations, we see that A→ C is a tautology iff A � C.
But there is a really, really important difference between ‘�’ and ‘→’:

‘→’ is a sentential operator of SL.
‘�’ is a symbol of augmented English.

Indeed, when ‘→’ is flanked with two SL sentences, the result is a longer SL sen-
tence. By contrast, when we use ‘�’, we form a metalinguistic sentence that mentions
the surrounding SL sentences.

Practice exercises
A. Revisit your answers to §10A. Determine which sentences were tautologies, which
were contradictions, and which were neither tautologies nor contradictions.

B. Use truth tables to determine whether these sentences are satisfiable in SL, or un-
satisfiable in SL:

1. A → A, ¬A → ¬A, A ∧ A, A ∨ A
2. A ∨ B , A → C , B → C
3. B ∧ (C ∨ A), A → B , ¬(B ∨C )
4. A ↔ (B ∨C ),C → ¬A, A → ¬B

C. Use truth tables to determine whether each argument is valid or invalid.

1. A → A .˙. A
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2. A → (A ∧ ¬A) .˙. ¬A
3. A ∨ (B → A) .˙. ¬A → ¬B
4. A ∨ B,B ∨C,¬A .˙. B ∧C
5. (B ∧ A) → C, (C ∧ A) → B .˙. (C ∧ B) → A

D. Determine whether each sentence is a tautology, a contradiction, or a contingent
sentence, using a complete truth table.

1. ¬B ∧ B
2. ¬D ∨D
3. (A ∧ B) ∨ (B ∧ A)
4. ¬[A → (B → A)]

5. A ↔ [A → (B ∧ ¬B)]
6. [(A ∧ B) ↔ B ] → (A → B)

E.Determinewhether each the following sentences are logically equivalent using com-
plete truth tables. If the two sentences really are logically equivalent, write “equiva-
lent.” Otherwise write, “Not equivalent.”

1. A and ¬A
2. A ∧ ¬A and ¬B ↔ B
3. [(A ∨ B) ∨C ] and [A ∨ (B ∨C )]
4. A ∨ (B ∧C ) and (A ∨ B) ∧ (A ∨C )
5. [A ∧ (A ∨ B)] → B and A → B

F.Determinewhether each the following sentences are logically equivalent using com-
plete truth tables. If the two sentences really are equivalent, write “equivalent.” Oth-
erwise write, “not equivalent.”

1. A → A and A ↔ A
2. ¬(A → B) and ¬A → ¬B
3. A ∨ B and ¬A → B
4. (A → B) → C and A → (B → C )
5. A ↔ (B ↔ C ) and A ∧ (B ∧C )

G. Determine whether each collection of sentences is satisfiable or unsatisfiable using
a complete truth table.

1. A ∧ ¬B , ¬(A → B), B → A

2. A ∨ B , A → ¬A, B → ¬B
3. ¬(¬A ∨ B), A → ¬C , A → (B → C )

4. A → B , A ∧ ¬B
5. A → (B → C ), (A → B) → C , A → C

H.Determine whether each collection of sentences is satisfiable or unsatisfiable, using
a complete truth table.



11.7. ‘�’ VERSUS ‘→’ 61

1. ¬B , A → B , A
2. ¬(A ∨ B), A ↔ B , B → A

3. A ∨ B , ¬B , ¬B → ¬A
4. A ↔ B , ¬B ∨ ¬A, A → B

5. (A ∨ B) ∨C , ¬A ∨ ¬B , ¬C ∨ ¬B

I. Determine whether each argument is valid or invalid, using a complete truth table.

1. A → B , B .˙. A
2. A ↔ B , B ↔ C .˙. A ↔ C
3. A → B , A → C .˙. B → C
4. A → B , B → A .˙. A ↔ B

J. Determine whether each argument is valid or invalid, using a complete truth table.

1. A ∨
[
A → (A ↔ A)

]
.˙. A

2. A ∨ B , B ∨C , ¬B .˙. A ∧C
3. A → B , ¬A .˙. ¬B
4. A, B .˙. ¬(A → ¬B)
5. ¬(A ∧ B), A ∨ B , A ↔ B .˙. C

K. Answer each of the questions below and justify your answer.

1. Suppose that Aand B are logically equivalent. What can you say about A↔
B?

2. Suppose that (A∧ B) → C is neither a tautology nor a contradiction. What
can you say about whether A,B .˙. C is valid?

3. Suppose thatA,Band Care unsatisfiable. What can you say about (A∧B∧C)?
4. Suppose that A is a contradiction. What can you say about whether A,B � C?
5. Suppose that C is a tautology. What can you say about whether A,B � C?
6. Suppose thatAandBare logically equivalent. What can you say about (A∨B)?
7. Suppose that A and B are not logically equivalent. What can you say about

(A∨ B)?

L. Consider the following principle:

• Suppose A and B are logically equivalent. Suppose an argument contains A
(either as a premise, or as the conclusion). The validity of the argument would
be unaffected, if we replaced Awith B.

Is this principle correct? Explain your answer.



12 | Truth table shortcuts

With practice, you will quickly become adept at filling out truth tables. In this section,
we want to give you some permissible shortcuts to help you along the way.

12.1 Working through truth tables
You will quickly find that you do not need to copy the truth value of each sentence
letter, but can simply refer back to them. So you can speed things up by writing:

P Q (P ∨Q )↔¬P
T T T F F
T F T F F
F T T T T
F F F F T

You also know for sure that a disjunction is true whenever one of the disjuncts is true.
So if you find a true disjunct, there is no need to work out the truth values of the other
disjuncts. Thus you might offer:

P Q (¬P ∨¬Q )∨¬P
T T F F F F F
T F F TT T F
F T TT
F F TT

Equally, you know for sure that a conjunction is false whenever one of the conjuncts
is false. So if you find a false conjunct, there is no need to work out the truth value of
the other conjunct. Thus you might offer:

P Q ¬(P ∧¬Q )∧¬P
T T F F
T F F F
F T T F TT
F F T F TT

A similar short cut is available for conditionals. You immediately know that a condi-
tional is true if either its consequent is true, or its antecedent is false. Thus you might
present:
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P Q ((P→Q )→P )→P
T T T
T F T
F T T F T
F F T F T

So ‘((P → Q ) → P ) → P ’ is a tautology. In fact, it is an instance of Peirce’s Law,
named after Charles Sanders Peirce.

12.2 Testing for validity and entailment

When we use truth tables to test for validity or entailment, we are checking for bad
lines: lines where the premises are all true and the conclusion is false. Note:

• Any line where the conclusion is true is not a bad line.
• Any line where some premise is false is not a bad line.

Since all we are doing is looking for bad lines, we should bear this in mind. So: if we
find a line where the conclusion is true, we do not need to evaluate anything else on
that line: that line definitely isn’t bad. Likewise, if we find a line where some premise
is false, we do not need to evaluate anything else on that line.

With this in mind, consider how we might test the following for validity:

¬L → ( J ∨ L),¬L .˙. J

The first thing we should do is evaluate the conclusion. If we find that the conclusion
is true on some line, then that is not a bad line. So we can simply ignore the rest of the
line. So at our first stage, we are left with something like:

J L ¬L→( J ∨L) ¬L J
T T T
T F T
F T ? ? F
F F ? ? F

where the blanks indicate that we are not going to bother doing any more investiga-
tion (since the line is not bad) and the question-marks indicate that we need to keep
investigating.

The easiest premise to evaluate is the second, so we next do that:

J L ¬L→( J ∨L) ¬L J
T T T
T F T
F T F F
F F ? T F
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Note that we no longer need to consider the third line on the table: it will not be a bad
line, because (at least) one of premises is false on that line. Finally, we complete the
truth table:

J L ¬L→( J ∨L) ¬L J
T T T
T F T
F T F F
F F T F F T F

The truth table has no bad lines, so the argument is valid. (Any valuation on which
all the premises are true is a valuation on which the conclusion is true.)

It might be worth illustrating the tactic again. Let us check whether the following
argument is valid

A ∨ B,¬(A ∧C ),¬(B ∧ ¬D) .˙. (¬C ∨D)

At the first stage, we determine the truth value of the conclusion. Since this is a dis-
junction, it is true whenever either disjunct is true, so we can speed things along a bit.
We can then ignore every line apart from the few lines where the conclusion is false.

A B C D A ∨ B ¬(A ∧C ) ¬(B ∧ ¬D) (¬C ∨D)

T T T T T
T T T F ? ? ? F F
T T F T T
T T F F T T
T F T T T
T F T F ? ? ? F F
T F F T T
T F F F T T
F T T T T
F T T F ? ? ? F F
F T F T T
F T F F T T
F F T T T
F F T F ? ? ? F F
F F F T T
F F F F T T

We must now evaluate the premises. We use shortcuts where we can:
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A B C D A∨B ¬(A∧C ) ¬(B ∧¬D) (¬C ∨D)

T T T T T
T T T F T F T F F
T T F T T
T T F F T T
T F T T T
T F T F T F T F F
T F F T T
T F F F T T
F T T T T
F T T F T T F F TT F F
F T F T T
F T F F T T
F F T T T
F F T F F F F
F F F T T
F F F F T T

If we had used no shortcuts, we would have had to write 256 ‘T’s or ‘F’s on this table.
Using shortcuts, we only had to write 37. We have saved ourselves a lot of work.

We have been discussing shortcuts in testing for logically validity, but exactly the
same shortcuts can be used in testing for entailment. By employing a similar notion
of bad lines, you can save yourself a huge amount of work.

Practice exercises
A. Using shortcuts, determine whether each sentence is a tautology, a contradiction,
or neither.

1. ¬B ∧ B
2. ¬D ∨D
3. (A ∧ B) ∨ (B ∧ A)
4. ¬[A → (B → A)]
5. A ↔ [A → (B ∧ ¬B)]
6. ¬(A ∧ B) ↔ A
7. A → (B ∨C )
8. (A ∧ ¬A) → (B ∨C )
9. (B ∧D) ↔ [A ↔ (A ∨C )]



13 | Partial truth tables

Sometimes, we donot need to knowwhat happens on every line of a truth table. Some-
times, just a line or two will do.

Tautology. In order to show that a sentence is a tautology, we need to show that it
is true on every valuation. That is to say, we need to know that it comes out true on
every line of the truth table. So we need a complete truth table.

To show that a sentence is not a tautology, however, we only need one line: a line
on which the sentence is false. Therefore, in order to show that some sentence is not a
tautology, it is enough to provide a single valuation—a single line of the truth table—
which makes the sentence false.

Suppose that we want to show that the sentence ‘(U ∧ T ) → (S ∧W )’ is not a
tautology. We set up a partial truth table:

S T U W (U ∧T )→(S ∧W )

F

We have only left space for one line, rather than 16, since we are only looking for one
line on which the sentence is false. For just that reason, we have filled in ‘F’ for the
entire sentence.

The main logical operator of the sentence is a conditional. In order for the con-
ditional to be false, the antecedent must be true and the consequent must be false. So
we fill these in on the table:

S T U W (U ∧T )→(S ∧W )

T F F

In order for the ‘(U ∧T )’ to be true, both ‘U ’ and ‘T ’ must be true.

S T U W (U ∧T )→(S ∧W )

T T T T T F F

Now we just need to make ‘(S ∧W )’ false. To do this, we need to make at least one of
‘S ’ and ‘W ’ false. We can make both ‘S ’ and ‘W ’ false if we want. All that matters is
that the whole sentence turns out false on this line. Making an arbitrary decision, we
finish the table in this way:
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S T U W (U ∧T )→(S ∧W )

F T T F T T T F F F F

We now have a partial truth table, which shows that ‘(U ∧T ) → (S ∧W )’ is not a
tautology. Put otherwise, we have shown that there is a valuation which makes ‘(U ∧
T ) → (S ∧W )’ false, namely, the valuation which makes ‘S ’ false, ‘T ’ true, ‘U ’ true
and ‘W ’ false.

Contradiction. Showing that something is a contradiction requires a complete truth
table: we need to show that there is no valuation which makes the sentence true; that
is, we need to show that the sentence is false on every line of the truth table.

However, to show that something is not a contradiction, all we need to do is find a
valuation which makes the sentence true, and a single line of a truth table will suffice.
We can illustrate this with the same example.

S T U W (U ∧T )→(S ∧W )

T

To make the sentence true, it will suffice to ensure that the antecedent is false. Since
the antecedent is a conjunction, we can just make one of them false. For no particular
reason, we choose to make ‘U ’ false; and then we can assign whatever truth value we
like to the other sentence letters.

S T U W (U ∧T )→(S ∧W )

F T F F F F T T F F F

Truth functional equivalence. To show that two sentences are logically equivalent,
wemust show that the sentences have the same truth value on every valuation. So this
requires a complete truth table.

To show that two sentences are not logically equivalent, we only need to show that
there is a valuation on which they have different truth values. So this requires only a
one-line partial truth table: make the table so that one sentence is true and the other
false.

Satisfiability. To show that some sentences are satisfiable, we must show that there
is a valuation whichmakes all of the sentences true,so this requires only a partial truth
table with a single line.

To show that some sentences are unsatisfiable, we must show that there is no val-
uation which makes all of the sentence true. So this requires a complete truth table:
You must show that on every row of the table at least one of the sentences is false.

Validity. To show that an argument is valid, we must show that there is no valua-
tion which makes all of the premises true and the conclusion false. So this requires a
complete truth table. (Likewise for entailment.)
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To show that argument is invalid, we must show that there is a valuation which
makes all of the premises true and the conclusion false. So this requires only a one-
line partial truth table on which all of the premises are true and the conclusion is false.
(Likewise for a failure of entailment.)

This table summarises what is required:

Yes No
tautology? complete one-line partial
contradiction? complete one-line partial
equivalent? complete one-line partial
satisfiable? one-line partial complete
valid? complete one-line partial
entailment? complete one-line partial

Practice exercises
A. Use complete or partial truth tables (as appropriate) to determine whether these
pairs of sentences are logically equivalent:

1. A, ¬A
2. A, A ∨ A
3. A → A, A ↔ A
4. A ∨ ¬B , A → B
5. A ∧ ¬A, ¬B ↔ B
6. ¬(A ∧ B), ¬A ∨ ¬B
7. ¬(A → B), ¬A → ¬B
8. (A → B), (¬B → ¬A)

B. Use complete or partial truth tables (as appropriate) to determine whether these
sentences are satisfiable or unsatisfiable:

1. A ∧ B ,C → ¬B ,C
2. A → B , B → C , A, ¬C
3. A ∨ B , B ∨C ,C → ¬A
4. A, B ,C , ¬D , ¬E , F
5. A ∧ (B ∨C ), ¬(A ∧C ), ¬(B ∧C )
6. A → B , B → C , ¬(A → C )

C. Use complete or partial truth tables (as appropriate) to determine whether each
argument is valid or invalid:

1. A ∨
[
A → (A ↔ A)

]
.˙. A

2. A ↔ ¬(B ↔ A) .˙. A
3. A → B,B .˙. A
4. A ∨ B,B ∨C,¬B .˙. A ∧C
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5. A ↔ B,B ↔ C .˙. A ↔ C

D. Determine whether each sentence is a tautology, a contradiction, or a contingent
sentence. Justify your answer with a complete or partial truth table where appropriate.

1. A → ¬A
2. A → (A ∧ (A ∨ B))
3. (A → B) ↔ (B → A)

4. A → ¬(A ∧ (A ∨ B))
5. ¬B → [(¬A ∧ A) ∨ B ]
6. ¬(A ∨ B) ↔ (¬A ∧ ¬B)
7. [(A ∧ B) ∧C ] → B

8. ¬
[
(C ∨ A) ∨ B

]
9.

[
(A ∧ B) ∧ ¬(A ∧ B)

]
∧C

10. (A ∧ B)] → [(A ∧C ) ∨ (B ∧D)]

E. Determine whether each sentence is a tautology, a contradiction, or a contingent
sentence. Justify your answer with a complete or partial truth table where appropriate.

1. ¬(A ∨ A)
2. (A → B) ∨ (B → A)

3. [(A → B) → A] → A

4. ¬[(A → B) ∨ (B → A)]

5. (A ∧ B) ∨ (A ∨ B)
6. ¬(A ∧ B) ↔ A

7. A → (B ∨C )
8. (A ∧ ¬A) → (B ∨C )
9. (B ∧D) ↔ [A ↔ (A ∨C )]

10. ¬[(A → B) ∨ (C → D)]

F. Determine whether each the following pairs of sentences are logically equivalent
using complete truth tables. If the two sentences really are logically equivalent, write
“equivalent.” Otherwise write, “not equivalent.”

1. A and A ∨ A
2. A and A ∧ A
3. A ∨ ¬B and A → B
4. (A → B) and (¬B → ¬A)
5. ¬(A ∧ B) and ¬A ∨ ¬B
6. ((U → (X ∨ X )) ∨U ) and ¬(X ∧ (X ∧U ))
7. ((C ∧ (N ↔ C )) ↔ C ) and (¬¬¬N → C )
8. [(A ∨ B) ∧C ] and [A ∨ (B ∧C )]
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9. ((L ∧C ) ∧ I ) and L ∨C

G. Determine whether each collection of sentences is satisfiable or unsatisfiable. Jus-
tify your answer with a complete or partial truth table where appropriate.

1. A → A, ¬A → ¬A, A ∧ A, A ∨ A
2. A → ¬A, ¬A → A
3. A ∨ B , A → C , B → C
4. A ∨ B , A → C , B → C , ¬C
5. B ∧ (C ∨ A), A → B , ¬(B ∨C )
6. (A ↔ B) → B , B → ¬(A ↔ B), A ∨ B
7. A ↔ (B ∨C ),C → ¬A, A → ¬B
8. A ↔ B , ¬B ∨ ¬A, A → B
9. A ↔ B , A → C , B → D , ¬(C ∨D)

10. ¬(A ∧ ¬B), B → ¬A, ¬B

H. Determine whether each argument is valid or invalid. Justify your answer with a
complete or partial truth table where appropriate.

1. A → (A ∧ ¬A) .˙. ¬A
2. A ∨ B , A → B , B → A .˙. A ↔ B
3. A ∨ (B → A) .˙. ¬A → ¬B
4. A ∨ B , A → B , B → A .˙. A ∧ B
5. (B ∧ A) → C , (C ∧ A) → B .˙. (C ∧ B) → A
6. ¬(¬A ∨ ¬B), A → ¬C .˙. A → (B → C )
7. A ∧ (B → C ), ¬C ∧ (¬B → ¬A) .˙. C ∧ ¬C
8. A ∧ B , ¬A → ¬C , B → ¬D .˙. A ∨ B
9. A → B .˙. (A ∧ B) ∨ (¬A ∧ ¬B)

10. ¬A → B ,¬B → C ,¬C → A .˙. ¬A → (¬B ∨ ¬C )

I. Determine whether each argument is valid or invalid. Justify your answer with a
complete or partial truth table where appropriate.

1. A ↔ ¬(B ↔ A) .˙. A
2. A ∨ B , B ∨C , ¬A .˙. B ∧C
3. A → C , E → (D ∨ B), B → ¬D .˙. (A ∨C ) ∨ (B → (E ∧D))
4. A ∨ B ,C → A,C → B .˙. A → (B → C )
5. A → B , ¬B ∨ A .˙. A ↔ B



PART IV

Natural deduction
for SL
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14 | The very idea of natural deduction

Way back in §2, we said that an argument is valid iff it is impossible to make all of the
premises true and the conclusion false.

In the case of SL, this led us to develop truth tables. Each line of a complete truth
table corresponds to a valuation. So, when faced with a SL argument, we have a very
direct way to assess whether it is possible to make all of the premises true and the
conclusion false: just thrash through the truth table.

However, truth tables do not necessarily give us much insight. Consider two ar-
guments in SL:

P ∨Q ,¬P .˙. Q
P → Q ,P .˙. Q

Clearly, these are valid arguments. You can confirm that they are valid by construct-
ing four-line truth tables, but we might say that they make use of different forms of
reasoning. It might be nice to keep track of these different forms of inference.

One aim of a natural deduction system is to show that particular arguments are
valid, in a way that allows us to understand the reasoning that the arguments might
involve. We begin with very basic rules of inference. These rules can be combined to
offer more complicated arguments. Indeed, with just a small starter pack of rules of
inference, we hope to capture all valid arguments.

This is a very different way of thinking about arguments.
With truth tables, we directly consider different ways to make sentences true or

false. With natural deduction systems, we manipulate sentences in accordance with
rules that we have set down as good rules. The latter promises to give us a better
insight—or at least, a different insight—into how arguments work.

The move to natural deduction might be motivated by more than the search for
insight. It might also be motivated by necessity. Consider:

A1 → C1 .˙. (A1 ∧ A2 ∧ A3 ∧ A4 ∧ A5) → (C1 ∨C2 ∨C3 ∨C4 ∨C5)

To test this argument for validity, you might use a 1024-line truth table. If you do it
correctly, then you will see that there is no line on which all the premises are true and
on which the conclusion is false. So you will know that the argument is valid. (But,
as just mentioned, there is a sense in which you will not know why the argument is
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valid.) But now consider:

A1 → C1 .˙. (A1 ∧ A2 ∧ A3 ∧ A4 ∧ A5 ∧ A6 ∧ A7 ∧ A8 ∧ A9 ∧ A10) →
(C1 ∨C2 ∨C3 ∨C4 ∨C5 ∨C6 ∨C7 ∨C8 ∨C9 ∨C10)

This argument is also valid—as you can probably tell—but to test it requires a truth
table with 220 = 1048576 lines. In principle, we can set a machine to grind through
truth tables and report back when it is finished. In practice, complicated arguments
in SL can become intractable if we use truth tables.

When we get to first-order logic (FOL) (beginning in chapter 21), though, the
problem gets dramatically worse. There is nothing like the truth table test for FOL. To
assess whether or not an argument is valid, we have to reason about all interpretations,
but, as we will see, there are infinitely many possible interpretations. We cannot even
in principle set a machine to grind through infinitely many possible interpretations
and report back when it is finished: it will never finish. We either need to come up
with somemore efficient way of reasoning about all interpretations, or we need to look
for something different.

There are, indeed, systems that codify ways to reason about all possible interpre-
tations. They were developed in the 1950s by Evert Beth and Jaakko Hintikka, but we
will not follow this path. We will, instead, look to natural deduction.

Rather than reasoning directly about all valuations (in the case of SL), we will
try to select a few basic rules of inference. Some of these will govern the behaviour
of the sentential operators. Others will govern the behaviour of the quantifiers and
identity that are the hallmarks of FOL. The resulting system of rules will give us a
new way to think about the validity of arguments. The modern development of nat-
ural deduction dates from simultaneous and unrelated papers by Gerhard Gentzen
and Stanisław Jaśkowski (1934). However, the natural deduction system that we will
consider is based largely around work by Frederic Fitch (first published in 1952).



15 | Basic rules for SL

We will develop a natural deduction system. For each operator, there will be in-
troduction rules, that allow us to prove a sentence that has that operator as themain
operator, and elimination rules, that allow us to prove something given a sentence
that has that operator as the main operator.

15.1 The idea of a formal proof
A formal proof is a sequence of sentences, some of which are marked as being ini-
tial assumptions (or premises). The last line of the formal proof is the conclusion.
(Henceforth, we will simply call these ‘proofs’, but you should be aware that there are
informal proofs too.)

As an illustration, consider:

¬(A ∨ B) .˙. ¬A ∧ ¬B

We will start a proof by writing the premise:

1 ¬(A ∨ B)

Note that we have numbered the premise, sincewewill want to refer back to it. Indeed,
every line on a proof is numbered, so that we can refer back to it.

Note also that we have drawn a line underneath the premise. Everything written
above the line is an assumption. Everything written below the line will either be some-
thing which follows from the assumptions, or it will be some new assumption. We are
hoping to conclude that ‘¬A∧¬B ’; so we are hoping ultimately to conclude our proof
with

n ¬A ∧ ¬B

for some number n. It doesn’t matter what line number we end on, but we would
obviously prefer a short proof to a long one.

Similarly, suppose we wanted to consider:

A ∨ B,¬(A ∧C ),¬(B ∧ ¬D) .˙. ¬C ∨D

The argument has three premises, so we start by writing them all down, numbered,
and drawing a line under them:
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1 A ∨ B

2 ¬(A ∧C )

3 ¬(B ∧ ¬D)

and we are hoping to conclude with some line:

n ¬C ∨D

All that remains to do is to explain each of the rules that we can use along the way
from premises to conclusion. The rules are broken down by our logical operators.

15.2 Conjunction

Suppose we want to show that Ludwig is both reactionary and libertarian. One obvi-
ous way to do this would be as follows: first we show that Ludwig is reactionary; then
we show that Ludwig is libertarian; then we put these two demonstrations together,
to obtain the conjunction.

Our natural deduction system will capture this thought straightforwardly. In the
example given, we might adopt the following symbolization key:

R: Ludwig is reactionary
L: Ludwig is libertarian

Perhaps we are working through a proof, and we have obtained ‘R’ on line 8 and ‘L’
on line 15. Then on any subsequent line we can obtain ‘R ∧ L’ thus:

8 R

15 L

R ∧ L ∧I 8, 15

Note that every line of our proof must either be an assumption, or must be justified
by some rule. We cite ‘∧I 8, 15’ here to indicate that the line is obtained by the rule of
conjunction introduction (∧I) applied to lines 8 and 15. We could equally well obtain:

8 R

15 L

L ∧R ∧I 15, 8

with the citation reversed, to reflect the order of the conjuncts. More generally, here
is our conjunction introduction rule:
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m A

n B

A∧ B ∧I m, n

To be clear, the statement of the rule is schematic. It is not itself a proof. ‘A’ and
‘B’ are not sentences of SL. Rather, they are symbols in the metalanguage, which we
use when we want to talk about any sentence of SL (see §7). Similarly, ‘m’ and ‘n’ are
not a numerals that will appear on any actual proof. Rather, they are symbols in the
metalanguage, whichwe use whenwewant to talk about any line number of any proof.
In an actual proof, the lines are numbered ‘1’, ‘2’, ‘3’, and so forth, but when we define
the rule, we use variables to emphasize that the rule may be applied at any point. The
rule requires only that we have both conjuncts available to us somewhere in the proof.
They can be separated from one another, and they can appear in any order.

The rule is called ‘conjunction introduction’ because it introduces the symbol ‘∧’
into our proof where it may have been absent. Correspondingly, we have a rule that
eliminates that symbol. Suppose you have shown that Ludwig is both reactionary and
libertarian. You are entitled to conclude that Ludwig is reactionary. Equally, you are
entitled to conclude that Ludwig is libertarian. Putting this together, we obtain our
conjunction elimination rule(s):

m A∧ B

A ∧E m

and equally:

m A∧ B

B ∧E m

Thepoint is simply that, when you have a conjunction on some line of a proof, you
can obtain either of the conjuncts by ∧E. (But one point is worth emphasising: you
can only apply this rule when conjunction is the main operator. So you cannot infer
‘D ’ just from ‘C ∨ (D ∧ E)’!)

Even with just these two rules, we can start to see some of the power of our formal
proof system. Consider:

[(A ∨ B) → (C ∨D)] ∧ [(E ∨ F ) → (G ∨H )]
.˙. [(E ∨ F ) → (G ∨H )] ∧ [(A ∨ B) → (C ∨D)]

Themain operator in both the premise and conclusion of this argument is ‘∧’. In order
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to provide a proof, we begin by writing down the premise, which is our assumption.
We draw a line below this: everything after this linemust follow fromour assumptions
by (repeated applications of) our rules of inference. So the beginning of the proof
looks like this:

1 [(A ∨ B) → (C ∨D)] ∧ [(E ∨ F ) → (G ∨H )]

From the premise, we can get each of the conjuncts by ∧E. The proof now looks like
this:

1 [(A ∨ B) → (C ∨D)] ∧ [(E ∨ F ) → (G ∨H )]

2 [(A ∨ B) → (C ∨D)] ∧E 1

3 [(E ∨ F ) → (G ∨H )] ∧E 1

So by applying the ∧I rule to lines 3 and 2 (in that order), we arrive at the desired
conclusion. The finished proof looks like this:

1 [(A ∨ B) → (C ∨D)] ∧ [(E ∨ F ) → (G ∨H )]

2 [(A ∨ B) → (C ∨D)] ∧E 1

3 [(E ∨ F ) → (G ∨H )] ∧E 1

4 [(E ∨ F ) → (G ∨H )] ∧ [(A ∨ B) → (C ∨D)] ∧I 3, 2

This is a very simple proof, but it shows how we can chain rules of proof together
into longer proofs. In passing, note that investigating this argument with a truth table
would have required 256 lines; our formal proof required only four lines.

It is worth giving another example. Back in §10.3, we noted that this argument is
valid:

A ∧ (B ∧C ) .˙. (A ∧ B) ∧C
To provide a proof corresponding with this argument, we start by writing:

1 A ∧ (B ∧C )

From the premise, we can get each of the conjuncts by applying ∧E twice. We can
then apply ∧E twice more, so our proof looks like:

1 A ∧ (B ∧C )

2 A ∧E 1

3 B ∧C ∧E 1

4 B ∧E 3

5 C ∧E 3
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But now we can merrily reintroduce conjunctions in the order we wanted them, so
that our final proof is:

1 A ∧ (B ∧C )

2 A ∧E 1

3 B ∧C ∧E 1

4 B ∧E 3

5 C ∧E 3

6 A ∧ B ∧I 2, 4

7 (A ∧ B) ∧C ∧I 6, 5

Recall that our official definition of sentences in SL only allowed conjunctions with
two conjuncts. The proof just given suggests that we could drop inner brackets in all
of our proofs. However, this is not standard, and we will not do this. Instead, we
will maintain our more austere bracketing conventions. (Though we will still allow
ourselves to drop outermost brackets, for legibility.)

Let me offer one final illustration. When using the ∧I rule, there is no need to
apply it to different sentences. So, if we want, we can formally prove ‘A’ from ‘A’ thus:

1 A

2 A ∧ A ∧I 1, 1

3 A ∧E 2

Simple, but effective.

15.3 Conditional
Consider the following argument:

If Jane is smart then she is fast. Jane is smart. .˙.Jane is fast.

This argument is certainly valid, and it suggests a straightforward conditional elimi-
nation rule (→E):

m A→ B

n A

B →E m, n
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This rule is also sometimes called modus ponens. Again, this is an elimination
rule, because it allows us to obtain a sentence that may not contain ‘→’, having started
with a sentence that did contain ‘→’. Note that the conditional and the antecedent
can be separated from one another, and they can appear in any order. However, in the
citation for →E, we always cite the conditional first, followed by the antecedent.

The rule for conditional introduction is also quite easy to motivate. The following
argument should be valid:

Ludwig is reactionary. Therefore if Ludwig is libertarian, then Ludwig is
both reactionary and libertarian.

If someone doubted that this was valid, we might try to convince them otherwise by
explaining ourselves as follows:

Assume that Ludwig is reactionary. Now, additionally assume that Lud-
wig is libertarian. Then by conjunction introduction—which we just
discussed—Ludwig is both reactionary and libertarian. Of course, that’s
conditional on the assumption that Ludwig is libertarian. But this just
means that, if Ludwig is libertarian, then he is both reactionary and lib-
ertarian.

Transferred into natural deduction format, here is the pattern of reasoning that we
just used. We started with one premise, ‘Ludwig is reactionary’, thus:

1 R

Thenext thingwe did is tomake an additional assumption (‘Ludwig is libertarian’), for
the sake of argument. To indicate that we are no longer dealing merely with our origi-
nal assumption (‘R’), but with some additional assumption, we continue our proof as
follows:

1 R

2 L

Note that we are not claiming, on line 2, to have proved ‘L’ from line 1, so we do
not need to write in any justification for the additional assumption on line 2. We do,
however, need to mark that it is an additional assumption. We do this by drawing a
line under it (to indicate that it is an assumption) and by indenting it with a further
vertical line (to indicate that it is additional).

With this extra assumption in place, we are in a position to use ∧I. So we can
continue our proof:

1 R

2 L

3 R ∧ L ∧I 1, 2
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So we have now shown that, on the additional assumption, ‘L’, we can obtain ‘R ∧ L’.
We can therefore conclude that, if ‘L’ obtains, then so does ‘R ∧ L’. Or, to put it more
briefly, we can conclude ‘L → (R ∧ L)’:

1 R

2 L

3 R ∧ L ∧I 1, 2

4 L → (R ∧ L) →I 2–3

Observe that we have dropped back to using one vertical line. We have discharged the
additional assumption, ‘L’, since the conditional itself follows just from our original
assumption, ‘R’.

The general pattern at work here is the following. We first make an additional as-
sumption, A; and from that additional assumption, we prove B. In that case, we know
the following: If A, then B.This is wrapped up in the rule for conditional introduction:

i A

j B

A→ B →I i– j

There can be as many or as few lines as you like between lines i and j .
It will help to offer a second illustration of →I in action. Suppose we want to

consider the following:
P → Q ,Q → R .˙. P → R

We start by listing both of our premises. Then, since we want to arrive at a conditional
(namely, ‘P → R’), we additionally assume the antecedent to that conditional. Thus
our main proof starts:

1 P → Q

2 Q → R

3 P

Note that we have made ‘P ’ available, by treating it as an additional assumption, but
now, we can use →E on the first premise. This will yield ‘Q ’. We can then use →E on
the second premise. So, by assuming ‘P ’ we were able to prove ‘R’, so we apply the→I
rule—discharging ‘P ’—and finish the proof. Putting all this together, we have:
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1 P → Q

2 Q → R

3 P

4 Q →E 1, 3

5 R →E 2, 4

6 P → R →I 3–5

15.4 Additional assumptions and subproofs
The rule →I invoked the idea of making additional assumptions. These need to be
handled with some care.

Consider this proof:

1 A

2 B

3 B ∧ B ∧I 2, 2

4 B ∧E 3

5 B → B →I 2–4

This is perfectly in keeping with the rules we have laid down already, and it should
not seem particularly strange. Since ‘B → B ’ is a tautology, no particular premises
should be required to prove it.

But suppose we now tried to continue the proof as follows:

1 A

2 B

3 B ∧ B ∧I 2, 2

4 B ∧E 3

5 B → B →I 2–4

6 B naughty attempt to invoke →E 5, 4

If we were allowed to do this, it would be a disaster. It would allow us to prove any
sentence letter from any other sentence letter. However, if you tell me that Anne is
fast (symbolized by ‘A’), we shouldn’t be able to conclude that Queen Boudica stood
twenty-feet tall (symbolized by ‘B ’)! We must be prohibited from doing this, but how
are we to implement the prohibition?
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We can describe the process of making an additional assumption as one of per-
forming a subproof : a subsidiary proof within the main proof. When we start a sub-
proof, we draw another vertical line to indicate that we are no longer in themain proof.
Then we write in the assumption upon which the subproof will be based. A subproof
can be thought of as essentially posing this question: what could we show, if we also
make this additional assumption?

When we are working within the subproof, we can refer to the additional assump-
tion that wemade in introducing the subproof, and to anything that we obtained from
our original assumptions. (After all, those original assumptions are still in effect.) At
some point though, we will want to stop working with the additional assumption: we
will want to return from the subproof to the main proof. To indicate that we have
returned to the main proof, the vertical line for the subproof comes to an end. At
this point, we say that the subproof is closed. Having closed a subproof, we have set
aside the additional assumption, so it will be illegitimate to draw upon anything that
depends upon that additional assumption. Thus we stipulate:

To cite individual lines when applying a rule, those lines must (1) come before
the application of the rule, but (2) not occur within a closed subproof.

This stipulation rules out the disastrous attempted proof above. The rule of →E
requires that we cite two individual lines from earlier in the proof. In the purported
proof, above, one of these lines (namely, line 4) occurs within a subproof that has (by
line 6) been closed. This is illegitimate.

Closing a subproof is called discharging the assumptions of that subproof. So
we can put the point this way: you cannot refer back to anything that was obtained
using discharged assumptions.

Subproofs, then, allow us to think about what we could show, if we made addi-
tional assumptions. The point to take away from this is not surprising—in the course
of a proof, we have to keep very careful track of what assumptions we are making,
at any given moment. Our proof system does this very graphically. (Indeed, that’s
precisely why we have chosen to use this proof system.)

Once we have started thinking about what we can show by making additional
assumptions, nothing stops us from posing the question of what we could show if we
were to make even more assumptions. This might motivate us to introduce a subproof
within a subproof. Here is an example which only uses the rules of proof that we have
considered so far:
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1 A

2 B

3 C

4 A ∧ B ∧I 1, 2

5 C → (A ∧ B) →I 3–4

6 B → (C → (A ∧ B)) →I 2–5

Notice that the citation on line 4 refers back to the initial assumption (on line 1) and
an assumption of a subproof (on line 2). This is perfectly in order, since neither as-
sumption has been discharged at the time (i.e. by line 4).

Again, though, we need to keep careful track of what we are assuming at any given
moment. Suppose we tried to continue the proof as follows:

1 A

2 B

3 C

4 A ∧ B ∧I 1, 2

5 C → (A ∧ B) →I 3–4

6 B → (C → (A ∧ B)) →I 2–5

7 C → (A ∧ B) naughty attempt to invoke →I 3–4

This would be awful. If we tell you that Anne is smart, you should not be able to
infer that, if Cath is smart (symbolized by ‘C ’) then both Anne is smart and Queen
Boudica stood 20-feet tall! But this is just what such a proof would suggest, if it were
permissible.

The essential problem is that the subproof that began with the assumption ‘C ’
depended crucially on the fact that we had assumed ‘B ’ on line 2. By line 6, we have
discharged the assumption ‘B ’: we have stopped asking ourselves what we could show,
if we also assumed ‘B ’. So it is simply cheating, to try to help ourselves (on line 7) to
the subproof that began with the assumption ‘C ’. Thus we stipulate, much as before:

To cite a subproof when applying a rule, the subproof must (1) come before the
application of the rule, but (2) not occur within some other closed subproof.

The attempted disastrous proof violates this stipulation. The subproof of lines 3–4
occurs within a subproof that ends on line 5. So it cannot be invoked in line 7. The
attempted disastrous proof violates this stipulation. The subproof of lines 3–4 occurs
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within the subproof of lines 2–5, so the subproof of lines 3–4 cannot be invoked in line
7.

It is always permissible to open a subproof with any assumption. However, there
is some strategy involved in picking a useful assumption. Starting a subproof with an
arbitrary, wacky assumption would just waste lines of the proof. In order to obtain a
conditional by →I, for instance, you must assume the antecedent of the conditional
in a subproof.

Equally, it is always permissible to close a subproof and discharge its assumptions.
However, it will not be helpful to do so until you have reached something useful.

15.5 Biconditional

The rules for the biconditional will be like double-barrelled versions of the rules for
the conditional.

In order to prove ‘W ↔ X ’, for instance, you must be able to prove ‘X ’ on the
assumption ‘W ’ and prove ‘W ’ on the assumption ‘X ’. The biconditional introduction
rule (↔I) therefore requires two subproofs. Schematically, the rule works like this:

i A

j B

k B

l A

A↔ B ↔I i– j , k–l

There can be as many lines as you like between i and j , and as many lines as you
like between k and l . Moreover, the subproofs can come in any order, and the second
subproof does not need to come immediately after the first.

The biconditional elimination rule (↔E) lets you do a bit more than the condi-
tional rule. If you have the left-hand subsentence of the biconditional, you can obtain
the right-hand subsentence. If you have the right-hand subsentence, you can obtain
the left-hand subsentence. So we allow:

m A↔ B

n A

B ↔E m, n

and equally:
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m A↔ B

n B

A ↔E m, n

Note that the biconditional, and the right or left half, can be separated from one
another, and they can appear in any order. However, in the citation for↔E, we always
cite the biconditional first.

15.6 Disjunction
Suppose Ludwig is reactionary. Then Ludwig is either reactionary or libertarian. After
all, to say that Ludwig is either reactionary or libertarian is to say something weaker
than to say that Ludwig is reactionary.

Let me emphasize this point. Suppose Ludwig is reactionary. It follows that Lud-
wig is either reactionary or a kumquat. Equally, it follows that either Ludwig is reac-
tionary or that kumquats are the only fruit. Equally, it follows that either Ludwig is
reactionary or that God is dead. Many of these are strange inferences to draw, but
there is nothing logically wrong with them (even if they maybe violate all sorts of im-
plicit conversational norms).

Armed with all this, we present the disjunction introduction rule(s):

m A

A∨ B ∨I m

and

m A

B∨ A ∨I m

Notice that B can be any sentence whatsoever, so the following is a perfectly ac-
ceptable proof:

1 M

2 M ∨ ([(A ↔ B) → (C ∧D)] ↔ [E ∧ F ]) ∨I 1

Using a truth table to show this would have taken 128 lines.
The disjunction elimination rule is, though, slightly trickier. Suppose that either

Ludwig is reactionary or he is libertarian. What can you conclude? Not that Ludwig
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is reactionary; it might be that he is libertarian instead. Equally, not that Ludwig is
libertarian; for he might merely be reactionary. Disjunctions, just by themselves, are
hard to work with.

But suppose that we could somehow show both of the following: first, that Lud-
wig’s being reactionary entails that he is an Austrian economist: second, that Ludwig’s
being libertarian entails that he is an Austrian economist. Then if we know that Lud-
wig is either reactionary or libertarian, then we know that, whichever he is, Ludwig is
an Austrian economist. This insight can be expressed in the following rule, which is
our disjunction elimination (∨E) rule:

m A∨ B

i A

j C

k B

l C

C ∨E m, i– j , k–l

This is obviously a bit clunkier to write down than our previous rules, but the
point is fairly simple. Suppose we have some disjunction, A∨ B. Suppose we have
two subproofs, showing us that C follows from the assumption that A, and that C

follows from the assumption that B. Then we can infer C itself. As usual, there can
be as many lines as you like between i and j , and as many lines as you like between
k and l . Moreover, the subproofs and the disjunction can come in any order, and do
not have to be adjacent.

Some examples might help illustrate this. Consider this argument:

(P ∧Q ) ∨ (P ∧R) .˙. P

An example proof might run thus:

1 (P ∧Q ) ∨ (P ∧R)

2 P ∧Q

3 P ∧E 2

4 P ∧R

5 P ∧E 4

6 P ∨E 1, 2–3, 4–5
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Here is a slightly harder example. Consider:

A ∧ (B ∨C ) .˙. (A ∧ B) ∨ (A ∧C )

Here is a proof corresponding to this argument:

1 A ∧ (B ∨C )

2 A ∧E 1

3 B ∨C ∧E 1

4 B

5 A ∧ B ∧I 2, 4

6 (A ∧ B) ∨ (A ∧C ) ∨I 5

7 C

8 A ∧C ∧I 2, 7

9 (A ∧ B) ∨ (A ∧C ) ∨I 8

10 (A ∧ B) ∨ (A ∧C ) ∨E 3, 4–6, 7–9

Don’t be alarmed if you think that you wouldn’t have been able to come up with this
proof yourself. The ability to come up with novel proofs comes with practice. The key
question at this stage is whether, looking at the proof, you can see that it conformswith
the rules that we have laid down. That just involves checking every line, and making
sure that it is justified in accordance with the rules we have laid down.

15.7 Contradiction and negation

Wehave only one operator left to deal with: negation. But to tackle it, wemust connect
negation with contradiction.

An effective form of argument is to argue your opponent into contradicting them-
selves. At that point, you have them on the ropes. They have to give up at least one
of their assumptions. We are going to make use of this idea in our proof system, by
adding a new symbol, ‘⊥’, to our proofs. This should be read as something like ‘con-
tradiction!’ or ‘reductio!’ or ‘but that’s absurd!’ The rule for introducing this symbol is
that we can use it whenever we explicitly contradict ourselves, i.e. whenever we find
both a sentence and its negation appearing in our proof:



CHAPTER 15. BASIC RULES FOR SL 88

m ¬A

n A

⊥ ⊥I m, n

It does not matter what order the sentence and its negation appear in, and they do
not need to appear on adjacent lines. However, we always cite the line number of the
negation first, followed by that of the sentence it is a negation of.

There is obviously a tight link between contradiction and negation. The rule ⊥I
lets us proceed from two contradictory sentences—Aand its negation ¬A—to an ex-
plicit contradition ⊥.

We have said that ‘⊥’ should be read as something like ‘contradiction!’ but this
does not tell us much about the symbol. There are, roughly, three ways to approach
the symbol.

• We might regard ‘⊥’ as a new atomic sentence of SL, but one which can only
ever have the truth value False.

• We might regard ‘⊥’ as an abbreviation for some canonical contradiction, such
as ‘A ∧ ¬A’. This will have the same effect as the above—obviously, ‘A ∧ ¬A’
only ever has the truth value False—but it means that, officially, we do not need
to add a new symbol to SL.

• We might regard ‘⊥’, not as a symbol of SL, but as something more like a punc-
tuation mark that appears in our proofs. (It is on a par with the line numbers
and the vertical lines, say.)

There is something very philosophically attractive about the third option, but here we
will officially adopt the first. ‘⊥’ is to be read as a sentence letter that is always false.
This means that we can manipulate it, in our proofs, just like any other sentence.

We still have to state a rule for negation introduction. The rule is very simple: if
assuming something leads you to a contradiction, then the assumptionmust bewrong.
This thought motivates the following rule:

i A

j ⊥

¬A ¬I i– j

There can be as many lines between i and j as you like. To see this in practice,
and interacting with negation, consider this proof:
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1 D

2 ¬D

3 ⊥ ⊥I 2, 1

4 ¬¬D ¬I 2–3

If the assumption that A is true leads to a contradiction, A cannot be true, i.e. it
must be false, i.e., ¬Amust be true. Of course, if the assumption that A is false (i.e.
the assumption that ¬A is true) leads to a contradiction, then A cannot be false, i.e.
Amust be true. So we can consider the following rule:

i ¬A

j ⊥

A ¬E i– j

This rule is called negation elimination, since it allows us to eliminate the negation
from ¬A, by showing that assuming ¬A leads to a contradiction. Formally, the rule
is very similar to ¬I, but Aand ¬Ahave changed places.1

Using ¬I, we were able to give a proof of ¬¬D from D . Using ¬E, we can go the
other direction (with essentially the same proof).

1 ¬¬D

2 ¬D

3 ⊥ ⊥I 1, 2

4 D ¬E 2–3

Weneed one last rule. It is an elimination rule for ‘⊥’, sometimes called explosion.2
If we obtain a contradiction, symbolized by ‘⊥’, then we can infer whatever we like.
How can this be motivated, as a rule of argumentation? Well, consider the English
rhetorical device ‘…and if that’s true, I’ll eat my hat’. Since contradictions simply can-
not be true, if one is true then not only will I eat my hat, I’ll have it too.3 Here is the
formal rule:

1 There are logicians who have qualms about ¬E, but not about ¬I. They are called “intuitionists.” In-
tuitionists don’t buy our basic assumption that every sentence has one of two truth values, true or
false. They also think that ¬ works differently—for them, a proof of ⊥ from A guarantees ¬A, but
a proof of ⊥ from ¬Adoes not guarantee that A, but only ¬¬A. So, for them, A and ¬¬A are not
equivalent.

2 The latin name for this principle isex contradictione quod libet, “from contradiction, anything.”
3 Thanks to Adam Caulton for this.
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m ⊥

A ⊥E m

Note that Acan be any sentence whatsoever.
The⊥-elimination rule is a bit odd. It looks likeAarrives in our proof like a bunny

out of a hat. When trying to find proofs, it is very tempting to try to use it everywhere,
since it seems so powerful. Resist this temptation: you can only apply it when you
already have ⊥! And you get ⊥ only when your assumptions are contradictory.

Still, isn’t it odd that from a contradiction anything whatsoever should follow?
Not according to our notion of entailment and validity. For A entails B iff there is
no valuation of the sentence letters which makes Atrue and B false at the same time.
Now ⊥ is a contradiction—it is never true, whatever the valuation of the sentence
letters. Since there is no valuation which makes ⊥ true, there of course is also no
valuation that makes⊥ true andB false! So according to our definition of entailment,
⊥ � B, whatever B is. A contradiction entails anything.4

These are all of the basic rules for the proof system for SL.

Practice exercises

A. The following two ‘proofs’ are incorrect. Explain the mistakes they make.

1 (¬L ∧ A) ∨ L

2 ¬L ∧ A

3 ¬L ∧E 3

4 A ∧E 1

5 L

6 ⊥ ⊥I 3, 5

7 A ⊥E 6

8 A ∨E 1, 2–4, 5–7

4 There are some logicians who don’t buy this. They think that if A entails B, there must be some
relevant connection betweenAandB—and there isn’t one between⊥ and some arbitrary sentenceB.
So these logicians develop other, “relevant” logics in which you aren’t allowed the explosion rule.



15.7. CONTRADICTION AND NEGATION 91

1 A ∧ (B ∧C )

2 (B ∨C ) → D

3 B ∧E 1

4 B ∨C ∨I 3

5 D →E 4, 2

B.The following three proofs are missing their citations (rule and line numbers). Add
them, to turn them into bona fide proofs. Additionally, write down the argument that
corresponds to each proof.

1 P ∧ S

2 S → R

3 P

4 S

5 R

6 R ∨ E

1 A → D

2 A ∧ B

3 A

4 D

5 D ∨ E

6 (A ∧ B) → (D ∨ E)

1 ¬L → ( J ∨ L)

2 ¬L

3 J ∨ L

4 J

5 J ∧ J

6 J

7 L

8 ⊥

9 J

10 J

C. Give a proof for each of the following arguments:

1. J → ¬ J .˙. ¬ J
2. Q → (Q ∧ ¬Q ) .˙. ¬Q
3. A → (B → C ) .˙. (A ∧ B) → C
4. K ∧ L .˙. K ↔ L
5. (C ∧D) ∨ E .˙. E ∨D
6. A ↔ B,B ↔ C .˙. A ↔ C
7. ¬F → G ,F → H .˙. G ∨H
8. (Z ∧ K ) ∨ (K ∧M ),K → D .˙. D
9. P ∧ (Q ∨R),P → ¬R .˙. Q ∨ E

10. S ↔ T .˙. S ↔ (T ∨ S )
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11. ¬(P → Q ) .˙. ¬Q
12. ¬(P → Q ) .˙. P



16 | Constructing proofs

There is no simple recipe for finding proofs, and there is no substitute for practice.
Here, though, are some rules of thumb and strategies to keep in mind.

16.1 Working backwards from what we want

The ultimate goal is to obtain the conclusion. Look at the conclusion and ask what
the introduction rule is for its main operator. This gives you an idea of what should
happen just before the last line of the proof. Then you can treat this line as if it were
your goal. Ask what you could do to get to this new goal.

For example: If your conclusion is a conditional A → B, plan to use the →I
rule. This requires starting a subproof in which you assume A. The subproof ought to
end with B. Then, continue by thinking about what can you do to get B inside that
subproof, and how you can use the assumption A.

If your goal is a conjunction, conditional, or negated sentence, you should start by
working backwards in this way. We’ll describe what you have to do in each of these
cases in detail.

If we want to prove A∧ B, working backward means we should write A∧ B at
the bottom of our proof, and try to prove it using ∧I. At the top, we’ll write out the
premises of the proof, if there are any. Then, at the bottom, we write the sentence we
want to prove. If it is a conjunction, we’ll prove it using ∧I.

1 P1

...

k Pk
...

n A

...

m B

m + 1 A∧ B ∧I n, m

93
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For ∧I, we need to prove Afirst, then prove B. For the last line, we’ll cite the lines
where we provedAandB, and use∧I.The parts of the proof labelled ‘· · · ’ have to still
be filled in. We’ll mark the line numbers ‘m, n’ for now. When the proof is complete,
these placeholders can be replaced by actual numbers.

If our goal is to prove a conditional A→ B, we’ll have to use →I. This requires a
subproof starting with Aand ending with B. We’ll set up our proof as follows:

n A

...

m B

m + 1 A→ B →I n–m

Again we’ll leave placeholders in the line number slots. We’ll record the last inference
as →I, citing the subproof.

If we want to prove ¬A, we’ll have to use ¬I.

n A

...

m ⊥

m + 1 ¬A ¬I n–m

For ¬I, we have to start a subproof with assumption A; the last line of the subproof
has to be ⊥. We’ll cite the subproof, and use ¬I.

When working backwards, continue to do so until as long as you can. So if you’re
working backwards to prove A→ B and have set up a subproof in which you want
to prove B, now look at it B. If, say, it is a conjunction, work backwards from it, and
write down the two conjuncts inside your subproof.

Of course, you can also work backward from a disjunction A∨ B, if that is your
goal. The ∨I rule requires that you have one of the disjuncts in order to infer A∨ B.
So to work backwards, you pick a disjunct, infer A∨B from it, and then continue to
look for a proof of the disjunct you picked:

...

n A

n + 1 A∨ B ∨I n

However, you may not be able to prove the disjunct you picked. In that case you have
to backtrack. When you can’t fill in the · · · , delete everything, and try with the other
disjunct:
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...

n B

n + 1 A∨ B ∨I n

Obviously, deleting everything and starting over is frustrating, so you should avoid it.
If your goal is a disjunction, therefore, you should not start by working backwards: try
working forwards first, and apply the ∨I strategy only when working forwards (and
working backwards using ∧I, →I, and ¬I) no longer work.

16.2 Work forwards from what you have

Your proof may have premises. If you’ve worked backwards in order to prove a con-
ditional or a negated sentence, you will have set up subproofs with an assumption.
These premises and assumptions are sentences you have and can use to fill in themiss-
ing steps in your proof. Using them means applying emlimination rules for the main
operators of these sentences. These will tell you what your options are.

If we want to use a sentence of the form A∧ Bwe use ∧E. That rule allows us
to do two things: infer A, and infer B. So in a proof where we have A∧ B, we can
always work forwards by writing Aand B immediately below the conjunction:

...

n A∧ B

n + 1 A ∧E n

n + 2 B ∧E n
...

We’ll probably need them further down in the proof. In some cases we won’t need
both; but it doesn’t hurt to write them both down.

Working forwards from a disjunction works a bit differently. To use a disjunction,
we use the ∨E rule. But in order to apply that rule, it is not enough to know what the
disjuncts of the disjunction are that we want to use. We must also keep in mind what
it is that we want to prove. Suppose we want to prove C, and we have A∨ B to work
with. (Again, that A∨B may be a premise of the proof, an assumption of a subproof,
or something already proved, e.g., by ∧E.) In order to be able to apply the ∨E rule,
we’ll have to set up two subproofs.
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...

n A∨ B

n + 1 A

...

m C

m + 1 B

...

k C

k + 1 C ∨E n, (n + 1)–m, (m + 1)–k
...

The first subproof starts with the first disjunct, A, and ends with the sentence we’re
looking for, C. The second subproof starts with the other disjunct, B, and also ends
with the goal sentence C. Each of these subproofs have to be filled in further. We can
justify Cby using ∨E, citing the line with A∨ B and the two subproofs.

In order to use a conditionalA→ B, you need the antecedentAin order to apply
→E. So to work forward from a conditional, you will derive B, justify it by →E, and
set up Aas a new subgoal.

...

n A→ B

...

m A

m + 1 B →E n, m
...

Finally, to use a negated sentence¬A, youwould applybot I. It requires, in addition
to¬Aalso the corresponding sentenceAwithout the negation. The sentence you’ll get
is always the same: ⊥. So working forward from a negated sentence works especially
well inside a subproof that you’ll want to use for ¬I (or ¬E).
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...

n ¬A
...

m A

m + 1 ⊥ ⊥I n, m
...

16.3 Strategies at work

Suppose we want to show that the argument (A∧B)∨(A∧C ) .˙. A∧(B ∨C ) is valid.
We start the proof by writing the premise and conclusion down. (On a piece of paper,
you would want as much space as possible between them, so write the premises at the
top of the sheet and the conclusion at the bottom.)

1 (A ∧ B) ∨ (A ∧C )
...

n A ∧ (B ∨C )

We now have two options: either work backwards from the conclusion, or work for-
wards from the premise. We’ll pick the second strategy: we use the disjunction on line
1, and set up the subproofs we need for ∨E.

1 (A ∧ B) ∨ (A ∧C )

2 A ∧ B
...

n A ∧ (B ∨C )

n + 1 A ∧C
...

m A ∧ (B ∨C )

m + 1 A ∧ (B ∨C ) ∨E 1, 2–n, n + 1–m

In the first subproof, we now work backwards from the conclusion and set up the sub
goals for proving line 6 using ∧I.
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1 (A ∧ B) ∨ (A ∧C )

2 A ∧ B
...

i A
...

n − 1 B ∨C

n A ∧ (B ∨C ) ∧I i , n − 1

n + 1 A ∧C
...

m A ∧ (B ∨C )

m + 1 A ∧ (B ∨C ) ∨E 1, 2–n, (n + 1)–m

We immediately see that we get line i from 2 by ∧E; let’s apply the strategy for proving
disjunctions to line n − 1: look for a proof of B . (We have a choice of which disjunct
to pick, but pickingC wouldn’t work and we’d end up having to backtrack.)

1 (A ∧ B) ∨ (A ∧C )

2 A ∧ B

3 A ∧E 2

4 B ∧E 2

5 B ∨C ∨I 4

6 A ∧ (B ∨C ) ∧I 3, 5

7 A ∧C
...

m A ∧ (B ∨C )

m + 1 A ∧ (B ∨C ) ∨E 1, 2–6, 7–m

Like line i (i.e., 3), we get line 4 from 2 by ∧E. That’s it for the first subproof. The
second subproof is almost exactly the same. We’ll leave it as an exercise.

Remember that when we started, we had the option of working forward from the
premise, or working backward from the conclusion, and we picked the first option.
The second option also leads to a proof, but it will look different. The first steps would
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be to split the conclusion apart and set up two subgoals, A and B ∨C , and then work
forwards from the premise to prove them, e.g.,:

1 (A ∧ B) ∨ (A ∧C )

2 A ∧ B
...

k A

k + 1 A ∧C
...

n − 1 A

n A ∨E 1, 2–k , (k + 1)–(n − 1)

n + 1 A ∧ B
...

l B ∨C

l + 1 A ∧C
...

m − 1 B ∨C

m B ∨C ∨E 1, (n + 1)–l , (l + 1)–(m − 1)

m + 1 A ∧ (B ∨C ) ∧I n, m − 1

Let’s give another example to illustrate how to apply the strategies to deal with
conditionals and negation. The sentence (A → B) → (¬B → ¬A) is a tautology;
let’s see if we can find a proof of it, from no premises, using the strategies. We first
write the sentence at the bootom of a sheet of paper. Since working forwards is not an
option, we work backwards, and set up a subproof to establish the sentence we want
using→I. Its assumption must be the antecedent of the conditional we want to prove,
and its last line the consequent.

1 A → B
...

n ¬B → ¬A

n + 1 (A → B) → (¬B → ¬A) →I 1–n
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The new goal, ¬B → ¬A is itself a conditional, so working backwards we set up
another subproof:

1 A → B

2 ¬B
...

n − 1 ¬A

n ¬B → ¬A →I 2–(n − 1)

n + 1 (A → B) → (¬B → ¬A) →I 1–n

From ¬A we again work backwards:

1 A → B

2 ¬B

3 A
...

n − 2 ⊥

n − 1 ¬A ¬I 3–(n − 2)

n ¬B → ¬A →I 2–(n − 1)

n + 1 (A → B) → (¬B → ¬A) →I 1–n

To prove ⊥ we now work forwards from the one negated sentence we have, ¬B on
line 2. That means we have to derive B—which we get in turn by working forwards
fromA → B , sinceB is the consequent of that conditional. Its antecedentA is already
available on line 3. So we finish with:

1 A → B

2 ¬B

3 A

4 B →E 1, 3

5 ⊥ ⊥I 2, 4

6 ¬A ¬I 3–5

7 ¬B → ¬A →I 2–6

8 (A → B) → (¬B → ¬A) →I 1–7
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16.4 Use Negation Elimination

In very many cases, the strategies of working forwards and backwards will eventually
pan out. But there are cases where they do not work. If you cannot find a way to show
A directly using those, use ¬E instead. To do this, set up a subproof in which you
assume ¬Aand look for a proof of ⊥ inside that subproof.

...

n ¬A
...

m ⊥

m + 1 A ¬E n–m

Here, we have to start a subproof with assumption ¬A; the last line of the subproof
has to be ⊥. We’ll cite the subproof, and use ¬E. In the subproof, we now have an
additional assumption (on line n) to work with.

Suppose we used the ¬E proof strategy, or we’re in some other situation where
we’re looking for a proof of ⊥. What’s a good candidate? Of course the obvious can-
didate would be to use a negated sentence, since (as we saw above)⊥I always yields⊥.
If you are using the ¬E strategy, this results in the following paradoxical situation:

...

n ¬A
...

m − 1 A

m ⊥ ⊥I n, m − 1

m + 1 A ¬E n–m

This looks weird: We wanted to prove A and the strategies failed us; so we used ¬E
as a last resort. And now we find ourselves in the same situation: looking for a proof
of A. But remember that we are now inside a subproof, and in that subproof we have
an additional assumption (¬A) to work with which we didn’t have before.

16.5 A proof of excluded middle

The sentence A ∨ ¬A is a tautology, and so should have a proof even without any
premises. But working backwards does not work: to get A ∨ ¬A using ∨I we would
have to prove either A or ¬A—again, from no premises. But neither of these is a
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tautology, so we won’t be able to prove either. Working forwards doesn’t work either,
since there is nothing to work forwards from. So, the only option is ¬E.

1 ¬(A ∨ ¬A)
...

m ⊥

m + 1 A ∨ ¬A ¬E 1–m

Now we do have something to work forward from: the assumption ¬(A ∨ ¬A). To
use it, we justify ⊥ by ⊥I, citing the assumption, in addition to the corresponding
unnegated sentence (yet to be proved).

1 ¬(A ∨ ¬A)
...

m − 1 A ∨ ¬A

m ⊥ ⊥I 1, m − 1

m + 1 A ∨ ¬A ¬E 1–m

At the outset, working backwards to prove A ∨ ¬A by ∨I did not work. But we are
now in a different situation: we want to prove A ∨ ¬A inside a subproof. In general,
when dealing with new goals we should go back and start with the basic strategies. In
this case, we should pick a disjunct and try to prove it. Let’s pick ¬A. Then working
backward from that, we start another subproof in order to justify ¬A using ¬I.

1 ¬(A ∨ ¬A)

2 A
...

m − 3 ⊥

m − 2 ¬A ¬I 2–(m − 3)

m − 1 A ∨ ¬A ∨I m − 2

m ⊥ ⊥I 1, m − 1

m + 1 A ∨ ¬A ¬I 1–m

Inside this new subproof, we need to justify ⊥. Again, the best way to do this is to
use a negated sentence, and ¬(A ∨ ¬A) is the only negated sentence we can use. The
corresponding unnegated sentence, A ∨ ¬A, however, directly follows from A by ∨I.
Our complete proof is:
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1 ¬(A ∨ ¬A)

2 A

3 A ∨ ¬A ∨I 2

4 ⊥ ⊥I 1, 3

5 ¬A ¬I 2–4

6 A ∨ ¬A ∨I 5

7 ⊥ ⊥I 1, 6

8 A ∨ ¬A ¬I 1–7



17 | Additional rules for SL

In §15, we introduced the basic rules of our proof system for SL. In this section, we will
add some additional rules to our system. These will make our system much easier to
work with. (However, in §19 we will see that they are not strictly speaking necessary.)

17.1 Reiteration

The first additional rule is reiteration (R). This just allows us to repeat ourselves:

m A

A R m

Such a rule is obviously legitimate; but one might well wonder how such a rule
could ever be useful. Well, consider:

1 A → ¬A

2 A

3 ¬A →E 1, 2

4 ¬A

5 ¬A R 4

6 ¬A LEM 2–3, 4–5

This is a fairly typical use of the R rule.

17.2 Disjunctive syllogism

Here is a very natural argument form.

Elizabeth is either in Massachusetts or in DC. She is not in DC. So, she is
in Massachusetts.
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This inference pattern is called disjunctive syllogism. We add it to our proof system as
follows:

m A∨ B

n ¬A

B DS m, n

and

m A∨ B

n ¬B

A DS m, n

As usual, the disjunction and the negation of one disjunct may occur in either
order and need not be adjacent. However, we always cite the disjunction first.

17.3 Modus tollens

Another useful pattern of inference is embodied in the following argument:

If Mitt has won the election, then he is in the White House. He is not in
the White House. So he has not won the election.

This inference pattern is called modus tollens. The corresponding rule is:

m A→ B

n ¬B

¬A MT m, n

Asusual, the premisesmay occur in either order, butwe always cite the conditional
first.

17.4 Double-negation elimination

Another useful rule is double-negation elimination. This rule does exactly what it says
on the tin:
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m ¬¬A

A DNEm

The justification for this is that, in natural language, double-negations tend to can-
cel out.

That said, you should be aware that context and emphasis can prevent them from
doing so. Consider: ‘Jane is not not happy’. Arguably, one cannot infer ‘Jane is happy’,
since the first sentence should be understood as meaning the same as ‘Jane is not
unhappy’. This is compatible with ‘Jane is in a state of profound indifference’. As usual,
moving to SL forces us to sacrifice certain nuances of English expressions.

17.5 Excluded middle

Suppose that we can show that if it’s sunny outside, then Bill will have brought an
umbrella (for fear of burning). Suppose we can also show that, if it’s not sunny outside,
then Bill will have brought an umbrella (for fear of rain). Well, there is no third way
for the weather to be. So, whatever the weather, Bill will have brought an umbrella.

This line of thinking motivates the following rule:

i A

j B

k ¬A

l B

B LEM i– j , k–l

The rule is sometimes called the law of excluded middle, since it encapsulates the
idea that Acan be true or ¬Amay be true, but there is no middle way where neither
is true.1 There can be as many lines as you like between i and j , and as many lines
as you like between k and l . Moreover, the subproofs can come in any order, and the
second subproof does not need to come immediately after the first.

To see the rule in action, consider:

P .˙. (P ∧D) ∨ (P ∧ ¬D)

Here is a proof corresponding with the argument:

1 You may sometimes find logicians or philosophers talking about “tertium non datur.” That’s the same
principle as excludedmiddle; it means “no third way.” Logicians who have qualms about¬E also have
qualms about LEM.
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1 P

2 D

3 P ∧D ∧I 1, 2

4 (P ∧D) ∨ (P ∧ ¬D) ∨I 3

5 ¬D

6 P ∧ ¬D ∧I 1, 5

7 (P ∧D) ∨ (P ∧ ¬D) ∨I 6

8 (P ∧D) ∨ (P ∧ ¬D) LEM 2–4, 5–7

17.6 De Morgan Rules

Our final additional rules are called De Morgan’s Laws (named after Augustus
De Morgan). The shape of the rules should be familiar from truth tables.

The first De Morgan rule is:

m ¬(A∧ B)

¬A∨ ¬B DeM m

The second De Morgan is the reverse of the first:

m ¬A∨ ¬B

¬(A∧ B) DeM m

The third De Morgan rule is the dual of the first:

m ¬(A∨ B)

¬A∧ ¬B DeM m

And the fourth is the reverse of the third:

m ¬A∧ ¬B

¬(A∨ B) DeM m
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These are all of the additional rules of our proof system for SL.

Practice exercises
A.The following proofs are missing their citations (rule and line numbers). Add them
wherever they are required:

1 W → ¬B

2 A ∧W

3 B ∨ ( J ∧ K )

4 W

5 ¬B

6 J ∧ K

7 K

1 L ↔ ¬O

2 L ∨ ¬O

3 ¬L

4 ¬O

5 L

6 ⊥

7 ¬¬L

8 L

1 Z → (C ∧ ¬N )

2 ¬Z → (N ∧ ¬C )

3 ¬(N ∨C )

4 ¬N ∧ ¬C

5 ¬N

6 ¬C

7 Z

8 C ∧ ¬N

9 C

10 ⊥

11 ¬Z

12 N ∧ ¬C

13 N

14 ⊥

15 ¬¬(N ∨C )

16 N ∨C

B. Give a proof for each of these arguments:

1. E ∨ F , F ∨G , ¬F .˙. E ∧G
2. M ∨ (N → M ) .˙. ¬M → ¬N
3. (M ∨ N ) ∧ (O ∨ P ), N → P , ¬P .˙. M ∧O
4. (X ∧Y ) ∨ (X ∧ Z ), ¬(X ∧D),D ∨M .˙.M



18 | Proof-theoretic concepts

In this chapter we will introduce some new vocabulary. The following expression:

A1,A2, . . . ,An ⊢ C

means that there is some proof which starts with assumptions among A1,A2, . . . ,An
and ends with C (and contains no undischarged assumptions other than those we
started with). Derivatively, we will write:

⊢ A

to mean that there is a proof of Awith no assumptions.
The symbol ‘⊢’ is called the single turnstile. We want to emphasize that this is not

the double turnstile symbol (‘�’) that we introduced in chapter 11 to symbolize entail-
ment. The single turnstile, ‘⊢’, concerns the existence of proofs; the double turnstile,
‘�’, concerns the existence of valuations (or interpretations, when used for FOL). They
are very different notions.

Armed with our ‘⊢’ symbol, we can introduce somemore terminology. To say that
there is a proof of Awith no undischarged assumptions, we write: ⊢ A. In this case,
we say that A is a theorem.

A is a theorem iff ⊢ A

To illustrate this, suppose we want to show that ‘¬(A ∧ ¬A)’ is a theorem. So we
need a proof of ‘¬(A∧¬A)’ which has no undischarged assumptions. However, since
we want to prove a sentence whose main operator is a negation, we will want to start
with a subproof within which we assume ‘A∧¬A’, and show that this assumption leads
to contradiction. All told, then, the proof looks like this:

1 A ∧ ¬A

2 A ∧E 1

3 ¬A ∧E 1

4 ⊥ ⊥I 3, 2

5 ¬(A ∧ ¬A) ¬I 1–4
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Wehave therefore proved ‘¬(A∧¬A)’ on no (undischarged) assumptions. This partic-
ular theorem is an instance of what is sometimes called the Law of Non-Contradiction.

To show that something is a theorem, you just have to find a suitable proof. It
is typically much harder to show that something is not a theorem. To do this, you
would have to demonstrate, not just that certain proof strategies fail, but that no proof
is possible. Even if you fail in trying to prove a sentence in a thousand different ways,
perhaps the proof is just too long and complex for you to make out. Perhaps you just
didn’t try hard enough.

Here is another new bit of terminology:

Two sentencesAandBare provably equivalent iff each can be proved from
the other; i.e., both A ⊢ B and B ⊢ A.

As in the case of showing that a sentence is a theorem, it is relatively easy to show
that two sentences are provably equivalent: it just requires a pair of proofs. Showing
that sentences are not provably equivalent would be much harder: it is just as hard as
showing that a sentence is not a theorem.

Here is a third, related, bit of terminology:

The sentences A1,A2, . . . ,An are provably inconsistent iff a contradiction
can be proved from them, i.e. A1,A2, . . . ,An ⊢ ⊥. If they are not inconsis-
tent, we call them provably consistent.

It is easy to show that some sentences are provably inconsistent: you just need
to prove a contradiction from assuming all the sentences. Showing that some sen-
tences are not provably inconsistent is much harder. It would require more than just
providing a proof or two; it would require showing that no proof of a certain kind is
possible.

This table summarises whether one or two proofs suffice, or whether we must reason
about all possible proofs.

Yes No
theorem? one proof all possible proofs
inconsistent? one proof all possible proofs
equivalent? two proofs all possible proofs
consistent? all possible proofs one proof

Practice exercises

A. Show that each of the following sentences is a theorem:

1. O → O
2. N ∨ ¬N
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3. J ↔ [ J ∨ (L ∧ ¬L)]
4. ((A → B) → A) → A

B. Provide proofs to show each of the following:

1. C → (E ∧G ),¬C → G ⊢ G
2. M ∧ (¬N → ¬M ) ⊢ (N ∧M ) ∨ ¬M
3. (Z ∧ K ) ↔ (Y ∧M ),D ∧ (D → M ) ⊢Y → Z
4. (W ∨ X ) ∨ (Y ∨ Z ),X →Y,¬Z ⊢W ∨Y

C. Show that each of the following pairs of sentences are provably equivalent:

1. R ↔ E , E ↔ R
2. G , ¬¬¬¬G
3. T → S , ¬S → ¬T
4. U → I , ¬(U ∧ ¬I )
5. ¬(C → D),C ∧ ¬D
6. ¬G ↔ H , ¬(G ↔ H )

D. If you know that A ⊢ B, what can you say about (A∧ C) ⊢ B? What about
(A∨ C) ⊢ B? Explain your answers.

E. In this chapter, we claimed that it is just as hard to show that two sentences are not
provably equivalent, as it is to show that a sentence is not a theorem. Why didwe claim
this? (Hint: think of a sentence that would be a theorem iff A and Bwere provably
equivalent.)
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In this section, we will see why we introduced the rules of our proof system in two
separate batches. In particular, we want to show that the additional rules of §17 are
not strictly speaking necessary, but can be derived from the basic rules of §15.

19.1 Derivation of Reiteration

Suppose you have some sentence on some line of your deduction:

m A

You now want to repeat yourself, on some line k . You could just invoke the rule R,
introduced in §17. But equally well, you can do this with the basic rules of §15:

m A

k A∧ A ∧I m, m

k + 1 A ∧E k

To be clear: this is not a proof. Rather, it is a proof scheme. After all, it uses a variable,
‘A’, rather than a sentence of SL, but the point is simple: Whatever sentences of SL we
plugged in for ‘A’, and whatever lines we were working on, we could produce a bona
fide proof. So you can think of this as a recipe for producing proofs.

Indeed, it is a recipe which shows us that, anything we can prove using the rule R,
we can prove (with one more line) using just the basic rules of §15. So we can describe
the rule R as a derived rule, since it can be justified using only the basic rules.

19.2 Derivation of Disjunctive Syllogism

Suppose that you are in a proof, and you have something of this form:

m A∨ B

n ¬A
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You now want, on line k , to prove B. You can do this with the rule of DS, introduced
in §17, but equally well, you can do this with the basic rules of §15:

m A∨ B

n ¬A

k A

k + 1 ⊥ ⊥I n, k

k + 2 B ⊥E k + 1

k + 3 B

k + 4 B∧ B ∧I k + 3, k + 3

k + 5 B ∧E k + 4

k + 6 B ∨E m, k–k + 2, k + 3–k + 5

So the DS rule, again, can be derived from our more basic rules. Adding it to our
system did notmake any new proofs possible. Anytime you use theDS rule, you could
always take a few extra lines and prove the same thing using only our basic rules. It is
a derived rule.

19.3 Derivation of Modus tollens
Suppose you have the following in your proof:

m A→ B

n ¬B

You nowwant, on line k , to prove¬A. You can do this with the rule ofMT, introduced
in §17. Equally well, you can do this with the basic rules of §15:

m A→ B

n ¬B

k A

k + 1 B →E m, k

k + 2 ⊥ ⊥I n, k + 1

k + 3 ¬A ¬I k–k + 2

Again, the rule of MT can be derived from the basic rules of §15.
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19.4 Derivation of Double-negation elimination

Consider the following deduction scheme:

m ¬¬A

k ¬A

k + 1 ⊥ ⊥I m, k

k + 2 A ¬E k–k + 1

Again, we can derive the DNE rule from the basic rules of §15.

19.5 Derivation of excluded middle

Suppose you want to prove something using the LEM rule, i.e., you have in your proof

m A

n B

k ¬A

l B

You now want, on line l + 1, to prove B. The rule LEM from §17 would allow you to
do it. But can do this with the basic rules of §15?

One option is to first prove A∨ ¬A, and then apply ∨E, i.e. proof by cases:

m A

n B

k ¬A

l B

. . .

i A∨ ¬A

i + 1 B ∨E i , m–n, k–l

(We gave a proof of A∨ ¬Ausing only our basic rules in §16.5.)
Here is another way that is a bit more complicated than the ones before. What you

have to do is embed your two subproofs inside another subproof. The assumption of
the subproof will be ¬B, and the last line will be ⊥. Thus, the complete subproof is



19.6. DERIVATION OF DE MORGAN RULES 115

the kind you need to conclude B using ¬E. Inside the proof, you’d have to do a bit
more work to get ⊥:

m ¬B

m + 1 A

n + 1 B

n + 2 ⊥ ⊥I m, n + 1

k + 2 ¬A

l + 2 B

l + 3 ⊥ ⊥I k + 2, l + 2

l + 4 ¬A ¬I m + 1–n + 2

l + 5 ¬¬A ¬I k + 2–l + 3

l + 6 ⊥ ⊥I l + 5, l + 4

l + 7 B ¬E m–l + 6

Note that because we add an assumption at the top and additional conclusions inside
the subproofs, the line numbers change. Youmay have to stare at this for awhile before
you understand what’s going on.

19.6 Derivation of De Morgan rules
Here is a demonstration of how we could derive the first De Morgan rule:

m ¬(A∧ B)

k A

k + 1 B

k + 2 A∧ B ∧I k , k + 1

k + 3 ⊥ ⊥I m, k + 2

k + 4 ¬B ¬I k + 1–k + 3

k + 5 ¬A∨ ¬B ∨I k + 4

k + 6 ¬A

k + 7 ¬A∨ ¬B ∨I k + 6

k + 8 ¬A∨ ¬B LEM k–k + 5, k + 6–k + 7
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Here is a demonstration of how we could derive the second De Morgan rule:

m ¬A∨ ¬B

k A∧ B

k + 1 A ∧E k

k + 2 B ∧E k

k + 3 ¬A

k + 4 ⊥ ⊥I k + 3, k + 1

k + 5 ¬B

k + 6 ⊥ ⊥I k + 5, k + 2

k + 7 ⊥ ∨E m, k + 3–k + 4, k + 5–k + 6

k + 8 ¬(A∧ B) ¬I k–k + 7

Similar demonstrations can be offered explaining how we could derive the third and
fourth De Morgan rules. These are left as exercises.

Practice exercises

A. Provide proof schemes that justify the addition of the third and fourth De Morgan
rules as derived rules.

B.The proofs you offered in response to the practice exercises of §§17–18 used derived
rules. Replace the use of derived rules, in such proofs, with only basic rules. You will
find some ‘repetition’ in the resulting proofs; in such cases, offer a streamlined proof
using only basic rules. (This will give you a sense, both of the power of derived rules,
and of how all the rules interact.)

C. Give a proof of A∨ ¬A. Then give a proof that uses only the basic rules.

D. Show that if you had LEM as a basic rule, you could justify ¬E as a derived rule.
That is, suppose you had the proof:

m ¬A

. . .

n ⊥
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How could you use it to prove Awithout using ¬E but with using LEM as well as all
the other primitive rules?

E.Give a proof of the first DeMorgan rule, but using only the basic rules, in particular,
without using LEM. (Of course, you can combine the proof using LEM with the proof
of LEM. Try to find a proof directly.)



20 | Soundness and completeness

In §18, we saw that we could use derivations to test for the same concepts we used
truth tables to test for. Not only could we use derivations to prove that an argument is
valid, we could also use them to test if a sentence is a tautology or a pair of sentences
are equivalent. We also started using the single turnstile the same way we used the
double turnstile. If we could prove that Awas a tautology with a truth table, we wrote
� A, and if we could prove it using a derivation, we wrote ⊢ A.

You may have wondered at that point if the two kinds of turnstiles always worked
the same way. If you can show that A is a tautology using truth tables, can you also
always show that it is true using a derivation? Is the reverse true? Are these things
also true for tautologies and pairs of equivalent sentences? As it turns out, the answer
to all these questions and many more like them is yes. We can show this by defining
all these concepts separately and then proving them equivalent. That is, we imagine
that we actually have two notions of validity, valid� and valid⊢ and then show that the
two concepts always work the same way.

To begin with, we need to define all of our logical concepts separately for truth ta-
bles and derivations. A lot of this work has already been done. We handled all of the
truth table definitions in §11. We have also already given syntactic definitions for tau-
tologies (theorems) and pairs of logically equivalent sentences. The other definitions
follow naturally. For most logical properties we can devise a test using derivations,
and those that we cannot test for directly can be defined in terms of the concepts that
we can define.

For instance, we defined a theorem as a sentence that can be derived without any
premises (p. 109). Since the negation of a contradiction is a tautology, we can define a
syntactic contradiction in sl as a sentence whose negation can be derived with-
out any premises. The syntactic definition of a contingent sentence is a little different.
We don’t have any practical, finite method for proving that a sentence is contingent
using derivations, the way we did using truth tables. So we have to content ourselves
with defining “contingent sentence” negatively. A sentence is syntactically con-
tingent in sl if it is not a theorem or a contradiction.

A collection of sentences are provably inconsistent in sl if and only if one can
derive a contradiction from them. Consistency, on the other hand, is like contingency,
in that we do not have a practical finite method to test for it directly. So again, we have
to define a term negatively. A collection of sentences is provably consistent in sl
if and only if they are not provably inconsistent.
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Finally, an argument is provably valid in sl if and only if there is a derivation of
its conclusion from its premises. All of these definitions are given in Table 20.1.

All of our concepts have now been defined both semantically and syntactically.
How can we prove that these definitions always work the same way? A full proof here
goes well beyond the scope of this book. However, we can sketch what it would be like.
We will focus on showing the two notions of validity to be equivalent. From that the
other concepts will follow quickly. The proof will have to go in two directions. First
we will have to show that things which are syntactically valid will also be semantically
valid. In other words, everything that we can prove using derivations could also be
proven using truth tables. Put symbolically, wewant to show that valid⊢ implies valid�.
Afterwards, we will need to show things in the other directions, valid� implies valid⊢

This argument from ⊢ to � is the problem of soundness. A proof system is sound
if there are no derivations of arguments that can be shown invalid by truth tables.
Demonstrating that the proof system is soundwould require showing that any possible
proof is the proof of a valid argument. It would not be enough simply to succeed when
trying to prove many valid arguments and to fail when trying to prove invalid ones.

The proof that we will sketch depends on the fact that we initially defined a sen-
tence of SL using a recursive definition (see p. 32). We could have also used recursive
definitions to define a proper proof in SL and a proper truth table. (Although we
didn’t.) If we had these definitions, we could then use a recursive proof to show the
soundness of SL. A recursive proof works the same way as a recursive definition. With
the recursive definition, we identified a group of base elements that were stipulated to
be examples of the thing wewere trying to define. In the case of a SL sentence, the base
class was the set of sentence letters A, B , C , …. We just announced that these were
sentences. The second step of a recursive definition is to say that anything that is built
up from your base class using certain rules also counts as an example of the thing you
are defining. In the case of a definition of a sentence, the rules corresponded to the
five sentential operators (see p. 32). Once you have established a recursive definition,
you can use that definition to show that all the members of the class you have defined
have a certain property. You simply prove that the property is true of the members
of the base class, and then you prove that the rules for extending the base class don’t
change the property. This is what it means to give a recursive proof.

Even though we don’t have a recursive definition of a proof in SL, we can sketch
how a recursive proof of the soundness of SL would go. Imagine a base class of one-
line proofs, one for each of our eleven rules of inference. The members of this class
would look like this A,B ⊢ A∧ B; A∧ B ⊢ A; A∨ B,¬A ⊢ B … etc. Since
some rules have a couple different forms, we would have to have add some members
to this base class, for instance A∧ B ⊢ BNotice that these are all statements in the
metalanguage. The proof that SL is sound is not a part of SL, because SL does not have
the power to talk about itself.

You can use truth tables to prove to yourself that each of these one-line proofs in
this base class is valid�. For instance the proof A,B ⊢ A∧ B corresponds to a truth
table that shows A,B � A∧ BThis establishes the first part of our recursive proof.

The next step is to show that adding lines to any proof will never change a valid�
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proof into an invalid� one. We would need to do this for each of our eleven basic
rules of inference. So, for instance, for ∧I we need to show that for any proof A1, …,
An ⊢ Badding a line where we use∧I to infer C∧D, where C∧Dcan be legitimately
inferred fromA1, …,An ,B, would not change a valid proof into an invalid proof. But
wait, if we can legitimately derive C∧ D from these premises, then C and Dmust
be already available in the proof. They are either already among A1, …, An , B, or
can be legitimately derived from them. As such, any truth table line in which the
premises are true must be a truth table line in which C and D are true. According
to the characteristic truth table for ∧, this means that C∧ D is also true on that line.
Therefore, C∧ D validly follows from the premises. This means that using the ∧E
rule to extend a valid proof produces another valid proof.

In order to show that the proof system is sound, we would need to show this for
the other inference rules. Since the derived rules are consequences of the basic rules,
it would suffice to provide similar arguments for the 11 other basic rules. This tedious
exercise falls beyond the scope of this book.

So we have shown that A ⊢ B implies A � B.What about the other direction,
that is why think that every argument that can be shown valid using truth tables can
also be proven using a derivation.

This is the problem of completeness. A proof system has the property of com-
pleteness if and only if there is a derivation of every semantically valid argument.
Proving that a system is complete is generally harder than proving that it is sound.
Proving that a system is sound amounts to showing that all of the rules of your proof
system work the way they are supposed to. Showing that a system is complete means
showing that you have included all the rules you need, that you haven’t left any out.
Showing this is beyond the scope of this book. The important point is that, happily,
the proof system for SL is both sound and complete. This is not the case for all proof
systems or all formal languages. Because it is true of SL, we can choose to give proofs
or give truth tables—whichever is easier for the task at hand.

Now that we know that the truth tablemethod is interchangeable with themethod
of derivations, you can chose which method you want to use for any given problem.
Students often prefer to use truth tables, because they can be produced purely me-
chanically, and that seems ‘easier’. However, we have already seen that truth tables
become impossibly large after just a few sentence letters. On the other hand, there are
a couple situations where using proofs simply isn’t possible. We syntactically defined
a contingent sentence as a sentence that couldn’t be proven to be a tautology or a con-
tradiction. There is no practical way to prove this kind of negative statement. We will
never know if there isn’t some proof out there that a statement is a contradiction and
we just haven’t found it yet. We have nothing to do in this situation but resort to truth
tables. Similarly, we can use derivations to prove two sentences equivalent, but what
if we want to prove that they are not equivalent? We have no way of proving that we
will never find the relevant proof. So we have to fall back on truth tables again.

Table 20.2 summarizes when it is best to give proofs and when it is best to give
truth tables.
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Logical property To prove it present To prove it absent

Being a theorem Derive the sentence Find the false line in the
truth table for the sentence

Being a
contradiction

Derive the negation of the
sentence

Find the true line in the
truth table for the sentence

Contingency
Find a false line and a true
line in the truth table for
the sentence

Prove the sentence or its
negation

Equivalence Derive each sentence from
the other

Find a line in the truth
tables for the sentence
where they have different
values

Consistency
Find a line in truth table for
the sentence where they all
are true

Derive a contradiction
from the sentences

Validity Derive the conclusion from
the premises

Find no line in the truth
table where the premises
are true and the conclusion
false.

Table 20.2: When to provide a truth table and when to provide a proof.

Practice exercises
A. Use either a derivation or a truth table for each of the following.

1. Show that A → [((B ∧C ) ∨D) → A] is a theorem.

2. Show that A → (A → B) is not a theorem.

3. Show that the sentence A → ¬A is not a contradiction.

4. Show that the sentence A ↔ ¬A is a contradiction.

5. Show that the sentence ¬(W → ( J ∨ J )) is contingent.

6. Show that the sentence ¬(X ∨ (Y ∨ Z )) ∨ (X ∨ (Y ∨ Z )) is not contingent.

7. Show that the sentence B → ¬S is equivalent to the sentence ¬¬B → ¬S .

8. Show that the sentence ¬(X ∨O ) is not equivalent to the sentence X ∧O .

9. Show that the sentences ¬(A ∨ B),C ,C → A are jointly inconsistent.

10. Show that the sentences ¬(A ∨ B), ¬B , B → A are jointly consistent.
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11. Show that ¬(A ∨ (B ∨C )) .˙.¬C is valid.

12. Show that ¬(A ∧ (B ∨C )) .˙.¬C is invalid.

B. Use either a derivation or a truth table for each of the following.

1. Show that A → (B → A) is a theorem.

2. Show that ¬(((N ↔ Q ) ∨Q ) ∨ N ) is not a theorem.

3. Show that Z ∨ (¬Z ↔ Z ) is contingent.

4. show that (L ↔ ((N → N ) → L)) ∨H is not contingent.

5. Show that (A ↔ A) ∧ (B ∧ ¬B) is a contradiction.

6. Show that (B ↔ (C ∨ B)) is not a contradiction.

7. Show that ((¬X ↔ X ) ∨ X ) is equivalent to X .

8. Show that F ∧ (K ∧R) is not equivalent to (F ↔ (K ↔ R)).

9. Show that the sentences ¬(W →W ), (W ↔W )∧W , E ∨ (W → ¬(E ∧W ))
are jointly inconsistent.

10. Show that the sentences ¬R ∨C , (C ∧R) → ¬R, (¬(R ∨R) → R) are jointly
consistent.

11. Show that ¬¬(C ↔ ¬C ), ((G ∨C ) ∨G ) .˙. ((G → C ) ∧G ) is valid.

12. Show that ¬¬L, (C → ¬L) → C ) .˙. ¬C is invalid.
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Predicate logic
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21 | Building blocks of PL

21.1 The need to decompose sentences
Consider the following argument, which is obviously valid in English:

Willard is a logician. All logicians wear funny hats. .˙.Willard wears a
funny hat.

To symbolize it in SL, we might offer a symbolization key:

L: Willard is a logician.
A: All logicians wear funny hats.
F : Willard wears a funny hat.

And the argument itself becomes:

L,A .˙. F

This is invalid in SL, but the original English argument is clearly valid.
The problem is not that we have made a mistake while symbolizing the argument.

This is the best symbolization we can give in SL. The problem lies with SL itself. ‘All
logicians wear funny hats’ is about both logicians and hat-wearing. By not retaining
this structure in our symbolization, we lose the connection between Willard’s being a
logician and Willard’s wearing a hat.

The basic units of SL are sentence letters, and SL cannot decompose these. To
symbolize arguments like the preceding one, we will have to develop a new logical
language which will allow us to split the atom. We will call this language predicate, or
PL.

The details of PL will be explained throughout this chapter, but here is the basic
idea for splitting the atom.

First, we have names. In PL, we indicate these with lowercase italic letters. For
instance, we might let ‘b ’ stand for Bertie, or let ‘i ’ stand for Willard.

Second, we have predicates. English predicates are expressions like ‘ is a
dog’ or ‘ is a logician’. These are not complete sentences by themselves. In order
to make a complete sentence, we need to fill in the gap. We need to say something like
‘Bertie is a dog’ or ‘Willard is a logician’. In PL, we indicate predicates with uppercase
italic letters. For instance, we might let the PL predicate ‘D ’ symbolize the English
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predicate ‘ is a dog’. Then the expression ‘Db ’ will be a sentence in PL, which
symbolizes the English sentence ‘Bertie is a dog’. Equally, wemight let the PL predicate
‘L’ symbolize the English predicate ‘ is a logician’. Then the expression ‘Li ’ will
symbolize the English sentence ‘Willard is a logician’.

Third, we have quantifiers. For instance, ‘∃’ will roughly convey ‘There is at least
one …’. So we might symbolize the English sentence ‘there is a dog’ with the PL sen-
tence ‘∃x Dx ’, which we would naturally read out-loud as ‘there is at least one thing,
x , such that x is a dog’.

That is the general idea, but PL is significantly more subtle than SL, so we will
come at it slowly.

21.2 Names

In English, a singular term is a word or phrase that refers to a specific person, place, or
thing. The word ‘dog’ is not a singular term, because there are a great many dogs. The
phrase ‘Bertie’ is a singular term, because it refers to a specific terrier. Likewise, the
phrase ‘Philip’s dog Bertie’ is a singular term, because it refers to a specific little terrier.

Proper names are a particularly important kind of singular term. These are ex-
pressions that pick out individuals without describing them. The name ‘Emerson’ is
a proper name, and the name alone does not tell you anything about Emerson. Of
course, some names are traditionally given to boys and other are traditionally given
to girls. If ‘Hilary’ is used as a singular term, youmight guess that it refers to a woman.
You might, though, be guessing wrongly. Indeed, the name does not necessarily mean
that the person referred to is even a person: Hilary might be a giraffe, for all you could
tell just from the name.

In PL, our names are lower-case letters ‘a’ through to ‘r ’. We can add subscripts if
we want to use some letter more than once. So here are some singular terms in PL:

a, b, c, . . . , r, a1, f32, j390,m12

These should be thought of along the lines of proper names in English, but with one
difference. ‘Tim Button’ is a proper name, but there are several people with this name.
(Equally, there are at least two people with the name ‘P.D. Magnus’.) We live with this
kind of ambiguity in English, allowing context to individuate the fact that ‘TimButton’
refers to an author of this book, and not some other Tim. In PL, we do not tolerate any
such ambiguity. Each name must pick out exactly one thing. (However, two different
names may pick out the same thing.)

As with SL, we can provide symbolization keys. These indicate, temporarily, what
a name will pick out. So we might offer:

e : Elsa
g : Gregor
m: Marybeth
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21.3 Predicates
The simplest predicates are properties of individuals. They are things you can say
about an object. Here are some examples of English predicates:

is a dog
is a member of Monty Python

A piano fell on

In general, you can think about predicates as things which combine with singular
terms to make sentences. Conversely, you can start with sentences and make pred-
icates out of them by removing terms. Consider the sentence, ‘Vinnie borrowed the
family car from Nunzio.’ By removing a singular term, we can obtain any of three
different predicates:

borrowed the family car from Nunzio
Vinnie borrowed from Nunzio
Vinnie borrowed the family car from

In PL, predicates are capital letters A through Z , with or without subscripts. We
might write a symbolization key for predicates thus:

Ax : x is angry
H x : x is happy

(Why the subscripts on the gaps? We will return to this in §23.)
If we combine our two symbolization keys, we can start to symbolize some English

sentences that use these names and predicates in combination. For example, consider
the English sentences:

1. Elsa is angry.
2. Gregor and Marybeth are angry.
3. If Elsa is angry, then so are Gregor and Marybeth.

Sentence 1 is straightforward: we symbolize it by ‘Ae ’.
Sentence 2: this is a conjunction of two simpler sentences. The simple sentences

can be symbolized just by ‘Ag ’ and ‘Am’. Thenwe help ourselves to our resources from
SL, and symbolize the entire sentence by ‘Ag∧Am’. This illustrates an important point:
PL has all of the truth-functional connectives of SL.

Sentence 3: this is a conditional, whose antecedent is sentence 1 and whose con-
sequent is sentence 2, so we can symbolize this with ‘Ae → (Ag ∧ Am)’.

21.4 Quantifiers
We are now ready to introduce quantifiers. Consider these sentences:

4. Everyone is happy.
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5. Someone is angry.

It might be tempting to symbolize sentence 4 as ‘H e ∧H g ∧Hm’. Yet this would only
say that Elsa, Gregor, and Marybeth are happy. We want to say that everyone is happy,
even those with no names. In order to do this, we introduce the ‘∀’ symbol. This is
called the universal quantifier.

A quantifier must always be followed by a variable. In PL, variables are italic
lowercase letters ‘w ’ through ‘z ’, with or without subscripts. So we might symbolize
sentence 4 as ‘∀x H x ’. The variable ‘x ’ is serving as a kind of placeholder. The ex-
pression ‘∀x ’ intuitively means that you can pick anyone and put them in as ‘x ’. The
subsequent ‘H x ’ indicates, of that thing you picked out, that it is happy.

It should be pointed out that there is no special reason to use ‘x ’ rather than some
other variable. The sentences ‘∀x H x ’, ‘∀y H y ’, ‘∀z H z ’, and ‘∀x5H x5’ use different
variables, but they will all be logically equivalent.

To symbolize sentence 5, we introduce another new symbol: the existential
quantifier, ‘∃’. Like the universal quantifier, the existential quantifier requires a vari-
able. Sentence 5 can be symbolized by ‘∃x Ax ’. Whereas ‘∀x Ax ’ is read naturally as
‘for all x , x is angry’, ‘∃x Ax ’ is read naturally as ‘there is something, x , such that x is
angry’. Once again, the variable is a kind of placeholder; we could just as easily have
symbolized sentence 5 by ‘∃z Az ’, ‘∃w256Aw256’, or whatever.

Some more examples will help. Consider these further sentences:

6. No one is angry.
7. There is someone who is not happy.
8. Not everyone is happy.

Sentence 6 can be paraphrased as, ‘It is not the case that someone is angry’. We can
then symbolize it using negation and an existential quantifier: ‘¬∃x Ax ’. Yet sentence
6 could also be paraphrased as, ‘Everyone is not angry’. With this in mind, it can
be symbolized using negation and a universal quantifier: ‘∀x ¬Ax ’. Both of these are
acceptable symbolizations. Indeed, it will transpire that, in general, ∀x ¬Ais logically
equivalent to ¬∃x A. (Notice that we have here returned to the practice of using ‘A’
as a metavariable, from §7.) Symbolizing a sentence one way, rather than the other,
might seem more ‘natural’ in some contexts, but it is not much more than a matter of
taste.

Sentence 7 is most naturally paraphrased as, ‘There is some x , such that x is
not happy’. This then becomes ‘∃x ¬H x ’. Of course, we could equally have written
‘¬∀x H x ’, which we would naturally read as ‘it is not the case that everyone is happy’.
Whenever someone is not happy, it won’t be true that everyone is happy; and, when-
ever it’s not true that everyone is happy, there will be someone who is not happy. So
‘∃x ¬H x ’ and ‘¬∀x H x ’ say the same thing. So 7 and ?? say the same thing. So either
‘∃x ¬H x ’ or ‘¬∀x H x ’ would be a perfectly adequate symbolization of sentence 8.
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21.5 Domains

Given the symbolization key we have been using, ‘∀x H x ’ symbolizes ‘Everyone is
happy’. Who is included in this everyone? When we use sentences like this in En-
glish, we usually do not mean everyone now alive on the Earth. We certainly do not
mean everyone who was ever alive or who will ever live. We usually mean something
more modest: everyone now in the building, everyone enrolled in the ballet class, or
whatever.

In order to eliminate this ambiguity, we will need to specify a domain. The do-
main is the collection of things that we are talking about. So if we want to talk about
people in Chicago, we define the domain to be people in Chicago. We write this at the
beginning of the symbolization key, like this:

domain: people in Chicago

The quantifiers range over the domain. Given this domain, ‘∀x ’ is to be read roughly
as ‘Every person in Chicago is such that…’ and ‘∃x ’ is to be read roughly as ‘Some
person in Chicago is such that…’.

In PL, the domainmust always include at least one thing. Moreover, in English we
can infer ‘something is angry’ from ‘Gregor is angry’. In PL, then, we will want to be
able to infer ‘∃x Ax ’ from ‘Ag ’. So we will insist that each name must pick out exactly
one thing in the domain. If we want to name people in places beside Chicago, then
we need to include those people in the domain.

A domain must have at least one member. A name must pick out exactly one
member of the domain, but a member of the domainmay be picked out by one
name, many names, or none at all.

Even allowing for a domain with just one member can produce some strange re-
sults. Suppose we have this as a symbolization key:

domain: the Eiffel Tower
P x : x is in Paris.

The sentence ∀x P x might be paraphrased in English as ‘Everything is in Paris.’ Yet
that would be misleading. It means that everything in the domain is in Paris. This do-
main contains only the Eiffel Tower, so with this symbolization key ∀x P x just means
that the Eiffel Tower is in Paris.

Non-referring terms

In PL, each name must pick out exactly one member of the domain. A name cannot
refer to more than one thing—it is a singular term. Each name must still pick out
something. This is connected to a classic philosophical problem: the so-called problem
of non-referring terms.
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Medieval philosophers typically used sentences about the chimera to exemplify
this problem. Chimera is a mythological creature; it does not really exist. Consider
these two sentences:

9. Chimera is angry.
10. Chimera is not angry.

It is tempting just to define a name to mean ‘chimera.’ The symbolization key would
look like this:

domain: creatures on Earth
Ax : x is angry.
c : chimera

We could then symbolize sentence 9 as Ac and sentence 10 as ¬Ac .
Problems will arise when we ask whether these sentences are true or false.
One option is to say that sentence 9 is not true, because there is no chimera. If

sentence 9 is false because it talks about a non-existent thing, then sentence 10 is false
for the same reason. Yet this would mean thatAc and ¬Ac would both be false. Given
the truth conditions for negation, this cannot be the case.

Since we cannot say that they are both false, what should we do? Another option is
to say that sentence 9 is meaningless because it talks about a non-existent thing. SoAc
would be a meaningful expression in PL for some interpretations but not for others.
Yet this would make our formal language hostage to particular interpretations. Since
we are interested in logical form, we want to consider the logical force of a sentence
like Ac apart from any particular interpretation. If Ac were sometimes meaningful
and sometimes meaningless, we could not do that.

This is the problem of non-referring terms, and we will return to it later (see p. ??.)
The important point for now is that each name of PL must refer to something in the
domain, although the domain can contain any things we like. If we want to symbolize
arguments about mythological creatures, then we must define a domain that includes
them. This option is important if we want to consider the logic of stories. We can
symbolize a sentence like ‘Sherlock Holmes lived at 221B Baker Street’ by including
fictional characters like Sherlock Holmes in our domain.



22 | Sentences with one quantifier

We now have all of the pieces of PL. Symbolizing more complicated sentences will
only be a matter of knowing the right way to combine predicates, names, quantifiers,
and connectives. There is a knack to this, and there is no substitute for practice.

22.1 Common quantifier phrases

Consider these sentences:

1. Every coin in my pocket is a quarter.
2. Some coin on the table is a dime.
3. Not all the coins on the table are dimes.
4. None of the coins in my pocket are dimes.

In providing a symbolization key, we need to specify a domain. Since we are talking
about coins in my pocket and on the table, the domain must at least contain all of
those coins. Since we are not talking about anything besides coins, we let the domain
be all coins. Since we are not talking about any specific coins, we do not need to deal
with any names. So here is our key:

domain: all coins
P x : x is in my pocket
T x : x is on the table
Qx : x is a quarter
Dx : x is a dime

Sentence 1 is most naturally symbolized using a universal quantifier. The universal
quantifier says something about everything in the domain, not just about the coins in
my pocket. Sentence 1 can be paraphrased as ‘for any coin, if that coin is in my pocket
then it is a quarter’. So we can symbolize it as ‘∀x(P x → Qx)’.

Since sentence 1 is about coins that are both in my pocket and that are quarters,
it might be tempting to symbolize it using a conjunction. However, the sentence
‘∀x(P x ∧ Qx)’ would symbolize the sentence ‘every coin is both a quarter and in
my pocket’. This obviously means something very different than sentence 1. And so
we see:
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A sentence can be symbolized as ∀x(Fx → Gx) if it can be paraphrased in
English as ‘every F isG ’.

Sentence 2 is most naturally symbolized using an existential quantifier. It can be
paraphrased as ‘there is some coin which is both on the table and which is a dime’. So
we can symbolize it as ‘∃x(T x ∧Dx)’.

Notice that we needed to use a conditional with the universal quantifier, but we
used a conjunction with the existential quantifier. Suppose we had instead written
‘∃x(T x → Dx)’. That would mean that there is some object in the domain of which
‘(T x → Dx)’ is true. Recall that, in SL, A → B is logically equivalent (in SL) to
¬A∨ B. This equivalence will also hold in PL. So ‘∃x(T x → Dx)’ is true if there
is some object in the domain, such that ‘(¬T x ∨ Dx)’ is true of that object. That is,
‘∃x(T x → Dx)’ is true if some coin is either not on the table or is a dime. Of course
there is a coin that is not on the table: there are coins lots of other places. So it is
very easy for ‘∃x(T x → Dx)’ to be true. A conditional will usually be the natural
connective to use with a universal quantifier, but a conditional within the scope of an
existential quantifier tends to say something very weak indeed. As a general rule of
thumb, do not put conditionals in the scope of existential quantifiers unless you are
sure that you need one.

A sentence can be symbolized as ∃x(Fx ∧ Gx) if it can be paraphrased in
English as ‘some F isG ’.

Sentence 3 can be paraphrased as, ‘It is not the case that every coin on the table is
a dime’. So we can symbolize it by ‘¬∀x(T x → Dx)’. You might look at sentence 3
and paraphrase it instead as, ‘Some coin on the table is not a dime’. You would then
symbolize it by ‘∃x(T x ∧¬Dx)’. Although it is probably not immediately obvious yet,
these two sentences are logically equivalent. (This is due to the logical equivalence
between ¬∀x A and ∃x¬A, mentioned in §21, along with the equivalence between
¬(A→ B) and A∧ ¬B.)

Sentence 4 can be paraphrased as, ‘It is not the case that there is some dime in
my pocket’. This can be symbolized by ‘¬∃x(P x ∧ Dx)’. It might also be para-
phrased as, ‘Everything in my pocket is a non-dime’, and then could be symbolized
by ‘∀x(P x → ¬Dx)’. Again the two symbolizations are logically equivalent; both are
correct symbolizations of sentence 4.

22.2 Empty predicates

In §21, we emphasized that a name must pick out exactly one object in the domain.
However, a predicate need not apply to anything in the domain. A predicate that ap-
plies to nothing in the domain is called an empty predicate. This is worth exploring.

Suppose we want to symbolize these two sentences:
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5. Every monkey knows sign language
6. Some monkey knows sign language

It is possible to write the symbolization key for these sentences in this way:

domain: animals
Mx : x is a monkey.
Sx : x knows sign language.

Sentence 5 can now be symbolized by ‘∀x(Mx → Sx)’. Sentence 6 can be symbolized
as ‘∃x(Mx ∧ Sx)’.

It is tempting to say that sentence 5 entails sentence 6. That is, we might think that
it is impossible for it to be the case that every monkey knows sign language, without
its also being the case that some monkey knows sign language, but this would be a
mistake. It is possible for the sentence ‘∀x(Mx → Sx)’ to be true even though the
sentence ‘∃x(Mx ∧ Sx)’ is false.

How can this be? The answer comes from considering whether these sentences
would be true or false if there were no monkeys. If there were no monkeys at all (in
the domain), then ‘∀x(Mx → Sx)’ would be vacuously true: take any monkey you
like—it knows sign language! But if there were no monkeys at all (in the domain),
then ‘∃x(Mx ∧ Sx)’ would be false.

Another example will help to bring this home. Suppose we extend the above sym-
bolization key, by adding:

Rx : x is a refrigerator

Now consider the sentence ‘∀x(Rx → Mx)’. This symbolizes ‘every refrigerator is a
monkey’. This sentence is true, given our symbolization key, which is counterintuitive,
since we (presumably) do not want to say that there are a whole bunch of refrigerator
monkeys. It is important to remember, though, that ‘∀x(Rx → Mx)’ is true iff any
member of the domain that is a refrigerator is a monkey. Since the domain is animals,
there are no refrigerators in the domain. Again, then, the sentence is vacuously true.

If you were actually dealing with the sentence ‘All refrigerators are monkeys’, then
you would most likely want to include kitchen appliances in the domain. Then the
predicate ‘R’ would not be empty and the sentence ‘∀x(Rx → Mx)’ would be false.

When F is an empty predicate, a sentence ∀x(Fx → . . .) will be vacuously
true.

22.3 Picking a domain
The appropriate symbolization of an English language sentence in PL will depend on
the symbolization key. Choosing a key can be difficult. Suppose we want to symbolize
the English sentence:

7. Every rose has a thorn.
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We might offer this symbolization key:

Rx : x is a rose
T x : x has a thorn

It is tempting to say that sentence 7 should be symbolized as ‘∀x(Rx → T x)’, but
we have not yet chosen a domain. If the domain contains all roses, this would be
a good symbolization. Yet if the domain is merely things on my kitchen table, then
‘∀x(Rx → T x)’ would only come close to covering the fact that every rose on my
kitchen table has a thorn. If there are no roses onmy kitchen table, the sentence would
be trivially true. This is not what we want. To symbolize sentence 7 adequately, we
need to include all the roses in the domain, but now we have two options.

First, we can restrict the domain to include all roses but only roses. Then sentence
7 can, if we like, be symbolized with ‘∀x T x ’. This is true iff everything in the domain
has a thorn; since the domain is just the roses, this is true iff every rose has a thorn. By
restricting the domain, we have been able to symbolize our English sentence with a
very short sentence of PL. So this approach can save us trouble, if every sentence that
we want to deal with is about roses.

Second, we can let the domain contain things besides roses: rhododendrons; rats;
rifles; whatevers, and we will certainly need to include a more expansive domain if we
simultaneously want to symbolize sentences like:

8. Every cowboy sings a sad, sad song.

Our domain must now include both all the roses (so that we can symbolize sentence
7) and all the cowboys (so that we can symbolize sentence 8). So we might offer the
following symbolization key:

domain: people and plants
Cx : x is a cowboy
Sx : x sings a sad, sad song
Rx : x is a rose
T x : x has a thorn

Now we will have to symbolize sentence 7 with ‘∀x(Rx → T x)’, since ‘∀x T x ’ would
symbolize the sentence ‘every person or plant has a thorn’. Similarly, we will have to
symbolize sentence 8 with ‘∀x(Cx → Sx)’.

In general, the universal quantifier can be used to symbolize the English expres-
sion ‘everyone’ if the domain only contains people. If there are people and other things
in the domain, then ‘everyone’ must be treated as ‘every person’.

22.4 The utility of paraphrase
When symbolizing English sentences in PL, it is important to understand the structure
of the sentences you want to symbolize. Whatmatters is the final symbolization in PL,
and sometimes you will be able to move from an English language sentence directly



22.4. THE UTILITY OF PARAPHRASE 135

to a sentence of PL. Other times, it helps to paraphrase the sentence one or more
times. Each successive paraphrase should move from the original sentence closer to
something that you can easily symbolize directly in PL.

For the next several examples, we will use this symbolization key:

domain: people
Bx : x is a bassist.
Rx : x is a rock star.
k : Kim Deal

Now consider these sentences:

9. If Kim Deal is a bassist, then she is a rock star.
10. If a person is a bassist, then she is a rock star.

The samewords appear as the consequent in sentences 9 and 10 (‘. . . she is a rock star’),
but they mean very different things. To make this clear, it often helps to paraphrase
the original sentences, removing pronouns.

Sentence 9 can be paraphrased as, ‘If Kim Deal is a bassist, then Kim Deal is a
rockstar’. This can obviously be symbolized as ‘Bk → Rk ’.

Sentence 10 must be paraphrased differently: ‘If a person is a bassist, then that
person is a rock star’. This sentence is not about any particular person, so we need a
variable. As an intermediate step, we can paraphrase this as, ‘For any person x, if x is
a bassist, then x is a rockstar’. Now this can be symbolized as ‘∀x(Bx → Rx)’. This
is the same sentence we would have used to symbolize ‘Everyone who is a bassist is a
rock star’. On reflection, that is surely true iff sentence 10 is true, as we would hope.

Consider these further sentences:

11. If anyone is a bassist, then Kim Deal is a rock star.
12. If anyone is a bassist, then she is a rock star.

The same words appear as the antecedent in sentences 11 and 12 (‘If anyone is a
bassist. . .’), but it can be tricky to work out how to symbolize these two uses. Again,
paraphrase will come to our aid.

Sentence 11 can be paraphrased, ‘If there is at least one bassist, then Kim Deal is
a rock star’. It is now clear that this is a conditional whose antecedent is a quantified
expression; so we can symbolize the entire sentence with a conditional as the main
logical operator: ‘∃xBx → Rk ’.

Sentence 12 can be paraphrased, ‘For all people x , if x is a bassist, then x is a rock
star’. Or, in more natural English, it can be paraphrased by ‘All bassists are rock stars’.
It is best symbolized as ‘∀x(Bx → Rx)’, just like sentence 10.

The moral is that the English words ‘any’ and ‘anyone’ should typically be symbol-
ized using quantifiers, and if you are having a hard time determining whether to use
an existential or a universal quantifier, try paraphrasing the sentence with an English
sentence that uses words besides ‘any’ or ‘anyone’.
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22.5 Quantifiers and scope
Continuing the example, suppose we want to symbolize these sentences:

13. If everyone is a bassist, then Lars is a bassist
14. Everyone is such that, if they are a bassist, then Lars is a bassist.

To symbolize these sentences, we will have to add a new name to the symbolization
key, namely:

l : Lars

Sentence 13 is a conditional, whose antecedent is ‘everyone is a bassist’, so we will sym-
bolize it with ‘∀x Bx → Bl ’. This sentence is necessarily true: if everyone is indeed a
bassist, then take any one you like—for example Lars—and he will be a bassist.

Sentence 14, by contrast, might best be paraphrased by ‘every person x is such
that, if x is a bassist, then Lars is a bassist’. This is symbolized by ‘∀x(Bx → Bl )’. This
sentence is false; Kim Deal is a bassist. So ‘Bk ’ is true, but Lars is not a bassist, so ‘Bl ’
is false. Accordingly, ‘Bk → Bl ’ will be false, so ‘∀x(Bx → Bl )’ will be false as well.

In short, ‘∀xBx → Bl ’ and ‘∀x(Bx → Bl )’ are very different sentences. We can
explain the difference in terms of the scope of the quantifier. The scope of quantifi-
cation is very much like the scope of negation, which we considered when discussing
SL, and it will help to explain it in this way.

In the sentence ‘¬Bk → Bl ’, the scope of ‘¬’ is just the antecedent of the condi-
tional. We are saying something like: if ‘Bk ’ is false, then ‘Bl ’ is true. Similarly, in the
sentence ‘∀xBx → Bl ’, the scope of ‘∀x ’ is just the antecedent of the conditional. We
are saying something like: if ‘Bx ’ is true of everything, then ‘Bl ’ is also true.

In the sentence ‘¬(Bk → Bl)’, the scope of ‘¬’ is the entire sentence. We are saying
something like: ‘(Bk → Bl )’ is false. Similarly, in the sentence ‘∀x(Bx → Bl)’, the
scope of ‘∀x ’ is the entire sentence. We are saying something like: ‘(Bx → Bl )’ is true
of everything.

The moral of the story is simple. When you are using conditionals, be very careful
to make sure that you have sorted out the scope correctly.

Ambiguous predicates

Suppose we just want to symbolize this sentence:

15. Adina is a skilled surgeon.

Let the domain be people, let Kx mean ‘x is a skilled surgeon’, and let a mean Adina.
Sentence 15 is simply Ka.

Suppose instead that we want to symbolize this argument:

Thehospital will only hire a skilled surgeon. All surgeons are greedy. Billy
is a surgeon, but is not skilled. Therefore, Billy is greedy, but the hospital
will not hire him.
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We need to distinguish being a skilled surgeon from merely being a surgeon. So we
define this symbolization key:

domain: people
Gx : x is greedy.
H x : The hospital will hire x .
Rx : x is a surgeon.
Kx : x is skilled.
b : Billy

Now the argument can be symbolized in this way:

∀x [¬(Rx ∧ Kx) → ¬H x
]

∀x(Rx → Gx)
Rb ∧ ¬Kb

.˙. Gb ∧ ¬Hb

Next suppose that we want to symbolize this argument:

Carol is a skilled surgeon and a tennis player. Therefore, Carol is a skilled
tennis player.

If we start with the symbolization key we used for the previous argument, we could
add a predicate (let T x mean ‘x is a tennis player’) and a name (let c mean Carol).
Then the argument becomes:

(Rc ∧ Kc) ∧T c
.˙. T c ∧ Kc

This symbolization is a disaster! It takes what in English is a terrible argument and
symbolizes it as a valid argument in PL. The problem is that there is a difference be-
tween being skilled as a surgeon and skilled as a tennis player. Symbolizing this argu-
ment correctly requires two separate predicates, one for each type of skill. If we let
K1x mean ‘x is skilled as a surgeon’ andK2x mean ‘x is skilled as a tennis player,’ then
we can symbolize the argument in this way:

(Rc ∧ K1c) ∧T c
.˙. T c ∧ K2c

Like the English language argument it symbolizes, this is invalid.
The moral of these examples is that you need to be careful of symbolizing predi-

cates in an ambiguous way. Similar problems can arise with predicates like good, bad,
big, and small. Just as skilled surgeons and skilled tennis players have different skills,
big dogs, big mice, and big problems are big in different ways.

Is it enough to have a predicate that means ‘x is a skilled surgeon’, rather than
two predicates ‘x is skilled’ and ‘x is a surgeon’? Sometimes. As sentence 15 shows,
sometimeswedonot need to distinguish between skilled surgeons andother surgeons.
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Must we always distinguish between different ways of being skilled, good, bad, or
big? No. As the argument about Billy shows, sometimes we only need to talk about
one kind of skill. If you are symbolizing an argument that is just about dogs, it is fine to
define a predicate thatmeans ‘x is big.’ If the domain includes dogs andmice, however,
it is probably best to make the predicate mean ‘x is big for a dog.’

Practice exercises
A.Here are the syllogistic figures identified by Aristotle and his successors, along with
their medieval names:

• Barbara. All G are F. All H are G. So: All H are F
• Celarent. No G are F. All H are G. So: No H are F
• Ferio. No G are F. Some H is G. So: Some H is not F
• Darii. All G are F. Some H is G. So: Some H is F.
• Camestres. All F are G. No H are G. So: No H are F.
• Cesare. No F are G. All H are G. So: No H are F.
• Baroko. All F are G. Some H is not G. So: Some H is not F.
• Festino. No F are G. Some H are G. So: Some H is not F.
• Datisi. All G are F. Some G is H. So: Some H is F.
• Disamis. Some G is F. All G are H. So: Some H is F.
• Ferison. No G are F. Some G is H. So: Some H is not F.
• Bokardo. Some G is not F. All G are H. So: Some H is not F.
• Camenes. All F are G. No G are H So: No H is F.
• Dimaris. Some F is G. All G are H. So: Some H is F.
• Fresison. No F are G. Some G is H. So: Some H is not F.

Symbolize each argument in PL.

B. Using the following symbolization key:

domain: people
Kx : x knows the combination to the safe
Sx : x is a spy
V x : x is a vegetarian
h: Hofthor
i : Ingmar

symbolize the following sentences in PL:

1. Neither Hofthor nor Ingmar is a vegetarian.
2. No spy knows the combination to the safe.
3. No one knows the combination to the safe unless Ingmar does.
4. Hofthor is a spy, but no vegetarian is a spy.

C. Using this symbolization key:
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domain: all animals
Ax : x is an alligator.
Mx : x is a monkey.
Rx : x is a reptile.
Zx : x lives at the zoo.
a: Amos
b : Bouncer
c : Cleo

symbolize each of the following sentences in PL:

1. Amos, Bouncer, and Cleo all live at the zoo.
2. Bouncer is a reptile, but not an alligator.
3. Some reptile lives at the zoo.
4. Every alligator is a reptile.
5. Any animal that lives at the zoo is either a monkey or an alligator.
6. There are reptiles which are not alligators.
7. If any animal is an reptile, then Amos is.
8. If any animal is an alligator, then it is a reptile.

D. For each argument, write a symbolization key and symbolize the argument in PL.

1. Willard is a logician. All logicians wear funny hats. So Willard wears a funny
hat

2. Nothing on my desk escapes my attention. There is a computer on my desk. As
such, there is a computer that does not escape my attention.

3. Allmydreams are black andwhite. OldTV shows are in black andwhite. There-
fore, some of my dreams are old TV shows.

4. Neither Holmes nor Watson has been to Australia. A person could see a kan-
garoo only if they had been to Australia or to a zoo. Although Watson has not
seen a kangaroo, Holmes has. Therefore, Holmes has been to a zoo.

5. No one expects the Spanish Inquisition. No one knows the troubles I’ve seen.
Therefore, anyone who expects the Spanish Inquisition knows the troubles I’ve
seen.

6. All babies are illogical. Nobody who is illogical can manage a crocodile.
Berthold is a baby. Therefore, Berthold is unable to manage a crocodile.



23 | Multiple generality

So far, we have only considered sentences that require one-place predicates and one
quantifier. The full power of PL really comes out when we start to use many-place
predicates and multiple quantifiers.

23.1 Many-placed predicates

All of the predicates that we have considered so far concern properties that objects
might have. Those predicates have one gap in them, and tomake a sentence, we simply
need to slot in one term. They are one-place predicates.

However, other predicates concern the relation between two things. Here are some
examples of relational predicates in English:

loves
is to the left of
is in debt to

These are two-place predicates. They need to be filled in with two terms in order to
make a sentence. Conversely, if we start with an English sentence containing many
singular terms, we can remove two singular terms, to obtain different two-place pred-
icates. Consider the sentence ‘Vinnie borrowed the family car from Nunzio’. By delet-
ing two singular terms, we can obtain any of three different two-place predicates

Vinnie borrowed from
borrowed the family car from
borrowed from Nunzio

and by removing all three singular terms, we obtain a three-place predicate:

borrowed from

Indeed, there is no in principle upper limit on the number of places that our predicates
may contain.

Now there is a little foible with the above. We have used the same symbol, ‘ ’,
to indicate a gap formed by deleting a term from a sentence. However (as Frege em-
phasized), these are different gaps. To obtain a sentence, we can fill them in with the
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same term, but we can equally fill them in with different terms, and in various dif-
ferent orders. The following are all perfectly good sentences, and they all mean very
different things:

Karl loves Karl
Karl loves Imre
Imre loves Karl
Imre loves Imre

The point is that we need to keep track of the gaps in predicates, so that we can keep
track of how we are filling them in.

To keep track of the gaps, we will label them. The labelling conventions we will
adopt are best explained by example. Suppose we want to symbolize the following
sentences:

1. Karl loves Imre.
2. Imre loves himself.
3. Karl loves Imre, but not vice versa.
4. Karl is loved by Imre.

We will start with the following representation key:

domain: people
i : Imre
k : Karl

Lxy : x loves y

Sentence 1 will now be symbolized by ‘Lki ’.
Sentence 2 can be paraphrased as ‘Imre loves Imre’. It can now be symbolized by

‘Lii ’.
Sentence 3 is a conjunction. We might paraphrase it as ‘Karl loves Imre, and Imre

does not love Karl’. It can now be symbolized by ‘Lki ∧ ¬Lik ’.
Sentence 4might be paraphrased by ‘Imre loves Karl’. It can then be symbolized by

‘Lik ’. Of course, this slurs over the difference in tone between the active and passive
voice; such nuances are lost in PL.

This last example, though, highlights something important. Suppose we add to
our symbolization key the following:

Mxy : y loves x

Here, we have used the same English word (‘loves’) as we used in our symbolization
key for ‘Lxy ’. However, we have swapped the order of the gaps around (look closely
at those little subscripts!) So ‘Mki ’ and ‘Lik ’ now both symbolize ‘Imre loves Karl’.
‘Mik ’ and ‘Lki ’ now both symbolize ‘Karl loves Imre’. Since love can be unrequited,
these are very different claims.

The moral is simple. When we are dealing with predicates with more than one
place, we need to pay careful attention to the order of the places.
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23.2 The order of quantifiers

Consider the sentence ‘everyone loves someone’. This is potentially ambiguous. It
might mean either of the following:

5. For every person x, there is some person that x loves
6. There is some particular person whom every person loves

Sentence 5 can be symbolized by ‘∀x∃y Lxy ’, and would be true of a love-triangle. For
example, suppose that our domain of discourse is restricted to Imre, Juan and Karl.
Suppose also that Karl loves Imre but not Juan, that Imre loves Juan but not Karl, and
that Juan loves Karl but not Imre. Then sentence 5 is true.

Sentence 6 is symbolized by ‘∃y∀x Lxy ’. Sentence 6 is not true in the situation just
described. Again, suppose that our domain of discourse is restricted to Imre, Juan and
Karl. This requires that all of Juan, Imre and Karl converge on (at least) one object of
love.

The point of the example is to illustrate that the order of the quantifiers matters a
great deal. Indeed, to switch them around is called a quantifier shift fallacy. Here is an
example, which comes up in various forms throughout the philosophical literature:

For every person, there is some truth they cannot know. (∀∃)
.˙. There is some truth that no person can know. (∃∀)

This argument form is obviously invalid. It’s just as bad as:1

Every dog has its day. (∀∃)
.˙. There is a day for all the dogs. (∃∀)

The order of quantifiers is also important in definitions in mathematics. For in-
stance, there is a big difference between pointwise and uniform continuity of func-
tions:

◃ A function f is pointwise continuous if

∀ϵ∀x∀y∃δ(��x − y �� < δ → ��f (x) − f (y)�� < ϵ)
◃ A function f is uniformly continuous if

∀ϵ∃δ∀x∀y(��x − y �� < δ → ��f (x) − f (y)�� < ϵ)
The moral is: take great care with the order of quantification.

1 Thanks to Rob Trueman for the example.
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23.3 Stepping-stones to symbolization

Once we have the possibility of multiple quantifiers and many-place predicates, rep-
resentation in PL can quickly start to become a bit tricky. When you are trying to
symbolize a complex sentence, we recommend laying down several stepping stones.
As usual, this idea is best illustrated by example. Consider this representation key:

domain: people and dogs
Dx : x is a dog
Fxy : x is a friend of y

Oxy : x owns y

g : Geraldo

Now let’s try to symbolize these sentences:

7. Geraldo is a dog owner.
8. Someone is a dog owner.
9. All of Geraldo’s friends are dog owners.

10. Every dog owner is a friend of a dog owner.
11. Every dog owner’s friend owns a dog of a friend.

Sentence 7 can be paraphrased as, ‘There is a dog that Geraldo owns’. This can be
symbolized by ‘∃x(Dx ∧Ogx)’.

Sentence 8 can be paraphrased as, ‘There is some y such that y is a dog owner’.
Dealing with part of this, wemight write ‘∃y(y is a dog owner)’. Now the fragment we
have left as ‘y is a dog owner’ is much like sentence 7, except that it is not specifically
about Geraldo. So we can symbolize sentence 8 by:

∃y∃x(Dx ∧Oyx)
We should pause to clarify something here. In working out how to symbolize the last
sentence, we wrote down ‘∃y(y is a dog owner)’. To be very clear: this is neither an PL
sentence nor an English sentence: it uses bits of PL (‘∃’, ‘y ’) and bits of English (‘dog
owner’). It is really is just a stepping-stone on the way to symbolizing the entire English
sentence with a PL sentence. You should regard it as a bit of rough-working-out, on a
par with the doodles that youmight absent-mindedly draw in themargin of this book,
whilst you are concentrating fiercely on some problem.

Sentence 9 can be paraphrased as, ‘Everyone who is a friend of Geraldo is a dog
owner’. Using our stepping-stone tactic, we might write

∀x [Fxg → x is a dog owner
]

Now the fragment that we have left to deal with, ‘x is a dog owner’, is structurally just
like sentence 7. However, it would be a mistake for us simply to write

∀x [Fxg → ∃x(Dx ∧Oxx)]
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for we would here have a clash of variables. The scope of the universal quantifier, ‘∀x ’,
is the entire conditional, so the ‘x ’ in ‘Dx ’ should be governed by that, but ‘Dx ’ also
falls under the scope of the existential quantifier ‘∃x ’, so the ‘x ’ in ‘Dx ’ should be gov-
erned by that. Now confusion reigns: which ‘x ’ are we talking about? Suddenly the
sentence becomes ambiguous (if it is even meaningful at all), and logicians hate am-
biguity. The broad moral is that a single variable cannot serve two quantifier-masters
simultaneously.

To continue our symbolization, then, we must choose some different variable for
our existential quantifier. What we want is something like:

∀x [Fxg → ∃z(Dz ∧Oxz)]
This adequately symbolizes sentence 9.

Sentence 10 can be paraphrased as ‘For any x that is a dog owner, there is a dog
owner who x is a friend of ’. Using our stepping-stone tactic, this becomes

∀x [x is a dog owner → ∃y(y is a dog owner ∧ Fxy)
]

Completing the symbolization, we end up with

∀x [∃z(Dz ∧Oxz) → ∃y (∃z(Dz ∧Oyz) ∧ Fxy ) ]
Note that we have used the same letter, ‘z ’, in both the antecedent and the consequent
of the conditional, but that these are governed by two different quantifiers. This is ok:
there is no clash here, because it is clear which quantifier that variable falls under. We
might graphically represent the scope of the quantifiers thus:

scope of ‘∀x ’︷                                                            ︸︸                                                            ︷
∀x [ scope of 1st ‘∃z ’︷            ︸︸            ︷

∃z(Dz ∧Oxz) →

scope of ‘∃y ’︷                             ︸︸                             ︷
∃y(

scope of 2nd ‘∃z ’︷            ︸︸            ︷
∃z(Dz ∧Oyz)∧Fxy)]

This shows that no variable is being forced to serve two masters simultaneously.
Sentence 11 is the trickiest yet. First we paraphrase it as ‘For any x that is a friend

of a dog owner, x owns a dog which is also owned by a friend of x ’. Using our stepping-
stone tactic, this becomes:

∀x [x is a friend of a dog owner →
x owns a dog which is owned by a friend of x

]
Breaking this down a bit more:

∀x [∃y(Fxy ∧ y is a dog owner) →
∃y(Dy ∧Oxy ∧ y is owned by a friend of x)

]
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And a bit more:

∀x [∃y(Fxy ∧ ∃z(Dz ∧Oyz)) →
∃y(Dy ∧Oxy ∧ ∃z(F zx ∧Ozy))]

And we are done!

23.4 Supressed quantifiers

Logic can often help to get clear on the meanings of English claims, especially where
the quantifiers are left implicit or their order is ambiguous or unclear. The clarity of
expression and thinking afforded by PL can give you a significant advantage in ar-
gument, as can be seen in the following takedown by British political philosopher
Mary Astell (1666–1731) of her contemporary, the theologian William Nicholls. In
Discourse IV: The Duty of Wives to their Husbands of his The Duty of Inferiors to-
wards their Superiors, in Five Practical Discourses (London 1701), Nicholls argued that
women are naturally inferior to men. In the preface to the 3rd edition of her treatise
Some Reflections upon Marriage, Occasion’d by the Duke and Duchess of Mazarine’s
Case; which is also considered, Astell responded as follows:

’Tis true, thro’ Want of Learning, and of that Superior Genius which
Men as Men lay claim to, she [Astell] was ignorant of the Natural In-
feriority of our Sex, which our Masters lay down as a Self-Evident and
Fundamental Truth. She saw nothing in the Reason of Things, to make
this either a Principle or a Conclusion, but much to the contrary; it being
Sedition at least, if not Treason to assert it in this Reign.

For if by the Natural Superiority of their Sex, they mean that every
Man is by Nature superior to every Woman, which is the obvious mean-
ing, and that which must be stuck to if they would speak Sense, it wou’d
be a Sin in any Woman to have Dominion over any Man, and the great-
est Queen ought not to command but to obey her Footman, because no
Municipal Laws can supersede or change the Law of Nature; so that if the
Dominion of the Men be such, the Salique Law,2 as unjust as English Men
have ever thought it, ought to take place over all the Earth, and the most
glorious Reigns in the English, Danish, Castilian, and other Annals, were
wicked Violations of the Law of Nature!

If they mean that some Men are superior to some Women this is no
great Discovery; had they turn’d the Tables they might have seen that
some Women are Superior to some Men. Or had they been pleased to
remember their Oaths of Allegiance and Supremacy, they might have
known that One Woman is superior to All the Men in these Nations, or

2 The Salique law was the common law of France which prohibited the crown be passed on to female
heirs.
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else they have sworn to very little purpose.3 And it must not be suppos’d,
that their Reason and Religion wou’d suffer them to take Oaths, contrary
to the Laws of Nature and Reason of things.4

We can symbolize the different interpretations Astell offers of Nicholls’ claim thatmen
are superior to women: He either meant that every man is superior to every woman,
i.e.,

∀x(Mx → ∀y(W y → Sxy))

or that some men are superior to some women,

∃x(Mx ∧ ∃y(W y ∧ Sxy)).

The latter is true, but so is

∃y(W y ∧ ∃x(Mx ∧ S yx)).
(some women are superior to some men), so that would be “no great discovery.” In
fact, since the Queen is superior to all her subjects, it’s even true that some woman is
superior to every man, i.e.,

∃y(W y ∧ ∀x(Mx → S yx)).

But this is incompatible with the “obvious meaning” of Nicholls’ claim, i.e., the first
reading. So what Nicholls claims amounts to treason against the Queen!

Practice exercises
A. Using this symbolization key:

domain: all animals
Ax : x is an alligator
Mx : x is a monkey
Rx : x is a reptile
Zx : x lives at the zoo
Lxy : x loves y

a: Amos
b : Bouncer
c : Cleo

symbolize each of the following sentences in PL:

1. If Cleo loves Bouncer, then Bouncer is a monkey.
2. If both Bouncer and Cleo are alligators, then Amos loves them both.

3 In 1706, England was ruled by Queen Anne.
4 Mary Astell, Reflections upon Marriage, 1706 Preface, iii–iv, and Mary Astell, Political Writings, ed.

Patricia Springborg, Cambridge University Press, 1996, 9–10.
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3. Cleo loves a reptile.
4. Bouncer loves all the monkeys that live at the zoo.
5. All the monkeys that Amos loves love him back.
6. Every monkey that Cleo loves is also loved by Amos.
7. There is a monkey that loves Bouncer, but sadly Bouncer does not reciprocate

this love.

B. Using the following symbolization key:

domain: all animals
Dx : x is a dog
Sx : x likes samurai movies
Lxy : x is larger than y

r : Rave
h: Shane
d : Daisy

symbolize the following sentences in PL:

1. Rave is a dog who likes samurai movies.
2. Rave, Shane, and Daisy are all dogs.
3. Shane is larger than Rave, and Daisy is larger than Shane.
4. All dogs like samurai movies.
5. Only dogs like samurai movies.
6. There is a dog that is larger than Shane.
7. If there is a dog larger than Daisy, then there is a dog larger than Shane.
8. No animal that likes samurai movies is larger than Shane.
9. No dog is larger than Daisy.

10. Any animal that dislikes samurai movies is larger than Rave.
11. There is an animal that is between Rave and Shane in size.
12. There is no dog that is between Rave and Shane in size.
13. No dog is larger than itself.
14. Every dog is larger than some dog.
15. There is an animal that is smaller than every dog.
16. If there is an animal that is larger than any dog, then that animal does not like

samurai movies.

C. Using the symbolization key given, symbolize each English-language sentence into
PL.

domain: candies
Cx : x has chocolate in it.
Mx : x has marzipan in it.
Sx : x has sugar in it.
T x : Boris has tried x .
Bxy : x is better than y .
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1. Boris has never tried any candy.
2. Marzipan is always made with sugar.
3. Some candy is sugar-free.
4. The very best candy is chocolate.
5. No candy is better than itself.
6. Boris has never tried sugar-free chocolate.
7. Boris has tried marzipan and chocolate, but never together.
8. Any candy with chocolate is better than any candy without it.
9. Any candywith chocolate andmarzipan is better than any candy that lacks both.

D. Using the following symbolization key:

domain: people and dishes at a potluck
Rx : x has run out.
T x : x is on the table.
Fx : x is food.
P x : x is a person.
Lxy : x likes y .
e : Eli
f : Francesca
g : the guacamole

symbolize the following English sentences in PL:

1. All the food is on the table.
2. If the guacamole has not run out, then it is on the table.
3. Everyone likes the guacamole.
4. If anyone likes the guacamole, then Eli does.
5. Francesca only likes the dishes that have run out.
6. Francesca likes no one, and no one likes Francesca.
7. Eli likes anyone who likes the guacamole.
8. Eli likes anyone who likes the people that he likes.
9. If there is a person on the table already, then all of the food must have run out.

E. Using the following symbolization key:

domain: people
Dx : x dances ballet.
Fx : x is female.
Mx : x is male.
Cxy : x is a child of y .
Sxy : x is a sibling of y .
e : Elmer
j : Jane
p : Patrick

symbolize the following sentences in PL:



23.4. SUPRESSED QUANTIFIERS 149

1. All of Patrick’s children are ballet dancers.
2. Jane is Patrick’s daughter.
3. Patrick has a daughter.
4. Jane is an only child.
5. All of Patrick’s sons dance ballet.
6. Patrick has no sons.
7. Jane is Elmer’s niece.
8. Patrick is Elmer’s brother.
9. Patrick’s brothers have no children.

10. Jane is an aunt.
11. Everyone who dances ballet has a brother who also dances ballet.
12. Every woman who dances ballet is the child of someone who dances ballet.



24 | Sentences of PL

Weknowhow to represent English sentences in PL.The time has finally come to define
the notion of a sentence of PL.

24.1 Expressions

There are six kinds of symbols in PL:

Predicates For every n > 0, n-place predicates, A,B,C, . . . ,Z , or with subscripts, as
needed: A1,B1,Z1,A2,A25, J375, . . .

Names a, b, c, . . . , t,u,v , or with subscripts, as needed a1, b224,h7,u32, . . .

Variables w, x, y, z , or with subscripts, as neededw1, x1, y1, z1,w2, . . .

Connectives ¬,∧,∨,→,↔

Brackets ( , )

Quantifiers ∀,∃

Wedefine an expression of pl as any string of symbols of PL. Take any of the symbols
of PL and write them down, in any order, and you have an expression.

24.2 Sentences

We start by defining the notion of a term.

A term is any name or any variable.

So, here are some terms:

a, b, x, x1x2, y, y254, z

Next we need to define atomic sentences.

150
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1. Any sentence letter is an atomic sentence.

2. If R is an n-place predicate and t1, t2, . . . , tn are n terms, then
Rt1t2 . . . tn is an atomic sentence.

3. Nothing else is an atomic sentence.

Note that the sentence letters also sentences of PL. In fact, clause (1) is not, strictly
speaking, necessary. For wemay understand sentence letters as 0-place predicates. An
n-place predicate must be followed by n terms in order to form an atomic sentence;
so, if ‘A’ is a 0-place predicate, then it must be followed by no terms in order to form
an atomic sentence. So ‘A’ is an atomic sentence. So every atomic sentence of SL is
also an atomic sentence of of PL.

The use of script letters here follows the conventions laid down in §7. So, ‘R’ is
not itself a predicate of PL. Rather, it is a symbol of our metalanguage (augmented
English) that we use to talk about any predicate of PL. Similarly, ‘t1’ is not a term of
PL, but a symbol of the metalanguage that we can use to talk about any term of PL.
So, where ‘D ’ is a zero-place predicate, ‘F ’ is a one-place predicate, ‘G ’ is a three-place
predicate, and ‘S ’ is a six-place predicate, here are some atomic sentences:

D
Fx
Fa
Gxay

Sby254zaaz

Once we know what atomic sentences are, we can offer recursion clauses to define
arbitrary sentences. The first few clauses are exactly the same as for SL.

1. Every atomic sentence is a sentence.

2. If A is a sentence, then ¬A is a sentence.

3. If Aand B are sentences, then (A∧ B) is a sentence.

4. If Aand B are sentences, then (A∨ B) is a sentence.

5. If Aand B are sentences, then (A→ B) is a sentence.

6. If Aand B are sentences, then (A↔ B) is a sentence.

7. If A is a sentence and x is a variable, then ∀xA is a sentence.

8. If A is a sentence and x is a variable, then ∃xA is a sentence.

9. Nothing else is a sentence.
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So, assuming again that ‘F ’ is a one-place predicate, ‘G ’ is a three-place predicate
and ‘H ’ is a six place-predicate, here are some sentences:

Fx
Gayz
S yzyayx

(Gayz → S yzyayx)
∀z(Gayz → S yzyayx)

Fx ↔ ∀z(Gayz → S yzyayx)
∃y(Fx ↔ ∀z(Gayz → S yzyayx))

∀x∃y(Fx ↔ ∀z(Gayz → S yzyayx))

We can now give a formal definition of scope, which incorporates the definition of
the scope of a quantifier. Here we follow the case of SL, though we note that a logical
operator can be either a connective or a quantifier:

The main operator in a sentence is the operator that was introduced last,
when that sentence was constructed using the rules for sentences.

The scope of an operator (in a sentence) is the sub-sentence for which that
operator is the main operator.

So we can graphically illustrate the scope of the quantifiers in the preceding ex-
ample thus:

scope of ‘∀x ’︷                                              ︸︸                                              ︷
∀x

scope of ‘∃y ’︷                                        ︸︸                                        ︷
∃y (Fx ↔

scope of ‘∀z ’︷                         ︸︸                         ︷
∀z (Gayz → S yzyayx))

Associated with each quantifier in a sentence is a variable. For instance, in the
sentence ‘∀x F x ’, the variable ‘x ’ is associated with the universal quantifier ‘∀’. For this
reason, let’s call ‘∀x ’ an x-quantifier. Likewise, in the sentence ‘∃w (Gw → Hwa)’,
the variable ‘w ’ is associated with the existential quantifier ‘∃’. So we’ll call ‘∃w ’ a
w-quantifier.

If a variable,x, falls within the scope of anx-quantifier, then we will say that that
variable is bound. If a variable, x, does not fall within the scope of any x-quantifier,
then we will will say that that variable is free.

A bound variable is an occurrence of a variablex that is within the scope of
either ∀x or ∃x.

A free variable is any occurrence of a variable that is not bound.
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For example, in the sentence ‘Fx ’, ‘x ’ is free. In the sentence ‘∀x∀yF xy ’, both ‘x ’
and ‘y ’ are bound. In ‘∀xP x → Qx ’, the ‘x ’ in ‘P x ’ is bound, whereas the ‘x ’ in ‘Qx ’ is
free. Or consider the sentence

∀x(Ex ∨Dy) → ∃z(Ex → Lzx)

The scope of the universal quantifier ‘∀x ’ is ‘∀x(Ex ∨Dy)’, so the first ‘x ’ after ‘∀x ’ is
bound by the universal quantifier. However, the second and third occurrences of ‘x ’
after ‘∀x ’ are free. Similarly, the ‘y ’ is free. The scope of the existential quantifier ‘∃z ’
is ‘∃z (Ex → Lzx)’, so the ‘z ’ in ‘Lzx ’ is bound.

What about the variable which immediately follows the quantifier? For instance,
in the sentence ‘∀x J x ’, there are two occurrences of ‘x ’. The second one is bound—
but what about the first? It doesn’t much matter what we say about this variable, but
it follows from our definition above that it is will also count as bound (for it occurs
within the scope of ‘∀x ’). Still, since these occurrences of the variable are part of the
quantifiers, itmakesmore sense to think of themas the variableswhich do the binding,
rather than those which end up being bound.

A single bound variable, x, may fall within the scope of multiple x-quantifiers.
For instance, consider the sentence

∀w (∃y Lwy → ∃w Aw)
Thefinal ‘w ’ (in ‘Aw ’) both occurswithin the scope of the universal quantifier ‘∀w ’ and
within the scope of the existential quantifier ‘∃w ’. This occurrence of ‘w ’ is bound—
but which quantifier binds it? We will say that it is bound by the existential quantifier.
To see why, think about how we would build the sentence up according to the rules
for sentences. First, we would show that ‘Aw ’ was a sentence (because it’s a atomic
sentence). In this sentence, the variable ‘w ’ appears free. Next, we would appeal to
the rules for quantifiers to establish that ‘∃w Aw ’ is a sentence. In this sentence, the
variable w is bound. So adding the quantifier ∃w changed the w in ‘Aw ’ from free
to bound. For this reason, we will say that the existential quantifier ‘∃w ’ binds thew
in ‘Aw ’. In general, in order to see which variables a quantifier binds, consider the
sub-sentence for which that quantifier is the main operator: ‘∀xA’ or ‘∃xA’. Then,
remove the quantifier from this sub-sentence, leaving behind just the sub-sentence
‘A’. If an occurrence of x appears free in ‘A’, then this occurrence is bound by the
quantifier.

In a PL sentence of the form ∀xA, the quantifier ∀x binds every free occur-
rence ofx inA. If an occurrence ofx inAis already bound, then the quantifier
∀x does not bind it.

Similarly,

In a PL sentence of the form ∃xA, the quantifier ∃x binds every free occur-
rence ofx inA. If an occurrence ofx inAis already bound, then the quantifier
∃x does not bind it.
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Finally: if a sentence of PL contains an a free variable, then we say that that sen-
tence is open. And, if a sentence of PL contains no free variables, then we say that that
sentence is closed.

When we turn to the semantics of PL in part VI, we’ll see that the free variables
in an open sentence function as names. However, conceptually, we will want to keep
names and variables separate. So, when translating from English to PL, we should
avoid open sentences. Open sentences contain variables masquerading as names—
better to be up front and just use names. So, instead of translating ‘Adam loves himself ’
with ‘Lxx ’, you should instead translate it with ‘Laa’—even though, technically, the
first expression is a sentence of PL, and it could even be synonymous with the second.
(Some texts introduce more complicated rules for when expressions are grammatical
sentences with the aim of getting open sentences to come out as ungrammatical. Here,
I’ve opted for a simpler syntax. This simpler syntax counts ‘Fx ’ as grammatical, but
this is harmless, as this sentence will end up being perfectly meaningful—the free ‘x ’
will refer to something, just as a name would. However, we will avoid confusion by
resolving to always translate names from English with the names of PL.)

24.3 Parentheses conventions
We will adopt the same notational conventions governing parentheses that we did for
SL (see §6 and §10.3.)

First, we may omit the outermost parentheses of a formula.
Second, we may use square parentheses, ‘[’ and ‘]’, in place of parentheses to in-

crease the readability of formulas.

Practice exercises
A. Identify which variables are bound and which are free.

1. ∃x Lx, y ∧ ∀y Lyx
2. ∀x Ax ∧ Bx
3. ∀x(Ax ∧ Bx) ∧ ∀y(Cx ∧Dy)
4. ∀x∃y [Rxy → ( J z ∧ Kx)] ∨Ryx
5. ∀x1(Mx2 ↔ Lx2x1) ∧ ∃x2 Lx3x2



PART VI

Semantics for
Predicate Logic
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25 | Extensionality

Recall that SL is a truth-functional language. Its operators are all truth-functional,
and all that we can do with SL is key sentences to particular truth values. We can do
this directly. For example, we might stipulate that the SL sentence ‘P ’ is to be true.
Alternatively, we can do this indirectly, offering a symbolization key, e.g.:

P : Big Ben is in London

Now recall from §9 that this should be taken to mean:

• The SL sentence ‘P ’ is to take the same truth value as the English sentence ‘Big
Ben is in London’ (whatever that truth value may be)

The point that we emphasized is that SL cannot handle differences in meaning that go
beyond mere differences in truth value.

25.1 Symbolizing versus translating

PL has some similar limitations, but it goes beyond mere truth values, since it enables
us to split up sentences into terms, predicates and quantifier expressions. This enables
us to consider what is true of some particular object, or of some or all objects. But we
can do no more than that.

When we provide a symbolization key for some PL predicates, such as:

Cx : x teaches Logic III in Calgary

we do not carry the meaning of the English predicate across into our PL predicate. We
are simply stipulating something like the following:

• ‘Cx ’ and ‘ x teaches Logic III in Calgary’ are to be true of exactly the same
things.

So, in particular:

• ‘Cx ’ is to be true of all and only those things which teach Logic III in Calgary
(whatever those things might be).
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This is an indirect stipulation. Alternatively, we can directly stipulate which objects
a predicate should be true of. For example, we can stipulate that ‘Cx ’ is to be true of
Richard Zach, and Richard Zach alone. As it happens, this direct stipulation would
have the same effect as the indirect stipulation. Note, however, that the English pred-
icates ‘ is Richard Zach’ and ‘ teaches Logic III in Calgary’ have very dif-
ferent meanings!

The point is that PL does not give us any resources for dealing with nuances of
meaning. When we interpret PL, all we are considering is what the predicates are true
of, regardless of whether we specify these things directly or indirectly. The things a
predicate is true of are known as the extension of that predicate. We say that PL
is an extensional language because PL does not represent differences of meaning
between predicates that have the same extension.

For this reason, we say only that PL sentences symbolize English sentences. It
is doubtful that we are translating English into PL, as translations should preserve
meanings, and not just extensions.

25.2 A word on extensions
We can stipulate directly what predicates are to be true of, so it is worth noting that
our stipulations can be as arbitrary as we like. For example, we could stipulate that
‘H x ’ should be true of, and only of, the following objects:

Justin Trudeau
the number π

every top-F key on every piano ever made

Now, the objects that we have listed have nothing particularly in common. But this
doesn’t matter. Logic doesn’t care about what strikes us mere humans as ‘natural’ or
‘similar’. Armed with this interpretation of ‘H x ’, suppose we now add to our symbol-
ization key:

j : Justin Trudeau
r : Rachel Notley
p : the number π

Then ‘H j ’ and ‘H p ’ will both be true, on this interpretation, but ‘H r ’ will be false,
since Rachel Notley was not among the stipulated objects.

25.3 Many-place predicates
All of this is quite easy to understand when it comes to one-place predicates, but it
gets messier when we consider two-place predicates. Consider a symbolization key
like:

Lxy : x loves y
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Given what we said above, this symbolization key should be read as saying:

• ‘Lxy ’ and ‘ x loves y ’ are to be true of exactly the same things

So, in particular:

• ‘Lxy ’ is to be true of x and y (in that order) iff x loves y.

It is important that we insist upon the order here, since love—famously—is not always
reciprocated. (Note that ‘x ’ and ‘y ’ on the right here are symbols of augmented English,
and that they are being used. By contrast, ‘x ’ and ‘y ’ in ‘Lxy ’ are symbols of PL, and
they are being mentioned.)

That is an indirect stipulation. What about a direct stipulation? This is slightly
harder. If we simply list objects that fall under ‘Lxy ’, we will not know whether they
are the lover or the beloved (or both). We have to find a way to include the order in
our explicit stipulation.

To do this, we can specify that two-place predicates are true of pairs of objects,
where the order of the pair is important. Thus we might stipulate that ‘Bxy ’ is to be
true of, and only of, the following pairs of objects:

⟨Lenin, Marx⟩
⟨Heidegger, Sartre⟩
⟨Sartre, Heidegger⟩

Here the angle-brackets keep us informed concerning order. Suppose we now add the
following stipulations:

l : Lenin
m: Marx
h: Heidegger
r : Sartre

Then ‘Blm’ will be true, since ⟨Lenin, Marx⟩ was in our explicit list, but ‘Bml ’ will be
false, since ⟨Marx, Lenin⟩ was not in our list. However, both ‘Bhr ’ and ‘Brh’ will be
true, since both ⟨Heidegger, Sartre⟩ and ⟨Sartre, Heidegger⟩ are in our explicit list.

Tomake these ideasmore precise, we would need to develop some set theory. That
would give us some precise tools for dealing with extensions and with ordered pairs
(and ordered triples, etc.). However, set theory is not covered in this book, so we will
leave these ideas at an imprecise level. Nevertheless, the general idea should be clear.

25.4 Interpretation
Wedefined avaluation in SL as any assignment of truth and falsity to sentence letters.
In PL, we are going to define an interpretation as consisting of four things:

• the specification of a domain
• for each sentence letter we care to consider, a truth value
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• for each name or free variable that we care to consider, an assignment of exactly
one object within the domain

• for each predicate that we care to consider, a specification of what things (in
what order) the predicate is to be true of

The symbolization keys that we considered in Part V consequently give us one very
convenient way to present an interpretation. Wewill continue to use them throughout
this chapter. However, it is sometimes also convenient to present an interpretation
diagrammatically.

Suppose we want to consider just a single two-place predicate, ‘Rxy ’. Then we can
represent it just by drawing an arrow between two objects, and stipulate that ‘Rxy ’ is
to hold of x and y just in case there is an arrow running from x to y in our diagram.
As an example, we might offer:

1 2

34

This would be suitable to characterize an interpretation whose domain is the first four
positive whole numbers, and which interprets ‘Rxy ’ as being true of and only of:

⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 4⟩, ⟨4, 1⟩, ⟨1, 3⟩

Equally we might offer:

1 2

34

for an interpretation with the same domain, which interprets ‘Rxy ’ as being true of
and only of:

⟨1, 3⟩, ⟨3, 1⟩, ⟨3, 4⟩, ⟨1, 1⟩, ⟨3, 3⟩

If we wanted, we could make our diagrams more complex. For example, we could
add names as labels for particular objects. Equally, to symbolize the extension of a
one-place predicate, we might simply draw a ring around some particular objects and
stipulate that the thus encircled objects (and only them) are to fall under the predicate
‘H x ’, say.
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Weknowwhat interpretations are. Since, among other things, they tell us which pred-
icates are true of which objects, they will provide us with an account of the truth of
atomic sentences. However, we must also present a detailed account of what it is for
an arbitrary PL sentence to be true or false in an interpretation.

We know from §24 that there are three kinds of sentence in PL:

• atomic sentences
• sentences whose main operator is a sentential operator
• sentences whose main operator is a quantifier

We need to explain truth for all three kinds of sentence.
We will provide a completely general explanation in this section. However, to try

to keep the explanation comprehensible, we will, at several points, use the following
interpretation:

domain: all people born before 2000ce
a: Aristotle
b : Beyoncé

P x : x is a philosopher
Rxy : x was born before y

This will be our go-to example in what follows.

26.1 Atomic sentences

The truth of atomic sentences should be fairly straightforward. For sentence letters,
the interpretation specifies if it is true or false. The sentence ‘P a’ should be true just
in case ‘P x ’ is true of ‘a’. Given our go-to interpretation, this is true iff Aristotle is a
philosopher. Aristotle is a philosopher. So the sentence is true. Equally, ‘Pb ’ is false
on our go-to interpretation.

Likewise, on this interpretation, ‘Rab ’ is true iff the object named by ‘a’ was born
before the object named by ‘b ’. Well, Aristotle was born before Beyoncé. So ‘Rab ’ is
true. Equally, ‘Raa’ is false: Aristotle was not born before Aristotle.

Dealingwith atomic sentences, then, is very intuitive. WhenR is an n-place pred-
icate and t1, t2, …, tn are n terms,
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Rt1t2 . . . tn is true in an interpretation iff
R is true of the objects named by t1, t2, …, tn in that interpretation (consid-
ered in that order)

26.2 Sentential operators

We saw in §24 that PL sentences can be built up from simpler ones using the truth-
functional operators that were familiar from SL. The rules governing these truth-
functional operators are exactly the same as they were when we considered SL. Here
they are:

A∧ B is true in an interpretation iff
both A is true and B is true in that interpretation

A∨ B is true in an interpretation iff
either A is true or B is true in that interpretation

¬A is true in an interpretation iff
A is false in that interpretation

A→ B is true in an interpretation iff
either A is false or B is true in that interpretation

A↔ B is true in an interpretation iff
Ahas the same truth value as B in that interpretation

This presents the very same information as the characteristic truth tables for the
operators; it just does so in a slightly different way. Some examples will probably help
to illustrate the idea. On our go-to interpretation:

• ‘P a’ is true
• ‘Rab ∧ Pb ’ is false because, although ‘Rab ’ is true, ‘Pb ’ is false
• ‘P a ∨ Pb ’ is true
• ‘Rba’ is false
• ‘P a ∧ ¬(Pb ∧Ra, b)’ is true, because ‘P a’ is true and ‘Pb ’ is false

Make sure you understand these examples.

26.3 When the main operator is a quantifier

Theexciting innovation in PL, though, is the use of quantifiers, but expressing the truth
conditions for quantified sentences is a bit more fiddly than one might first expect.

We want to be able to say that ‘∀x∃y Lxy ’ is true just in case ‘∃y Lxy ’ is true of ev-
erything in the domain. This is problematic, since our interpretation does not directly
specify what ‘∃y Lxy ’ is to be true of. Instead, whether or not this is true of something
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should follow just from the interpretation of ‘Lxy ’, the domain, and the meanings of
the quantifiers.

Here is a naïve thought. We might try to say that ‘∀x∃y Lxy ’ is to be true in an
interpretation iff ∃y Lay is true for every name a that we have included in our inter-
pretation. Similarly, we might try to say that ∃y Lay is true just in case Lab is true
for some name b that we have included in our interpretation.

Unfortunately, this is not right. To see this, observe that in our go-to interpreta-
tion, we have only given interpretations for two names, ‘a’ and ‘b ’, but the domain—all
people born before the year 2000ce—contains many more than two people. We have
no intention of trying to name all of them!

So here is another thought. (And this thought is not naïve, but correct.) Although
it is not the case that we have named everyone, each person could have been given a
name—in fact, every such person could have been named by the variable, ‘x ’. So we
should focus on this possibility of modifying our interpretation, by making x into a
name for someone in the domain. Wewill offer a few examples of how thismightwork,
centering on our go-to interpretation, and we will then present the formal definition.

In our go-to interpretation, ‘∃x Rbx ’ should be true. After all, in the domain, there
is certainly someone who was born after Beyoncé. Lady Gaga is one of those people.
Indeed, if we were tomodify our go-to interpretation—temporarily, mind—by having
‘x ’ refer to Lady Gaga, then ‘Rbx ’ would be true on this modified interpretation. And
this will suffice to make ‘∃x Rbx ’ true on the original go-to interpretation.

In our go-to interpretation, ‘∃x(P x ∧ Rxa)’ should also be true. After all, in the
domain, there is certainly someone whowas both a philosopher and born before Aris-
totle. Socrates is one such person. Indeed, if we were to modify our go-to interpre-
tation by letting ‘x ’ denote Socrates, then ‘P x ∧Rxa’ would be true on this modified
interpretation. Again, this will suffice to make ‘∃x(P x ∧ Rxa)’ true on the original
interpretation.

In our go-to interpretation, ‘∀x ∃y Rxy ’ should be false. After all, consider the
last person born in the year 1999. We don’t know who that was, but if we were to
modify our go-to interpretation by letting ‘x ’ denote that person, then we would not
be able to find anyone else in the domain to denote with ‘y ’ in such a way that ‘Rxy ’
would be true. Indeed, no matter whom we named with ‘y ’, ‘Rxy ’ would be false. This
observation is sufficient to make ‘∃y Rxy ’ false in our modified interpretation, which
in turn is sufficient to make ‘∀x∃y Rxy ’ false on the original interpretation.

If you have understood these three examples, good. That’s what matters. Strictly
speaking, though, we still need to give a precise definition of the truth conditions for
quantified sentences. The result, sadly, is a bit ugly, and requires a few new definitions.
Brace yourself!

Our interpretation will include a specification of which objects are in the domain.
If our interpretation is I, and d is some thing in the domain of I, then we can consider
the modified interpretation I[x→ d ] which is just like I except that, in it, xnames d .
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If I is an interpretation, d is an object in the domain of I, and x is a variable,
then themodified interpretation I[x→ d ] is an interpretation which is exactly
like I, except that the variable x names d .

So, for instance, if I is our go-to interpretation, then I[z → Socrates] is the inter-
pretation:

domain: all people born before 2000ce
a: Aristotle
b : Beyoncé
z : Socrates

P x : x is a philosopher
Rxy : x was born before y

Notice that ‘P z ’ is true in this (modified) interpretation. For this reason, we will say
that ‘∃z P z ’ is true in the original, go-to interpretation.

For another example, if I is our go-to interpretation, then I[x → Beyoncé] is the
interpretation:

domain: all people born before 2000ce
a: Aristotle
b : Beyoncé
x : Beyoncé

P x : x is a philosopher
Rxy : x was born before y

Notice that ‘P x ’ is false in this (modified) interpretation. For this reason, we will say
that ‘∀x P x ’ is false in the original, go-to interpretation.

More generally, we will say that a sentence of the form ∃xA is true in an inter-
pretation I if and only if, for some d in the domain of I, A is true in the modified
interpretation I[x→ d ], in which the variable x is a name for d .

∃xA is true in an interpretation I iff
A is true in the modified interpretation I[x→ d ], for some d in the domain.

Similarly, we will say that a sentence of the form ∀xA is true in an interpretation
I if and only if, for every d in the domain of I, A is true in the modified interpretation
I[x→ d ], in which the variable x is a name for d .

∀xA is true in an interpretation I iff
A is true in the modified interpretation I[x→ d ], for every d in the domain.

To be clear: all this is doing is formalizing (very pedantically) the intuitive idea
expressed on the previous page. The result is a bit ugly, and the final definition might
look a bit opaque. Hopefully, though, the spirit of the idea is clear.
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Note that all of the foregoing extends to sentences involving multiple quantifiers.
Consider, for instance, the sentence ‘∃x ∃y Rxy ’. To determine whether this is true,
we should see whether there is anything in the domain such that, when we allow ‘x ’ to
name that thing, ‘∃y Rxy ’ is true. There is. ‘∃y Rxy ’ says there is someone such that
x was born before them—or, in other words, that x was born before someone. If x is
a name for Socrates, then this will be true. So, consider the modified interpretation
I[x → Socrates]:

domain: all people born before 2000ce
a: Aristotle
b : Beyoncé
x : Socrates

P x : x is a philosopher
Rxy : x was born before y

In order to check that the sentence ‘∃y Rxy ’ is true in the interpretation I[x →
Socrates], we should consider whether there is anything in the domain such that, if
we allow y to name that thing, the sentence ‘Rxy ’ will be true. There is—just let y
name Lady Gaga. Since Socrates was born before Lady Gaga, ‘Rxy ’ will be true. That
is, consider the modified interpretation: I[x → Socrates , y → Lady Gaga]:

domain: all people born before 2000ce
a: Aristotle
b : Beyoncé
x : Socrates
y : Lady Gaga

P x : x is a philosopher
Rxy : x was born before y

Since Socrates was born before Lady Gaga, ‘Rxy ’ is true in the interpretation I[x →
Socrates , y → Lady Gaga]. So ‘∃y Rxy ’ is true in the interpretation I[x → Socrates].
So ‘∃x ∃y Rxy ’ is true in the go-too interpretation I.

Practice exercises

A. Consider the following interpretation:

• The domain comprises only Corwin and Benedict
• ‘Ax ’ is to be true of both Corwin and Benedict
• ‘Bx ’ is to be true of Benedict only
• ‘N x ’ is to be true of no one
• ‘c ’ is to refer to Corwin

Determine whether each of the following sentences is true or false in that interpreta-
tion:
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1. Bc
2. Ac ↔ ¬N c
3. N c → (Ac ∨ Bc)
4. ∀x Ax
5. ∀x¬Bx
6. ∃x(Ax ∧ Bx)
7. ∃x(Ax → N x)
8. ∀x(N x ∨ ¬N x)
9. ∃x Bx → ∀x Ax

B. Consider the following interpretation:

• The domain comprises only Lemmy, Courtney and Eddy
• ‘Gx ’ is to be true of Lemmy, Courtney and Eddy.
• ‘H x ’ is to be true of and only of Courtney
• ‘Mx ’ is to be true of and only of Lemmy and Eddy
• ‘c ’ is to refer to Courtney
• ‘e ’ is to refer to Eddy

Determine whether each of the following sentences is true or false in that interpreta-
tion:

1. H c
2. H e
3. Mc ∨Me
4. Gc ∨ ¬Gc
5. Mc → Gc
6. ∃x H x
7. ∀x H x
8. ∃x ¬Mx
9. ∃x(H x ∧Gx)

10. ∃x(Mx ∧Gx)
11. ∀x(H x ∨Mx)
12. ∃x H x ∧ ∃x M x
13. ∀x(H x ↔ ¬Mx)
14. ∃x Gx ∧ ∃x¬Gx
15. ∀x∃y(Gx ∧H y)

C. Following the diagram conventions introduced at the end of §25, consider the fol-
lowing interpretation:

1 2

3 4 5
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Determine whether each of the following sentences is true or false in that interpreta-
tion:

1. ∃x Rxx
2. ∀x Rxx
3. ∃x∀y Rxy
4. ∃x∀y Ryx
5. ∀x∀y∀z((Rxy ∧Ryz) → Rxz)
6. ∀x∀y∀z((Rxy ∧Rxz) → Ryz)
7. ∃x∀y ¬Rxy
8. ∀x(∃y Rxy → ∃y Ryx)
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Offering a precise definition of truth in PL was more than a little fiddly, but now that
we are done, we can define various central logical notions. These will look very similar
to the definitions we offered for SL. However, remember that they concern interpre-
tations, rather than valuations.

We will use the symbol ‘�’ for PL much as we did for SL. So:

A1,A2, . . . ,An � C

means that there is no interpretation in which all of A1, A2, …, An are true and in
which C is false. Derivatively,

� A

means that there is no interpretation in which A is false; so it means that A is true in
every interpretation (so: A is a tautology). And

A �

means that there is no interpretation in which A is true; so it means that A is false in
every interpretation (so: A is a contradiction).

The other logical notions also have corresponding definitions in PL:

◃ An PL sentence A is a tautology (in PL) iff A is true in every interpretation;
i.e., � A.

◃ A is a contradiction (in PL) iff A is false in every interpretation; i.e., � ¬A.

◃ A1,A2, . . .An .˙. C is valid (in PL) iff there is no interpretation in which all
of the premises are true and the conclusion is false; i.e., A1,A2, . . .An � C. It
is invalid in pl otherwise.

◃ Two PL sentences Aand B are equivalent (in PL) iff they are true in exactly
the same interpretations as each other; i.e., both A � B and B � A.

◃ The PL sentences A1, A2, …, An are satisfiable (in PL) iff there is some in-
terpretation in which all of the sentences are true. They are unsatisfiable (in
PL) iff there is no such interpretation.
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28.1 Tautologies and contradictions
Suppose we want to show that ‘∃x Axx → Bd ’ is not a tautology. This requires show-
ing that the sentence is not true in every interpretation; i.e., that it is false in some
interpretation. If we can provide just one interpretation in which the sentence is false,
then we will have shown that the sentence is not a tautology.

In order for ‘∃x Axx → Bd ’ to be false, the antecedent (‘∃x Axx ’) must be true,
and the consequent (‘Bd ’) must be false. To construct such an interpretation, we start
by specifying a domain. Keeping the domain small makes it easier to specify what the
predicates will be true of, so we will start with a domain that has just onemember. For
concreteness, let’s say it is the city of Paris.

domain: Paris

The name ‘d ’ must refer to something in the domain, so we have no option but:

d : Paris

Recall that we want ‘∃x Axx ’ to be true, so we want all members of the domain to be
paired with themselves in the extension of ‘A’. We can just offer:

Axy : x is identical with y

Now ‘Add ’ is true, so it is surely true that ‘∃x Axx ’. Next, we want ‘Bd ’ to be false, so
the referent of ‘d ’ must not be in the extension of ‘B ’. We might simply offer:

Bx : x is in Germany

Now we have an interpretation where ‘∃x Axx ’ is true, but where ‘Bd ’ is false. So
there is an interpretation where ‘∃x Axx → Bd ’ is false. So ‘∃x Axx → Bd ’ is not a
tautology.

We can just as easily show that ‘∃xAxx → Bd ’ is not a contradiction. We need
only specify an interpretation in which ‘∃xAxx → Bd ’ is true; i.e., an interpretation
in which either ‘∃x Axx ’ is false or ‘Bd ’ is true. Here is one:

domain: Paris
d : Paris
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Axy : x is identical with y

Bx : x is in France

This shows that there is an interpretationwhere ‘∃xAxx → Bd ’ is true. So ‘∃x Axx →
Bd ’ is not a contradiction.

28.2 Equivalence

Suppose we want to show that ‘∀x Sx ’ and ‘∃x Sx ’ are not equivalent. We need to
construct an interpretation in which the two sentences have different truth values;
we want one of them to be true and the other to be false. We start by specifying a
domain. Again, we make the domain small so that we can specify extensions easily.
In this case, we will need at least two objects. (If we chose a domain with only one
member, the two sentences would end up with the same truth value. In order to see
why, try constructing some partial interpretations with one-member domains.) For
concreteness, let’s take:

domain: Ornette Coleman, Miles Davis

We can make ‘∃x Sx ’ true by including something in the extension of ‘S ’, and we can
make ‘∀x Sx ’ false by leaving something out of the extension of ‘S ’. For concreteness
we will offer:

Sx : x plays saxophone

Now ‘∃x Sx ’ is true, because ‘Sx ’ is true of Ornette Coleman. Slightly more precisely,
modify our interpretation by allowing ‘x ’ to nameOrnetteColeman. ‘Sx ’ is true in this
modified interpretation, so ‘∃x Sx ’ was true in the original interpretation. Similarly,
‘∀x Sx ’ is false, because ‘Sx ’ is false ofMiles Davis. Slightlymore precisely, modify our
interpretation by allowing ‘x ’ to name Miles Davis, and ‘Sx ’ is false in this modified
interpretation, so ‘∀x Sx ’ was false in the original interpretation. We have provided a
counter-interpretation to the claim that ‘∀x Sx ’ and ‘∃x Sx ’ are equivalent.

To show that A is not a tautology, it suffices to find an interpretation where A
is false.
To show thatAis not a contradiction, it suffices to find an interpretation where
A is true.
To show that A and B are not equivalent, it suffices to find an interpretation
where one is true and the other is false.

28.3 Validity, entailment and satisfiability

To test for validity, entailment, or satisfiability, we typically need to produce interpre-
tations that determine the truth value of several sentences simultaneously.
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Consider the following argument in PL:

∃x(Gx → Ga) .˙. ∃x Gx → Ga

To show that this is invalid, we must make the premise true and the conclusion false.
The conclusion is a conditional, so to make it false, the antecedent must be true and
the consequent must be false. Clearly, our domain must contain two objects. Let’s try:

domain: Karl Marx, Ludwig von Mises
Gx : x hated communism
a: Karl Marx

Given that Marx wrote The Communist Manifesto, ‘Ga’ is plainly false in this inter-
pretation. But von Mises famously hated communism, so ‘∃x Gx ’ is true in this inter-
pretation. Hence ‘∃x Gx → Ga’ is false, as required.

Does this interpretationmake the premise true? Yes it does! Note that ‘Ga → Ga’
is true. (Indeed, it is a tautology.) But then certainly ‘∃x(Gx → Ga)’ is true, so the
premise is true, and the conclusion is false, in this interpretation. The argument is
therefore invalid.

In passing, note that we have also shown that ‘∃x(Gx → Ga)’ does not entail
‘∃x Gx → Ga’. Equally, we have shown that the sentences ‘∃x(Gx → Ga)’ and
‘¬(∃x Gx → Ga)’ are jointly satisfiable.

Let’s consider a second example. Consider:

∀x∃y Lxy .˙. ∃y∀x Lxy
Again, we want to show that this is invalid. To do this, we must make the premises
true and the conclusion false. Here is a suggestion:

domain: UK citizens currently in a civil partnership with another UK citizen
Lxy : x is in a civil partnership with y

Thepremise is clearly true on this interpretation. Anyone in the domain is aUKcitizen
in a civil partnership with some other UK citizen. That other citizen will also, then,
be in the domain. So for everyone in the domain, there will be someone (else) in the
domainwithwhom they are in a civil partnership. Hence ‘∀x∃y Lxy ’ is true. However,
the conclusion is clearly false, for that would require that there is some single person
who is in a civil partnership with everyone in the domain, and there is no such person,
so the argument is invalid. We observe immediately that the sentences ‘∀x∃y Lxy ’ and
‘¬∃y∀x Lxy ’ are jointly satisfiable and that ‘∀x∃y Lxy ’ does not entail ‘∃y∀x Lxy ’.

For our third example, we’ll mix things up a bit. In §25, we described how we can
present some interpretations using diagrams. For example:

1 2

3
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Using the conventions employed in §25, the domain of this interpretation is the first
three positive whole numbers, and ‘Rxy ’ is true of x and y just in case there is an
arrow from x to y in our diagram. Here are some sentences that the interpretation
makes true:

• ‘∀x∃y Ryx ’
• ‘∃x∀y Rxy ’ witness 1
• ‘∃x∀y ¬Rxy ’ witness 3
• ‘∃x(∃y Ryx ∧ ¬∃y Rxy)’ witness 3

This immediately shows that all of the preceding four sentences are jointly satisfiable.
We can use this observation to generate invalid arguments, e.g.:

∀x∃y Ryx,∃x∀y Rxy .˙. ¬∃x∀y ¬Rxy
and many more besides.

To show thatA1,A2, . . . ,An .˙. Cis invalid, it suffices to find an interpretation
where all of A1, A2, …, An are true and where C is false.
That same interpretation will show that A1, A2, …, An do not entail C.
It will also show that A1, A2, …, An , ¬Care jointly satisfiable.

When you provide an interpretation to refute a claim—to show that a sentence is
not a tautology, say, or that an entailment fails—this is sometimes called providing a
counter-interpretation (or providing a counter-model).

Practice exercises
A. Show that each of the following is neither a tautology nor a contradiction:

1. Da ∧Db
2. ∃x T xh
3. Pm ∧ ¬∀x P x
4. ∀z J z ↔ ∃y J y
5. ∀x(Wxmn ∨ ∃yLxy)
6. ∃x(Gx → ∀y M y)

B. Show that the following pairs of sentences are not equivalent.

1. J a, Ka
2. ∃x J x , J m
3. ∀x Rxx , ∃x Rxx
4. ∃x P x → Qc , ∃x(P x → Qc)
5. ∀x(P x → ¬Qx), ∃x(P x ∧ ¬Qx)
6. ∃x(P x ∧Qx), ∃x(P x → Qx)
7. ∀x(P x → Qx), ∀x(P x ∧Qx)
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8. ∀x∃y Rxy , ∃x∀y Rxy
9. ∀x∃y Rxy , ∀x∃y Ryx

C. Show that the following sentences are jointly satisfiable:

1. Ma,¬N a,P a,¬Qa
2. Le, e,Le g ,¬Lge,¬Lg g
3. ¬(Ma ∧ ∃x Ax),Ma ∨ Fa,∀x(Fx → Ax)
4. Ma ∨Mb,Ma → ∀x¬Mx
5. ∀y G y,∀x(Gx → H x),∃y¬I y
6. ∃x(Bx ∨ Ax),∀x¬Cx,∀x [(Ax ∧ Bx) → Cx

]
7. ∃x X x,∃xY x,∀x(X x ↔ ¬Y x)
8. ∀x(P x ∨Qx),∃x¬(Qx ∧ P x)
9. ∃z(N z ∧Ozz),∀x∀y(Oxy → Oyx)

10. ¬∃x∀y Rxy,∀x∃y Rxy
D. Show that the following arguments are invalid:

1. ∀x(Ax → Bx) .˙. ∃x Bx
2. ∀x(Rx → Dx),∀x(Rx → Fx) .˙. ∃x(Dx ∧ Fx)
3. ∃x(P x → Qx) .˙. ∃x P x
4. N a ∧ N b ∧ N c .˙. ∀x N x
5. Rde,∃x Rxd .˙. Red
6. ∃x(Ex ∧ Fx),∃x F x → ∃x Gx .˙. ∃x(Ex ∧Gx)
7. ∀x Oxc,∀x Ocx .˙. ∀x Oxx
8. ∃x( J x ∧ Kx),∃x¬Kx,∃x¬ J x .˙. ∃x(¬ J x ∧ ¬Kx)
9. Lab → ∀x Lxb,∃x Lxb .˙. Lbb
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29.1 Tautologies and contradictions

We can show that a sentence is not a tautology just by providing one carefully specified
interpretation: an interpretation in which the sentence is false. To show that some-
thing is a tautology, on the other hand, it would not be enough to construct ten, one
hundred, or even a thousand interpretations in which the sentence is true. A sentence
is only a tautology if it is true in every interpretation, and there are infinitely many in-
terpretations. We need to reason about all of them, and we cannot do this by dealing
with them one by one!

Sometimes, we can reason about all interpretations fairly easily. For example, we
can offer a relatively simple argument that ‘Raa ∨ ¬Raa’ is a tautology:

Any relevant interpretation will give ‘Raa’ a truth value. If ‘Raa’ is true
in an interpretation, then ‘Raa ∨ ¬Raa’ is true in that interpretation.
If ‘Raa’ is false in an interpretation, then ¬Raa is true, and so ‘Raa ∨
¬Raa’ is true in that interpretation. These are the only alternatives. So
‘Raa ∨ ¬Raa’ is true in every interpretation. Therefore, it is a tautology.

This argument is valid, of course, and its conclusion is true. However, it is not an
argument in PL. Rather, it is an argument in English about PL: it is an argument in the
metalanguage.

Note another feature of the argument. Since the sentence in question contained
no quantifiers, we did not need to think about how to interpret ‘a’ and ‘R’; the point
was just that, however we interpreted them, ‘Raa’ would have some truth value or
other. (We could ultimately have given the same argument concerning SL sentences.)

Here is another bit of reasoning. Consider the sentence ‘∀x(Rxy ∨ ¬Ryx)’. We
can show that it is a tautology in PL with the following reasoning.

Consider some arbitrary interpretation. ∀x(Rxx ∨ ¬Rxx) is true in our
interpretation iffRxx∨¬Rxx is true, nomatter what we take ‘x ’ to name.
Consider some arbitrarymember of the domain, which, for convenience,
we will call Fred—and consider the modified interpretation in which ‘x ’
name Fred. Either Fred bearsR to himself or he does not. If Fred bearsR
to himself, then ‘Rxx ’ will be true on our modified interpretation. And,
if ‘Rxx is true, then ‘Rxx ∨ ¬Rcc ’ must be true as well. If Fred does
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not bear R to himself, then ‘Rxx ’ is false, so ‘¬Rxx ’ will be true on our
modified interpretation. And if ‘¬Rxx ’ is true, then ‘Rxx∨¬Rxx ’ is true
also. So either way, ‘Rxx ∨¬Rxx ’ is true. Since there was nothing special
about Fred—wemight have chosen any object—we see that ‘Rxx∨¬Rxx ’
will be true, no matter what ‘x ’ names. So ‘∀x(Rxx ∨ ¬Rxx)’ is true in
our original interpretation. But we chose that interpretation arbitrarily,
so ‘∀x(Rxx ∨ ¬Rxx)’ is true in every interpretation. It is therefore a
tautology.

This is quite longwinded, but, as things stand, there is no alternative. In order to show
that a sentence is a tautology, we must reason about all interpretations.

29.2 Other cases

Similar points hold of other cases too. Thus, we must reason about all interpretations
if we want to show:

• that a sentence is a contradiction; for this requires that it is false in every inter-
pretation.

• that two sentences are equivalent; for this requires that they have the same truth
value in every interpretation.

• that some sentences are unsatisfiable; for this requires that there is no inter-
pretation in which all of those sentences are true together; i.e. that, in every
interpretation, at least one of those sentences is false.

• that an argument is valid; for this requires that the conclusion is true in every
interpretation where the premises are true.

• that some sentences entail another sentence.

The problem is that, with the tools available to you so far, reasoning about all inter-
pretations is a serious challenge! Another example: the following argument is valid:

∀x(H x ∧ J x) .˙. ∀xH x
After all, if everything is bothH and J , then everything isH . But we can only show
thaht this argument is valid by considering what must be true in every interpretation
in which the premise is true. To show this, we may reason as follows:

Consider an arbitrary interpretation in which the premise ‘∀x(H x∧ J x)’
is true. It follows that ‘H x ∧ J x ’ is true, no matter what in the domain
we allow ‘x ’ ’to name. If ‘H x ∧ J x ’ is true, then ‘H x ’ must be true. So, no
matter what in the domain we allow ‘x ’ to name, ‘H x ’ will be true. So it
must be that ‘∀x H x ’ is true in the interpretation. We’ve assumed nothing
about the interpretation except that it was one in which ‘∀x(H x ∧ J x)’ is
true, so any interpretation in which ‘∀x(H x∧ J x)’ is true is one in which
‘∀x H x ’ is true. The argument is valid!
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Even for a simple argument like this one, the reasoning is somewhat complicated.
For one final final example, consider this contradiction:

∃x ∀y(Lxy ∧ ¬Lyx)

This sentence of PL says that there’s something, x , such that, for all y , x bears the rela-
tionR to y and y does not bear the relationR back to x . Or, more colloquially, there’s
something that bearsR to everything and is borneR by nothing. It’s not obvious that
this is a contradiction, but the following clever bit of reasoning will show that it is:

Suppose that there is an interpretation in which ‘∃x ∀y(Lxy ∧ ¬Lyx)’
is true. Then, there must be something in the domain—call it ‘Suzy’—
such that, if ‘x ’ names Suzy, then the sentence ‘∀y(Lxy ∧ ¬Lyx)’ is true.
So consider the modified interpretation in which ‘x ’ names Suzy. Then,
‘∀y(Lxy ∧¬Lyx)’ is true in this modified interpretation. If it is true, then
‘(Lxy ∧ ¬Lyx)’ must be true, no matter what in the domain ‘y ’ names.
So ‘(Lxy ∧ ¬Lyx)’ must be true when ‘y ’ names Suzy. So suppose that
both ‘x ’ and ‘y ’ ’name Suzy. Then, if ‘(Lxy ∧ ¬Lyx)’ is true, ‘Lxy ’ must
be true. So Suzy must bear L to herself. And, if ‘(Lxy ∧ ¬Lyx)’ is true,
then ‘¬Lyx ’ must be true. So ‘Lyx ’ must be false. So Suzy must not bear
L to herself. So Suzy both bears L to herself and doesn’t bear L to herself.
Contradiction! But we only assumed that there was an interpretation in
which ‘∃x ∀y(Lxy ∧ ¬Lyx)’ is true. Since this led us to a contradiction,
this assumption must be false. So there is no such interpretation. So
‘∃x ∀y(Lxy ∧ ¬Lyx)’ is false in every interpretation. So it is a contradic-
tion.

The following table summarises whether a single (counter-)interpretation suffices,
or whether we must reason about all interpretations.

Yes No
tautology? all interpretations one counter-interpretation
contradiction? all interpretations one counter-interpretation
equivalent? all interpretations one counter-interpretation
satisfiable? one interpretation all interpretations
valid? all interpretations one counter-interpretation
entailment? all interpretations one counter-interpretation

Thismight usefully be comparedwith the table at the end of §13. Thekey difference
resides in the fact that SL concerns truth tables, whereas PL concerns interpretations.
This difference is deeply important, since each truth-table only ever has finitely many
lines, so that a complete truth table is a relatively tractable object. By contrast, there
are infinitely many interpretations for any given sentence(s), so that reasoning about
all interpretations can be a deeply tricky business.
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30 | Basic rules for PL

The language of PL makes use of all of the connectives of SL. So proofs in PL will use
all of the basic and derived rules from Part IV. We will also use the proof-theoretic
notions (particularly, the symbol ‘⊢’) introduced there. However, we will also need
some new basic rules to govern the quantifiers.

30.1 Universal elimination
From the claim that everything is F , you can infer that any particular thing is F . You
name it; it’s F . So the following should be fine:

1 ∀x Rxxd
2 Raad ∀E 1

We obtained line 2 by dropping the universal quantifier and replacing every instance
of ‘x ’ with ‘a’. Equally, the following should be allowed:

1 ∀x Rxxd
2 Rddd ∀E 1

We obtained line 2 here by dropping the universal quantifier and replacing every in-
stance of ‘x ’ with ‘d ’. We could have done the same with any other name we wanted.

This motivates the universal elimination rule (∀E):

m ∀xA(. . .x . . .x . . .)

A(. . . c . . . c . . .) ∀E m

A word on the notation: suppose that A is a formula containing at least one free
occurrence of the variable x. We will write this thus:

A(. . .x . . .x . . .)

Suppose also that c is a name. Then we will write:

A(. . . c . . . c . . .)
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for the formula obtained by replacing every free occurrence of x in Awith c. The
resulting formula is called a substitution instance of ∀xA and ∃xA. Also, c is
called the instantiating name. So, for instance:

∃x(Rex ↔ Fx)

is a substitution instance of
∀y∃x(Ryx ↔ Fx)

with the instantiating name ‘e ’.
So, the rule ∀E says that you can obtain any substitution instance of a univer-

sally quantified formula by replacing every instance of the quantified variable with
any name you like.

I should emphasize that (as with every elimination rule) you can only apply the
∀E rule when the universal quantifier is themain operator. So the following is banned:

1 ∀x Bx → Bk

2 Bb → Bk naughtily attempting to invoke ∀E 1

This is illegitimate, since ‘∀x ’ is not themain operator in line 1. (If you need a reminder
as to why this sort of inference should be banned, reread §22.)

It’s also important that the rule ∀E only allows you to write down a substitution
instance of the universally quantified claim. In a substitution instance, you must go
through and replace every free variable with the same name. So, for instance, while
the following are all substitution instances of ‘∀x (Fxa ∨Gbx)’:

Fba ∨Gbb
F ca ∨Gbc
Fda ∨Gbd

The following are not substitution instances of ‘∀x (Fxa ∨Gbx)’:
Fba ∨Gbx
F ca ∨Gbd

The first sentence is not a substitution instance of ‘∀x (Fxa ∨Gbx)’ because we did
not replace every free occurrence of ‘x ’ in ‘(Fxa∨Gbx)’ with some name. The second
sentence is not a substitution instance of ‘∀x (Fxa∨Gbx)’ because we did not replace
every free occurrence of ‘x ’ in ‘(Fxa ∨Gbx)’ with the same name.

Thus, the following use of ∀E is illegal:

1 ∀y (F y → Gy)

2 Fa → Gb naughtily attempting to invoke ∀E 1

since we replaced the first ‘y ’ with ‘a’, but the second ‘y ’ with ‘b ’.
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30.2 Existential introduction
From the claim that some particular thing is F , you can infer that something is F . So
we ought to allow:

1 Raad

2 ∃x Raax ∃I 1
Here, we have replaced the name ‘d ’ with a variable ‘x ’, and then existentially quanti-
fied over it. Equally, we would have allowed:

1 Raad

2 ∃x Rxxd ∃I 1
Here we have replaced both instances of the name ‘a’ with a variable, and then exis-
tentially generalised. But we do not need to replace both instances of a name with a
variable: if Narcissus loves himself, then there is someone who loves Narcissus. So we
also allow:

1 Raad

2 ∃x Rxad ∃I 1
Here we have replaced one instance of the name ‘a’ with a variable, and then exis-
tentially generalised. These observations motivate our introduction rule, although to
explain it, we will need to introduce some new notation.

Where A is a sentence containing the name c, we can emphasize this by writing
‘A(. . . c . . . c . . .)’. Wewill write ‘A(. . .x . . . c . . .)’ to indicate any formula obtained
by replacing some or all of the instances of the name c with the variable x. Armed
with this, our introduction rule is:

m A(. . . c . . . c . . .)

∃xA(. . .x . . . c . . .) ∃I m

xmust not occur in A(. . . c . . . c . . .)

The constraint is included to guarantee that the variable we introduce ends up
being bound by the quantifier we introduce. Thus the following is allowed:

1 Raad

2 ∃x Rxad ∃I 1
3 ∃y∃x Rxyd ∃I 2
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But this is banned:

1 Raad

2 ∃x Rxad ∃I 1
3 ∃x∃x Rxxd naughtily attempting to invoke ∃I 2

30.3 Empty domains
The following proof combines our two new rules for quantifiers:

1 ∀x F x
2 Fa ∀E 1

3 ∃x F x ∃I 2
Could this be a bad proof? If anything exists at all, then certainly we can infer that
something is F, from the fact that everything is F. But what if nothing exists at all?
Then it is surely vacuously true that everything is F; however, it does not following
that something is F, for there is nothing to be F. So if we claim that, as a matter of logic
alone, ‘∃x F x ’ follows from ‘∀x F x ’, then we are claiming that, as a matter of logic
alone, there is something rather than nothing. This might strike us as a bit odd.

Since it is far from clear that logic should tell us that there must be something
rather than nothing, we might well be cheating a bit here.

If we refuse to cheat, though, then we pay a high cost. Here are three things that
we want to hold on to:

• ∀x F x ⊢ Fa: after all, that was ∀E.
• Fa ⊢ ∃x F x : after all, that was ∃I.
• the ability to copy-and-paste proofs together: after all, reasoning works by

putting lots of little steps together into rather big chains.

If we get what we want on all three counts, then we have to countenance that ∀xF x ⊢
∃x F x . So, if we get what we want on all three counts, the proof system alone tells us
that there is something rather than nothing. And if we refuse to accept that, then we
have to surrender one of the three things that we want to hold on to!

Beforewe start thinking aboutwhich to surrender, wemightwant to ask howmuch
of a cheat this is. Granted, it maymake it harder to engage in theological debates about
why there is something rather than nothing. But the rest of the time, we will get along
just fine. So maybe we should just regard our proof system (and PL, more generally)
as having a very slightly limited purview. If we ever want to allow for the possibility
of nothing, then we will have to cast around for a more complicated proof system. But
for as long as we are content to ignore that possibility, our proof system is perfectly
in order. (As, similarly, is the stipulation that every domain must contain at least one
object.)
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30.4 Universal introduction
Suppose you had shown of each particular thing that it is F (and that there are no other
things to consider). Then you would be justified in claiming that everything is F. This
would motivate the following proof rule. If you had established each and every single
substitution instance of ‘∀x F x ’, then you can infer ‘∀x F x ’.

Unfortunately, that rule would be utterly unusable. To establish each and every
single substitution instance would require proving ‘Fa’, ‘Fb ’, …, ‘F j2’, …, ‘Fr79002’,
…, and so on. Indeed, since there are infinitely many names in PL, this process would
never come to an end. So we could never apply that rule. We need to be a bit more
cunning in coming up with our rule for introducing universal quantification.

Our cunning thought will be inspired by considering:

∀x F x .˙. ∀y F y
This argument should obviously be valid. After all, alphabetical variation ought to be a
matter of taste, and of no logical consequence. But howmight our proof system reflect
this? Suppose we begin a proof thus:

1 ∀x F x
2 Fa ∀E 1

We have proved ‘Fa’. And, of course, nothing stops us from using the same justifica-
tion to prove ‘Fb ’, ‘F c ’, …, ‘F j2’, …, ‘Fr79002, …, and so on until we run out of space,
time, or patience. But reflecting on this, we see that there is a way to prove F c, for
any name c. And if we can do it for any thing, we should surely be able to say that ‘F ’
is true of everything. This therefore justifies us in inferring ‘∀y F y ’, thus:

1 ∀x F x
2 Fa ∀E 1

3 ∀y F y ∀I 2
The crucial thought here is that ‘a’ was just some arbitrary name. There was nothing
special about it—we might have chosen any other name—and still the proof would be
fine. And this crucial thought motivates the universal introduction rule (∀I):

m A(. . . c . . . c . . .)

∀xA(. . .x . . .x . . .) ∀I m

cmust not occur in any undischarged assumption
xmust not occur in A(. . . c . . . c . . .)
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A crucial aspect of this rule, though, is bound up in the first constraint. This
constraint ensures that we are always reasoning at a sufficiently general level. To see
the constraint in action, consider this terrible argument:

Everyone loves Kylie Minogue; therefore everyone loves themselves.

We might symbolize this obviously invalid inference pattern as:

∀x Lxk .˙. ∀x Lxx

Now, suppose we tried to offer a proof that vindicates this argument:

1 ∀x Lxk
2 Lkk ∀E 1

3 ∀x Lxx naughtily attempting to invoke ∀I 2

This is not allowed, because ‘k ’ occurred already in an undischarged assumption,
namely, on line 1. The crucial point is that, if we have made any assumptions about
the object we are working with, then we are not reasoning generally enough to license
∀I.

Although the name may not occur in any undischarged assumption, it may occur
in a discharged assumption. That is, it may occur in a subproof that we have already
closed. For example, this is just fine:

1 Gd

2 Gd R 1

3 Gd → Gd →I 1–2

4 ∀z(Gz → Gz) ∀I 3

This tells us that ‘∀z(Gz → Gz)’ is a theorem. And that is as it should be.
I should emphasise one last point. As per the conventions of §26.3, the use of ∀I

requires that we are replacing every instance of the name c in A(. . .x . . .x . . .) with
the variablex. If we only replace some names and not others, we end up ‘proving’ silly
things. For example, consider the argument:

Everyone is as old as themselves; so everyone is as old as Judi Dench

We might symbolise this as follows:

∀x Oxx .˙. ∀x Oxd

But now suppose we tried to vindicate this terrible argument with the following:
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1 ∀x Oxx
2 Odd ∀E 1

3 ∀x Oxd naughtily attempting to invoke ∀I 2
Fortunately, our rules do not allow for us to do this: the attempted proof is banned,
since it doesn’t replace every occurrence of ‘d ’ in line 2 with an ‘x ’.

30.5 Existential elimination
Suppose we know that something is F . The problem is that simply knowing this does
not tell uswhich thing isF . So it would seem that from ‘∃x F x ’ we cannot immediately
conclude ‘Fa’, ‘Fe23’, or any other substitution instance of the sentence. What can we
do?

Suppose we know that something is F , and that everything which is F is alsoG .
In (almost) natural English, we might reason thus:

Since something isF , there is some particular thingwhich is anF . We do
not know anything about it, other than that it’s anF , but for convenience,
let’s call it ‘obbie’. So: obbie is F . Since everything which is F is G , it
follows that obbie is G . But since obbie is G , it follows that something
is G . And nothing depended on which object, exactly, obbie was. So,
something isG .

We might try to capture this reasoning pattern in a proof as follows:

1 ∃x F x
2 ∀x(Fx → Gx)

3 Fo

4 Fo → Go ∀E 2

5 Go →E 4, 3

6 ∃x Gx ∃I 5
7 ∃x Gx ∃E 1, 3–6

Breaking this down: we started by writing down our assumptions. At line 3, we made
an additional assumption: ‘Fo ’. Thiswas just a substitution instance of ‘∃x F x ’. On this
assumption, we established ‘∃x Gx ’. Note that we had made no special assumptions
about the object named by ‘o ’; we had only assumed that it satisfies ‘Fx ’. So nothing
depends upon which object it is. And line 1 told us that something satisfies ‘Fx ’, so our
reasoning pattern was perfectly general. We can discharge the specific assumption
‘Fo ’, and simply infer ‘∃x Gx ’ on its own.
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Putting this together, we obtain the existential elimination rule (∃E):

m ∃xA(. . .x . . .x . . .)

i A(. . . c . . . c . . .)

j B

B ∃E m, i– j

cmust not occur in any assumption undischarged before line i
cmust not occur in ∃xA(. . .x . . .x . . .)
cmust not occur in B

As with universal introduction, the constraints are extremely important. To see
why, consider the following terrible argument:

TimButton is a lecturer. Someone is not a lecturer. So TimButton is both
a lecturer and not a lecturer.

We might symbolize this obviously invalid inference pattern as follows:

Lb,∃x ¬Lx .˙. Lb ∧ ¬Lb

Now, suppose we tried to offer a proof that vindicates this argument:

1 Lb

2 ∃x ¬Lx
3 ¬Lb

4 Lb ∧ ¬Lb ∧I 1, 3

5 Lb ∧ ¬Lb naughtily attempting to invoke ∃E 2, 3–4

The last line of the proof is not allowed. The name that we used in our substitution
instance for ‘∃x ¬Lx ’ on line 3, namely ‘b ’, occurs in line 4. The this would be no better:

1 Lb

2 ∃x ¬Lx
3 ¬Lb

4 Lb ∧ ¬Lb ∧I 1, 3

5 ∃x(Lx ∧ ¬Lx) ∃I 4
6 ∃x(Lx ∧ ¬Lx) naughtily attempting to invoke ∃E 2, 3–5
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The last line is still not be allowed. For the name that we used in our substitution
instance for ‘∃x ¬Lx ’, namely ‘b ’, occurs in an undischarged assumption, namely line
1.

The moral of the story is this. If you want to squeeze information out of an exis-
tential quantifier, choose a new name for your substitution instance. That way, you can
guarantee that you meet all the constraints on the rule for ∃E.

Practice exercises

A. Explain why these two ‘proofs’ are incorrect. Also, provide interpretations which
would invalidate the fallacious argument forms the ‘proofs’ enshrine:

1 ∀x Rxx
2 Raa ∀E 1

3 ∀y Ray ∀I 2
4 ∀x∀y Rxy ∀I 3

1 ∀x∃y Rxy
2 ∃y Ray ∀E 1

3 Raa

4 ∃x Rxx ∃I 3
5 ∃x Rxx ∃E 2, 3–4

B.The following three proofs are missing their citations (rule and line numbers). Add
them, to turn them into bona fide proofs.

1 ∀x∃y(Rxy ∨Ryx)
2 ∀x ¬Rmx
3 ∃y(Rmy ∨Rym)
4 Rma ∨Ram

5 ¬Rma

6 Ram

7 ∃x Rxm
8 ∃x Rx,m

1 ∀x(∃y Lxy → ∀z Lzx)
2 Lab

3 ∃y Lay → ∀zLza
4 ∃y Lay
5 ∀z Lza
6 Lca

7 ∃y Lcy → ∀z Lzc
8 ∃y Lcy
9 ∀z Lzc
10 Lcc

11 ∀xLxx
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1 ∀x( J x → Kx)

2 ∃x∀yLxy
3 ∀x J x
4 ∀yLay
5 Laa

6 J a

7 J a → Ka

8 Ka

9 Ka ∧ Laa

10 ∃x(Kx ∧ Lxx)
11 ∃x(Kx ∧ Lxx)

C. In §22 problem A, we considered fifteen syllogistic figures of Aristotelian logic.
Provide proofs for each of the argument forms. NB: You will find it much easier if you
symbolize (for example) ‘No F is G’ as ‘∀x(Fx → ¬Gx)’.

D.Aristotle and his successors identified other syllogistic formswhich depended upon
‘existential import’. Symbolize each of these argument forms in PL and offer proofs.

• Barbari. Something is H. All G are F. All H are G. So: Some H is F
• Celaront. Something is H. No G are F. All H are G. So: Some H is not F
• Cesaro. Something is H. No F are G. All H are G. So: Some H is not F.
• Camestros. Something is H. All F are G. No H are G. So: Some H is not F.
• Felapton. Something is G. No G are F. All G are H. So: Some H is not F.
• Darapti. Something is G. All G are F. All G are H. So: Some H is F.
• Calemos. Something is H. All F are G. No G are H. So: Some H is not F.
• Fesapo. Something is G. No F is G. All G are H. So: Some H is not F.
• Bamalip. Something is F. All F are G. All G are H. So: Some H are F.

E. Provide a proof of each claim.

1. ⊢ ∀x F x ∨ ¬∀x F x
2. ⊢ ∀z(P z ∨ ¬P z)
3. ∀x(Ax → Bx),∃x Ax ⊢ ∃x Bx
4. ∀x(Mx ↔ N x),Ma ∧ ∃x Rx, a ⊢ ∃x N x
5. ∀x∀y Gxy ⊢ ∃x Gxx
6. ⊢ ∀x Rxx → ∃x∃y Rxy
7. ⊢ ∀y∃x(Qy → Qx)
8. N a → ∀x(Mx ↔ Ma),Ma,¬Mb ⊢ ¬N a



30.5. EXISTENTIAL ELIMINATION 187

9. ∀x∀y(Gxy → Gyx) ⊢ ∀x∀y(Gxy ↔ Gyx)
10. ∀x(¬Mx ∨ L jx),∀x(Bx → L jx),∀x(Mx ∨ Bx) ⊢ ∀xL j x

F. Write a symbolization key for the following argument, symbolize it, and prove it:

There is someone who likes everyone who likes everyone that she likes.
Therefore, there is someone who likes herself.

G. Show that each pair of sentences is provably equivalent.

1. ∀x(Ax → ¬Bx), ¬∃x(Ax ∧ Bx)
2. ∀x(¬Ax → Bd), ∀x Ax ∨ Bd
3. ∃x P x → Qc , ∀x(P x → Qc)

H. For each of the following pairs of sentences: If they are provably equivalent, give
proofs to show this. If they are not, construct an interpretation to show that they are
not equivalent in PL.

1. ∀x P x → Qc,∀x(P x → Qc)
2. ∀x∀y∀z Bxyz,∀x Bxxx
3. ∀x∀y Dxy,∀y∀x Dxy
4. ∃x∀y Dxy,∀y∃x Dxy
5. ∀x(Rca ↔ Rxa),Rca ↔ ∀x Rxa

I. For each of the following arguments: If it is valid in PL, give a proof. If it is invalid,
construct an interpretation to show that it is invalid.

1. ∃y∀x Rxy .˙. ∀x∃y Rxy
2. ∀x∃y Rxy .˙. ∃y∀x Rxy
3. ∃x(P x ∧ ¬Qx) .˙. ∀x(P x → ¬Qx)
4. ∀x(Sx → T a),Sd .˙. T a
5. ∀x(Ax → Bx),∀x(Bx → Cx) .˙. ∀x(Ax → Cx)
6. ∃x(Dx ∨ Ex),∀x(Dx → Fx) .˙. ∃x(Dx ∧ Fx)
7. ∀x∀y(Rxy ∨Ryx) .˙. R j j
8. ∃x∃y(Rxy ∨Ryx) .˙. R j j
9. ∀x P x → ∀x Qx,∃x¬P x .˙. ∃x¬Qx

10. ∃x M x → ∃x N x , ¬∃x N x .˙. ∀x¬Mx
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In §16 we discussed strategies for constructing proofs using the basic rules of natural
deduction for SL. The same principles apply to the rules for the quantifiers. If we want
to prove a quantifier sentence ∀xAx or ∃xAxwe can work backwards by justifying
the sentence we want by ∀I or ∃I and trying to find a proof of the corresponding
premise of that rule. And to use a quantified sentence we apply ∀E or ∃E, as the case
may be.

Specifically, suppose youwant to prove∀xAx. To do so using∀I, wewould need a
proof of Ac for some name cwhich does not occur in any undischarged assumption.
To apply the corresponding strategy, i.e., to construct a proof of ∀xAx by working
backwards, is thus to write Ac above it and then to continue to try to find a proof of
that sentence.

...

n Ac

n + 1 ∀xAx ∀I n
Ac is obtained from Axby replacing every free occurrence ofx in Axby c. For this
to work, of course, cmust satisfy the special condition. We can ensure that it does by
always picking a name that does not already occur in the proof constructed so far. (Of
course, if will occur in the proof we end up constructing—just not in an assumption
that is undischarged at line n + 1.)

To work backward from a sentence ∃xAxwe similarly write a sentence above it
that can serve as a justification for an application of the ∃I rule, i.e., a sentence of the
form Ac.

...

n Ac

n + 1 ∃xAx ∃I n
This looks just like what wewould do if wewereworking backwards from a universally
quantified sentence. The difference is that whereas for ∀I we have to pick a name c

which does not occur in the proof (so far), for ∃I we may and in general must pick a
name cwhich already occurs in the proof. Just like in the case of ∨I, it is often not
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clear which c will work out, and so to avoid having to backtrack you should work
backwards from existentially quantified sentences only when all other strategies have
been applied.

By contrast, working forwards from sentences ∃xAx generally always works and
you won’t have to backtrack. Working forwards from an existentially quantified sen-
tence takes into account not just ∃xAx but also whatever sentence Byou would like
to prove. It requires that you set up a subproof above B, wherein B is the last line,
and a substitution instance A(c) of ∃xAx is the assumption. In order to ensure that
the condition on c that governs ∃E, chose a name cwhich does not already occur in
the proof.

...

m ∃xAx
...

n Ac

...

k B

k + 1 B ∃E m, n–k

You’ll then continue with the goal of proving B, but now inside a subproof in which
you have an additional sentence to work with, namely Ac.

Lastly, working forwards from ∀xAxmeans that you can always write down Ac

and justify it using ∀E, for any name c. Of course, you wouldn’t want to do that willy-
nilly. Only certain names cwill help in your task of proving whatever goal sentence
you are working on. So, like working backward from ∃xAx, you should work for-
wards from ∀xAx only after all other strategies have been applied.

Let’s consider as an example the argument ∀x(Ax → B) .˙. (∃x Ax → B). To
start constructing a proof, we write the premise at the top and the conclusion at the
bottom.

1 ∀x(Ax → B)
...

n ∃x Ax → B

The strategies for connectives of SL still apply, and you should apply them in the same
order: first work backwards from conditionals, negated sentences, conjunctions, and
now also universal quantifiers, then forward from disjunctions and now existential
quantifiers, and only then try to apply→E, ¬E, ∨I, ∀E, or ∃I. In our case, that means,
working backward from the conclusion:



CHAPTER 31. PROOFS FOR QUANTIFIERS 190

1 ∀x(Ax → B)

2 ∃x Ax
...

n − 1 B

n ∃x Ax → B →I 2–(n − 1)

Our next step should be to work forward from ∃x Ax on line 2. For it we have to pick
a name not already in our proof. Since no names appear, we can pick any name, say d

1 ∀x(Ax → B)

2 ∃x Ax
3 Ad

...

n − 2 B

n − 1 B ∃E 2, 3–(n − 2)

n ∃x Ax → B →I 2–(n − 1)

Now we’ve exhausted our primary strategies, and it is time to work forward from the
premise ∀x(Ax → B). Applying ∀E means we can justify any instance of Ac → B ,
regardless of what cwe choose. Of course, we’ll do well to choose d , since that will
give us Ad → B and then we can apply →E to justify B , finishing the proof.

1 ∀x(Ax → B)

2 ∃x Ax
3 Ad

4 Ad → B ∀E 1

5 B →E 4, 3

6 B ∃E 2, 3–5

7 ∃x Ax → B →I 2–6

Now let’s construct a proof of the converse. We begin with

1 ∃x Ax → B
...

n ∀x(Ax → B)
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Note that the premise is a conditional, not an existentially quantified sentence, so
we should not (yet) work forward from it. Working backwards from the conclusion,
∀x(Ax → B) leads us to look for a proof of Ad → B :

1 ∃x Ax → B
...

n − 1 Ad → B

n ∀x(Ax → B) ∀I n − 1

And working backward fromAd → B means we should set up a subproof withAd as
an assumption and B as the last line:

1 ∃x Ax → B

2 A(d)
...

n − 2 B

n − 1 Ad → B →I 2–(n − 2)

n ∀x(Ax → B) ∀I n − 1

Now we can work forwards from the premise on line 1. That’s a conditional, and its
consequent happens to be the sentence B we are trying to justify. So we should look
for a proof of its antecedent, ∃x Ax . Of course, that is now readily available, by ∃I
from line 2, and we’re done:

1 ∃x Ax → B

2 Ad

3 ∃x Ax ∃I 2
4 B →E 1, 3

5 Ad → B →I 2–4

6 ∀x(Ax → B) ∀I 5



32 | Conversion of quantifiers

In this section, we will add some additional rules to the basic rules of the previous
section. These govern the interaction of quantifiers and negation.

In §21, we noted that ¬∃xA is logically equivalent to ∀x¬A. We will add some
rules to our proof system that govern this. In particular, we add:

m ∀x¬A
¬∃xA CQ m

and

m ¬∃xA
∀x¬A CQ m

Equally, we add:

m ∃x¬A
¬∀xA CQ m

and

m ¬∀xA
∃x¬A CQ m

Practice exercises

A. Show in each case that the sentences are provably inconsistent:

1. Sa → T m,T m → Sa,T m ∧ ¬Sa
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2. ¬∃x Rxa,∀x∀y Ryx
3. ¬∃x∃y Lxy,Laa
4. ∀x(P x → Qx),∀z(P z → Rz),∀y P y,¬Qa ∧ ¬Rb

B. Show that each pair of sentences is provably equivalent:

1. ∀x(Ax → ¬Bx),¬∃x(Ax ∧ Bx)
2. ∀x(¬Ax → Bd),∀x Ax ∨ Bd

C. In §22, we considered what happens when we move quantifiers ‘across’ various
logical operators. Show that each pair of sentences is provably equivalent:

1. ∀x(Fx ∧Ga),∀x F x ∧Ga
2. ∃x(Fx ∨Ga),∃x F x ∨Ga
3. ∀x(Ga → Fx),Ga → ∀x F x
4. ∀x(Fx → Ga),∃x F x → Ga
5. ∃x(Ga → Fx),Ga → ∃x F x
6. ∃x(Fx → Ga),∀x F x → Ga

NB: the variable ‘x ’ does not occur in ‘Ga’. When all the quantifiers occur at the be-
ginning of a sentence, that sentence is said to be in prenex normal form. These equiv-
alences are sometimes called prenexing rules, since they give us a means for putting
any sentence into prenex normal form.



33 | Derived rules

As in the case of SL, we first introduced some rules for PL as basic (in §30), and then
added some further rules for conversion of quantifiers (in §32). In fact, the CQ rules
should be regarded as derived rules, for they can be derived from the basic rules of
§30. (The point here is as in §19.) Here is a justification for the first CQ rule:

1 ∀x¬Ax
2 ∃xAx
3 Ac

4 ¬Ac ∀E 1

5 ⊥ ⊥I 4, 3

6 ⊥ ∃E 2, 3–5

7 ¬∃xAx ¬I 2–6

Here is a justification of the third CQ rule:

1 ∃x¬Ax
2 ∀xAx
3 ¬Ac

4 Ac ∀E 2

5 ⊥ ⊥I 3, 4

6 ⊥ ∃E 1, 3–5

7 ¬∀xAx ¬I 2–6

This explains why the CQ rules can be treated as derived. Similar justifications can be
offered for the other two CQ rules.
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Practice exercises
A.Offer proofs which justify the addition of the second and fourthCQ rules as derived
rules.



34 | Proof-theoretic and semantic con-
cepts

We have used two different turnstiles in this book. This:

A1,A2, . . . ,An ⊢ C

means that there is some proof which starts with assumptions A1,A2, . . . ,An and
ends with C (and no undischarged assumptions other than A1,A2, . . . ,An). This is a
proof-theoretic notion.

By contrast, this:
A1,A2, . . . ,An � C

means that no valuation (or interpretation) makes all of A1,A2, . . . ,An true and C

false. This concerns assignments of truth and falsity to sentences. It is a semantic
notion.

It cannot be emphasized enough that these are different notions. But we can em-
phasize it a bit more: They are different notions.

Once you have internalised this point, continue reading.
Although our semantic and proof-theoretic notions are different, there is a deep

connection between them. To explain this connection,we will start by considering the
relationship between tautologies and theorems.

To show that a sentence is a theorem, you need only produce a proof. Granted, it
may be hard to produce a twenty line proof, but it is not so hard to check each line of
the proof and confirm that it is legitimate; and if each line of the proof individually is
legitimate, then the whole proof is legitimate. Showing that a sentence is a tautology,
though, requires reasoning about all possible interpretations. Given a choice between
showing that a sentence is a theorem and showing that it is a tautology, it would be
easier to show that it is a theorem.

Contrawise, to show that a sentence is not a theorem is hard. We would need
to reason about all (possible) proofs. That is very difficult. However, to show that a
sentence is not a tautology, you need only construct an interpretation in which the
sentence is false. Granted, it may be hard to come up with the interpretation; but once
you have done so, it is relatively straightforward to check what truth value it assigns
to a sentence. Given a choice between showing that a sentence is not a theorem and
showing that it is not a tautology, it would be easier to show that it is not a tautology.
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Fortunately, a sentence is a theorem if and only if it is a tautology. As a result, if we
provide a proof of Aon no assumptions, and thus show that A is a theorem, i.e. ⊢ A,
we can legitimately infer that A is a tautology, i.e., � A. Similarly, if we construct an
interpretation in which A is false and thus show that it is not a tautology, i.e. 2 A, it
follows that A is not a theorem, i.e. 0 A.

More generally, we have the following powerful result:

A1,A2, . . . ,An ⊢ B iff A1,A2, . . . ,An � B

This shows that, whilst provability and entailment are different notions, they are ex-
tensionally equivalent. As such:

• An argument is valid iff the conclusion can be proved from the premises.
• Two sentences are logically equivalent iff they are provably equivalent.
• Sentences are satisfiable iff they are not provably inconsistent.

For this reason, you can pick and choose when to think in terms of proofs and when
to think in terms of valuations/interpretations, doing whichever is easier for a given
task. The table on the next page summarises which is (usually) easier.

It is intuitive that provability and semantic entailment should agree. But—let us
repeat this—do not be fooled by the similarity of the symbols ‘�’ and ‘⊢’. These two
symbols have very different meanings. The fact that provability and semantic entail-
ment agree is not an easy result to come by.

In fact, demonstrating that provability and semantic entailment agree is, very de-
cisively, the point at which introductory logic becomes intermediate logic.
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A | Symbolic notation

1.1 Alternative nomenclature

Sentence logic. SL goes by other names. Sometimes it is called truth-functional logic,
to emphasize the fact that it deals only with assignments of truth and falsity to sen-
tences, and that its connectives are all truth-functional. Sometimes it is called propo-
sitional logic, on the idea that it deals fundamentally with propositions.

Predicate logic. PL goes by other names. Sometimes it is called first-order logic, in
contrast to second-order logic, which allows you to use quantify over predicates as
well as names. That is, in second-order logic, you can write ‘∀X ∃Y (X a ↔ Y a)’.
Sometimes PL is called quantified logic, because it makes use of quantifiers.

Sentences. Some texts call sentences well-formed formulas. Since ‘well-formed for-
mula’ is such a long and cumbersome phrase, they then abbreviate this as wff. This is
both barbarous and unnecessary (such texts do not countenance ‘ill-formed formu-
las’). We have stuck with ‘sentence’.

Valuations. Some texts call valuations truth-assignments, or truth-value assign-
ments.

Expressive adequacy. Some texts describe TFL as truth-functionally complete, rather
than expressively adequate.

n-place predicates. We have chosen to call predicates ‘one-place’, ‘two-place’, ‘three-
place’, etc. Other texts respectively call them ‘monadic’, ‘dyadic’, ‘triadic’, etc. Still other
texts call them ‘unary’, ‘binary’, ‘ternary’, etc.

Names. In PL, we have used ‘a’, ‘b ’, ‘c ’, for names. Some texts call these ‘constants’.
Other texts do not mark any difference between names and variables in the syntax.
Those texts focus simply on whether the symbol occurs bound or unbound.

Domains. Some texts describe a domain as a ‘domain of discourse’, or a ‘universe of
discourse’.
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1.2 Alternative symbols

In the history of formal logic, different symbols have been used at different times and
by different authors. Often, authors were forced to use notation that their printers
could typeset. This appendix presents some common symbols, so that you can recog-
nize them if you encounter them in an article or in another book.

Negation. Two commonly used symbols are the hoe, ‘¬’, and the swung dash or tilda,
‘∼.’ In some more advanced formal systems it is necessary to distinguish between two
kinds of negation; the distinction is sometimes represented by using both ‘¬’ and ‘∼’.
Older texts sometimes indicate negation by a line over the formula being negated, e.g.,
A ∧ B . Some texts use ‘x , y ’ to abbreviate ‘¬x = y ’.

Disjunction. The symbol ‘∨’ is typically used to symbolize inclusive disjunction.
One etymology is from the Latin word ‘vel’, meaning ‘or’.

Conjunction. Conjunction is often symbolized with the ampersand, ‘&’. The am-
persand is a decorative form of the Latin word ‘et’, which means ‘and’. This symbol is
commonly used in natural English writing (e.g. ‘Smith & Sons’), and so even though it
is a natural choice, many logicians use a different symbol to avoid confusion between
the object and metalanguage: as a symbol in a formal system, the ampersand is not
the English word ‘&’. The most common choice now is ‘∧’, which is a counterpart to
the symbol used for disjunction. Sometimes a single dot, ‘•’, is used. In some older
texts, there is no symbol for conjunction at all; ‘A and B ’ is simply written ‘AB ’.

Material Conditional. There are a few common symbols for the material condi-
tional: the arrow, ‘→’, and the hook, ‘⊃’. Some texts use ‘⇒’.

Material Biconditional. The double-headed arrow, ‘↔’, is used in systems that use
the arrow to represent the material conditional. Systems that use the hook for the
conditional typically use the triple bar, ‘≡’, for the biconditional. Those that use ‘⇒’
for the material conditional use ‘⇔’ for the biconditional.

Quantifiers. The universal quantifier is typically symbolized as a rotated ‘A’, and the
existential quantifier as a rotated, ‘E’. In some texts, there is no separate symbol for the
universal quantifier. Instead, the variable is just written in parentheses in front of the
formula that it binds. For example, they might write ‘(x)P x ’ where we would write
‘∀x P x ’.

These alternative typographies are summarised below:
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negation ¬A, ∼A, A
conjunction A∧ B, A&B, A • B, AB

disjunction A∨ B

conditional A→ B, A⊃ B, A⇒ B

biconditional A↔ B, A≡ B, A⇔ B

universal quantifier ∀x A, (x)A



B | Alternative proof systems

In formulating our natural deduction system, we treated certain rules of natural de-
duction as basic, and others as derived. However, we could equally well have taken
various different rules as basic or derived. We will illustrate this point by considering
some alternative treatments of negation, disjunction, and the quantifiers.

2.1 Alternative negation rules

Some systems take the following rule as their basic negation introduction rule:

m A

n − 1 B

n ¬B

¬A ¬I* m–n

and a corresponding version of ¬E as their basic negation elimination rule:

m ¬A

n − 1 B

n ¬B

A ¬E* m–n

Using these two rules, we could we could have avoided all use of the symbol ‘⊥’ alto-
gether.1 The resulting system would have had fewer rules than ours.

Another way to deal with negation is to use either LEM or DNE as a basic rule and
introduce ¬E as a derived rule.

1 Again, P.D. Magnus’s original version of this book went the other way.
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2.2 Alternative disjunction elimination

Some systems take DS as their basic rule for disjunction elimination. Such systems
can then treat the ∨E rule as a derived rule. For they might offer the following proof
scheme:

m A∨ B

i A

j C

k B

l C

n A→ C →I i– j

n + 1 B→ C →I k–l

n + 2 ¬C

n + 3 A

n + 4 C →E n + 3, n

n + 5 ⊥ ⊥I n + 2, n + 4

n + 6 ¬A ¬I n + 3–n + 5

n + 7 B DS m, n + 6

n + 8 C →E n + 7, n + 1

n + 9 ⊥ ⊥I n + 2, n + 8

n + 10 C ¬E n + 2–n + 9

So why did we choose to take ∨E as basic, rather than DS?2 Our reasoning is that DS
involves the use of ‘¬’ in the statement of the rule. It is in some sense ‘cleaner’ for our
disjunction elimination rule to avoid mentioning other connectives.

2.3 Alternative quantification rules

An alternative approach to the quantifiers is to take as basic the rules for ∀I and ∀E
from §30, and also two CQ rule which allow us to move from ∀x¬A to ¬∃xA and
vice versa.3

2 P.D. Magnus’s original version of this book went the other way.
3 Warren Goldfarb follows this line in Deductive Logic, 2003, Hackett Publishing Co.
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Taking only these rules as basic, we could have derived the ∃I and ∃E rules pro-
vided in §30. To derive the ∃I rule is fairly simple. Suppose A contains the name c,
and contains no instances of the variable x, and that we want to do the following:

m A(. . . c . . . c . . .)

k ∃xA(. . .x . . . c . . .)

This is not yet permitted, since in this new system, we do not have the ∃I rule. We
can, however, offer the following:

m A(. . . c . . . c . . .)

m + 1 ¬∃xA(. . .x . . . c . . .)
m + 2 ∀x¬A(. . .x . . . c . . .) CQ m + 1

m + 3 ¬A(. . . c . . . c . . .) ∀E m + 2

m + 4 ⊥ ⊥I m + 3, m

m + 5 ∃xA(. . .x . . . c . . .) ¬E m + 1–m + 4

To derive the ∃E rule is rather more subtle. This is because the ∃E rule has an impor-
tant constraint (as, indeed, does the ∀I rule), and we need to make sure that we are
respecting it. So, suppose we are in a situation where we want to do the following:

m ∃xA(. . .x . . .x . . .)
i A(. . . c . . . c . . .)

j B

k B

where c does not occur in any undischarged assumptions, or in B, or in
∃xA(. . .x . . .x . . .). Ordinarily, we would be allowed to use the ∃E rule; but we
are not here assuming that we have access to this rule as a basic rule. Nevertheless, we
could offer the following, more complicated derivation:
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m ∃xA(. . .x . . .x . . .)
i A(. . . c . . . c . . .)

j B

k A(. . . c . . . c . . .) → B →I i– j

k + 1 ¬B

k + 2 ¬A(. . . c . . . c . . .) MT k , k + 1

k + 3 ∀x¬A(. . .x . . .x . . .) ∀I k + 2

k + 4 ¬∃xA(. . .x . . .x . . .) CQ k + 3

k + 5 ⊥ ⊥I k + 4, m

k + 6 B ¬E k + 1–k + 5

We are permitted to use∀I on line k+3 because cdoes not occur in any undischarged
assumptions or inB. The entries on linesk+4 andk+1 contradict each other, because
cdoes not occur in ∃xA(. . .x . . .x . . .).

Armed with these derived rules, we could now go on to derive the two remaining
CQ rules, exactly as in §33.

So, why did we start with all of the quantifier rules as basic, and then derive the
CQ rules?

Our first reason is that it seems more intuitive to treat the quantifiers as on a par
with one another, giving them their own basic rules for introduction and elimination.

Our second reason relates to the discussion of alternative negation rules. In the
derivations of the rules of ∃I and ∃E that we have offered in this section, we in-
voked ¬E. But, as we mentioned earlier, ¬E is a contentious rule. So, if we want to
move to a systemwhich abandons¬E, but which still allows us to use existential quan-
tifiers, we will want to take the introduction and elimination rules for the quantifiers
as basic, and take the CQ rules as derived. (Indeed, in a system without ¬E, LEM, and
DNE, we will be unable to derive the CQ rule which moves from ¬∀xA to ∃x¬A.)



C | Quick reference

3.1 Characteristic Truth Tables

A ¬A
T F
F T

A B A∧ B A∨ B A→ B A↔ B

T T T T T T
T F F T F F
F T F T T F
F F F F T T

3.2 Symbolization

Sentential Connectives

It is not the case that P ¬P
Either P orQ (P ∨Q )

Neither P norQ ¬(P ∨Q ) or (¬P ∧ ¬Q )
Both P andQ (P ∧Q )

If P thenQ (P → Q )
P only ifQ (P → Q )

P if and only ifQ (P ↔ Q )
P unlessQ (P ∨Q )

Predicates

All F s areG s ∀x(Fx → Gx)
Some F s areG s ∃x(Fx ∧Gx)

Not all F s areG s ¬∀x(Fx → Gx) or
∃x(Fx ∧ ¬Gx)

No F s areG s ∀x(Fx → ¬Gx) or
¬∃x(Fx ∧Gx)
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3.3 Basic deduction rules for SL

Conjunction

m A

n B

A∧ B ∧I m, n

m A∧ B

A ∧E m

m A∧ B

B ∧E m

Conditional

i A

j B

A→ B →I i– j

m A→ B

n A

B →E m, n

Negation

i A

j ⊥

¬A ¬I i– j

i ¬A

j ⊥

A ¬E i– j

Contradiction

m ¬A

n A

⊥ ⊥I m, n

m ⊥

A ⊥E m

Disjunction

m A

A∨ B ∨I m

m A

B∨ A ∨I m

m A∨ B

i A

j C

k B

l C

C ∨E m, i– j , k–l
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Biconditional

i A

j B

k B

l A

A↔ B ↔I i– j , k–l

m A↔ B

n A

B ↔E m, n

m A↔ B

n B

A ↔E m, n
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3.4 Derived rules for SL

Disjunctive syllogism

m A∨ B

n ¬A

B DS m, n

m A∨ B

n ¬B

A DS m, n

Reiteration

m A

A R m

Modus Tollens

m A→ B

n ¬B

¬A MT m, n

Double-negation elimination

m ¬¬A

A DNEm

Excluded middle

i A

j B

k ¬A

l B

B LEM i– j , k–l

De Morgan Rules

m ¬(A∨ B)

¬A∧ ¬B DeM m

m ¬A∧ ¬B

¬(A∨ B) DeM m

m ¬(A∧ B)

¬A∨ ¬B DeM m

m ¬A∨ ¬B

¬(A∧ B) DeM m
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3.5 Basic deduction rules for PL

Universal elimination

m ∀xA(. . .x . . .x . . .)
A(. . . c . . . c . . .) ∀E m

Universal introduction

m A(. . . c . . . c . . .)

∀xA(. . .x . . .x . . .) ∀I m

cmust not occur in any undischarged
assumption
xmust not occur in
A(. . . c . . . c . . .)

Existential introduction

m A(. . . c . . . c . . .)

∃xA(. . .x . . . c . . .) ∃I m
xmust not occur in
A(. . . c . . . c . . .)

Existential elimination

m ∃xA(. . .x . . .x . . .)
i A(. . . c . . . c . . .)

j B

B ∃E m, i– j

c must not occur in any undischarged
assumption, in ∃xA(. . .x . . .x . . .), or
in B

3.6 Derived rules for PL

m ∀x¬A
¬∃xA CQ m

m ¬∃xA
∀x¬A CQ m

m ∃x¬A
¬∀xA CQ m

m ¬∀xA
∃x¬A CQ m
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In the Introduction to his volume Symbolic Logic,
Charles Lutwidge Dodson advised: “When you
come to any passage you don’t understand, read
it again: if you still don’t understand it, read it
again: if you fail, even after three readings, very
likely your brain is getting a little tired. In that
case, put the book away, and take to other occu-
pations, and next day, when you come to it fresh,
you will very likely find that it is quite easy.”

The same might be said for this volume, although
readers are forgiven if they take a break for snacks
after two readings.


	Table of Contents
	Preface
	I Key notions of logic
	1 Arguments
	2 Valid arguments
	3 Other logical notions

	II Sentence Logic
	4 First steps to symbolization
	5 Logical Operators
	6 Sentences of SL
	7 Use and mention

	III Semantics for Sentence Logic
	8 Characteristic truth tables
	9 Truth-functional operators
	10 Complete truth tables
	11 Semantic concepts
	12 Truth table shortcuts
	13 Partial truth tables

	IV Natural deduction for SL
	14 The very idea of natural deduction
	15 Basic rules for SL
	16 Constructing proofs
	17 Additional rules for SL
	18 Proof-theoretic concepts
	19 Derived rules
	20 Soundness and completeness

	V Predicate logic
	21 Building blocks of PL
	22 Sentences with one quantifier
	23 Multiple generality
	24 Sentences of PL

	VI Semantics for Predicate Logic
	25 Extensionality
	26 Truth in PL
	27 Semantic concepts
	28 Using interpretations
	29 Reasoning about interpretations

	VII Natural deduction for PL
	30 Basic rules for PL
	31 Proofs for quantifiers
	32 Conversion of quantifiers
	33 Derived rules
	34 Proof-theoretic and semantic concepts

	Appendices
	A Symbolic notation
	B Alternative proof systems
	C Quick reference


