Sentential Logic

Syntax and Semantics

PHIL 500

$$\begin{array}{cccc} (\neg P \wedge Q) & & \neg (P \wedge Q) \\ \hline \neg P & Q & & (P \wedge Q) \\ | & & & \\ P & & & P & O \\ \end{array}$$

1

Outline

The Language SL

Syntax for SL

Semantics for SL

Outline

The Language SL

Syntax for SL

Semantics for SL

The Plan

• Construct an artificial language, 'SL', within which we can be incredibly precise about which arguments are deductively valid and which are deductively invalid.

The Plan

- Construct an artificial language, 'SL', within which we can
 be incredibly precise about which arguments are
 deductively valid and which are deductively invalid.
- Provide a method for translating statements of English into SL and statements of SL into English

The Plan

- Construct an artificial language, 'SL', within which we can
 be incredibly precise about which arguments are
 deductively valid and which are deductively invalid.
- Provide a method for translating statements of English into SL and statements of SL into English
- The advantage: we can theorize about relations of deductive validity without having to worry about the ambiguity of English

• To specify a language, we need to provide:

- To specify a language, we need to provide:
 - a vocabulary for the language

- To specify a language, we need to provide:
 - a vocabulary for the language
 - e.g., a list of the words of English and their parts of speech

- To specify a language, we need to provide:
 - a vocabulary for the language
 - e.g., a list of the words of English and their parts of speech
 - a grammar for the language

- To specify a language, we need to provide:
 - a vocabulary for the language
 - e.g., a list of the words of English and their parts of speech
 - a grammar for the language
 - *e.g.*, rules for saying which strings of words are grammatical and which aren't

- To specify a language, we need to provide:
 - a vocabulary for the language
 - e.g., a list of the words of English and their parts of speech
 - a grammar for the language
 - e.g., rules for saying which strings of words are grammatical and which aren't 'Bubbie makes pickles' √

- To specify a language, we need to provide:
 - a vocabulary for the language
 - e.g., a list of the words of English and their parts of speech
 - a grammar for the language
 - e.g., rules for saying which strings of words are grammatical and which aren't 'Bubbie makes pickles' √
 - 'Up bouncy ball door John variously catapult' ×

- To specify a language, we need to provide:
 - a vocabulary for the language
 - e.g., a list of the words of English and their parts of speech
 - a grammar for the language
 - e.g., rules for saying which strings of words are grammatical and which aren't 'Bubbie makes pickles' ✓
 'Up bouncy ball door John variously catapult' ×
 - a way to interpret the *meaning* of every grammatical expression of the language

- To specify a language, we need to provide:
 - a vocabulary for the language
 - e.g., a list of the words of English and their parts of speech
 - a grammar for the language
 - e.g., rules for saying which strings of words are grammatical and which aren't 'Bubbie makes pickles' ✓
 'Up bouncy ball door John variously catapult' ×
 - a way to interpret the *meaning* of every grammatical expression of the language
 - *e.g.*, a dictionary entry for every word of English and rules for constructing the meaning of sentences out of the meanings of words

Outline

The Language SL

Syntax for SL

Semantics for SL

• The vocabulary of SL includes the following symbols:

- The vocabulary of SL includes the following symbols:
 - 1. An infinite number of statement letters:

$$A, B, C, ..., Y, Z, A_1, B_1, C_1, ..., Y_1, Z_1, A_2, B_2, C_2, ...$$

- The vocabulary of SL includes the following symbols:
 - 1. An infinite number of statement letters:

$$A, B, C, ..., Y, Z, A_1, B_1, C_1, ..., Y_1, Z_1, A_2, B_2, C_2, ...$$

2. logical operators:

$$\neg, \wedge, \vee, \rightarrow, \leftrightarrow$$

- The vocabulary of SL includes the following symbols:
 - 1. An infinite number of statement letters:

$$A, B, C, ..., Y, Z, A_1, B_1, C_1, ..., Y_1, Z_1, A_2, B_2, C_2, ...$$

2. logical operators:

$$\neg, \land, \lor, \rightarrow, \leftrightarrow$$

3. parenthases

(,)

- The vocabulary of SL includes the following symbols:
 - 1. An infinite number of statement letters:

$$A, B, C, ..., Y, Z, A_1, B_1, C_1, ..., Y_1, Z_1, A_2, B_2, C_2, ...$$

2. logical operators:

$$\neg, \wedge, \vee, \rightarrow, \leftrightarrow$$

3. parenthases

(,)

• Nothing else is included in the vocabulary of SL.

• Any sequence of the symbols in the vocabulary of SL is an *expression* of SL.

• Any sequence of the symbols in the vocabulary of SL is an *expression* of SL.

$$(((()A_{23} \land \land \rightarrow \rightarrow Z$$

$$P \to (Q) \supset \land ())$$

$$(P \to (Q \to (R \to (S \to T))))$$

$$A \land B \land (C \neg D)))$$

• Any sequence of the symbols in the vocabulary of SL is an *expression* of SL.

$$(((()A_{23} \land \land \longrightarrow Z$$

$$P \to (Q) \supset \land ())$$

$$(P \to (Q \to (R \to (S \to T))))$$

$$A \land B \land (C \neg D)))$$

9

• We define a *sentence* of SL with the following rules.

- We define a *sentence* of SL with the following rules.
 - *SL*) Any statement letter, by itself, is a sentence.

- We define a *sentence* of SL with the following rules.
 - *SL*) Any statement letter, by itself, is a sentence.
 - \neg) If ' \mathcal{A} ' is a sentence, then ' $\neg \mathcal{A}$ ' is a sentence.

- We define a *sentence* of SL with the following rules.
 - *SL*) Any statement letter, by itself, is a sentence.
 - \neg) If ' \varnothing ' is a sentence, then ' $\neg \varnothing$ ' is a sentence.
 - \wedge) If 'A' and 'B' are sentences, then '(A \wedge B)' is a sentence.

- We define a *sentence* of SL with the following rules.
 - *SL*) Any statement letter, by itself, is a sentence.
 - \neg) If ' \mathcal{A} ' is a sentence, then ' $\neg \mathcal{A}$ ' is a sentence.
 - \wedge) If 'A' and 'B' are sentences, then '(A \wedge B)' is a sentence.
 - \vee) If 'A' and 'B' are sentences, then '(A \vee B)' is a sentence.

- We define a *sentence* of SL with the following rules.
 - *SL*) Any statement letter, by itself, is a sentence.
 - \neg) If ' \varnothing ' is a sentence, then ' $\neg \varnothing$ ' is a sentence.
 - \wedge) If 'A' and 'B' are sentences, then '(A \wedge B)' is a sentence.
 - \vee) If 'A' and 'B' are sentences, then '(A \vee B)' is a sentence.
 - \rightarrow) If 'A' and 'B' are sentences, then '(A \rightarrow B)' is a sentence.

- We define a *sentence* of SL with the following rules.
 - *SL*) Any statement letter, by itself, is a sentence.
 - \neg) If ' \varnothing ' is a sentence, then ' $\neg \varnothing$ ' is a sentence.
 - \wedge) If ' \mathcal{A} ' and ' \mathcal{R} ' are sentences, then '($\mathcal{A} \wedge \mathcal{R}$)' is a sentence.
 - \vee) If 'A' and 'B' are sentences, then '(A \vee B)' is a sentence.
 - \rightarrow) If 'A' and 'B' are sentences, then '(A \rightarrow B)' is a sentence.
 - \leftrightarrow) If 'A' and 'B' are sentences, then '(A \leftrightarrow B)' is a sentence.

- We define a *sentence* of SL with the following rules.
 - *SL*) Any statement letter, by itself, is a sentence.
 - \neg) If ' \varnothing ' is a sentence, then ' $\neg \varnothing$ ' is a sentence.
 - \wedge) If 'A' and 'B' are sentences, then '(A \wedge B)' is a sentence.
 - \vee) If 'A' and 'B' are sentences, then '(A \vee B)' is a sentence.
 - \rightarrow) If 'A' and 'B' are sentences, then '(A \rightarrow B)' is a sentence.
 - \leftrightarrow) If 'A' and 'B' are sentences, then '(A \leftrightarrow B)' is a sentence.
 - –) Nothing else is a sentence.

Meta-variables

Meta-variables

- ▶ 'A' and 'B' do not appear in the vocabulary of SL.
- ➤ They are *metavariables*—variables whose potential values are sentences of SL.

• To show that $(\neg(P \lor Q) \to R)$ is a sentence:

- To show that $(\neg (P \lor Q) \to R)$ is a sentence:
 - a) 'P' is a sentence

[from (SL)]

• To show that $(\neg (P \lor Q) \to R)$ is a sentence:

a) 'P' is a sentence

[from (SL)]

b) 'Q' is a sentence

[from (*SL*)]

• To show that $(\neg (P \lor Q) \to R)$ is a sentence:

```
a) 'P' is a sentence [from (SL)]
```

- b) 'Q' is a sentence [from (SL)]
- c) So, $(P \lor Q)$ is a sentence [from (a) and (b) and (\lor)]

• To show that $(\neg (P \lor Q) \to R)$ is a sentence:

```
a) 'P' is a sentence [from (SL)]
```

- b) 'Q' is a sentence [from (SL)]
- c) So, $(P \lor Q)$ is a sentence [from (a) and (b) and (\lor)]
- d) So, ' $\neg (P \lor Q)$ ' is a sentence [from (c) and (\neg)]

• To show that $(\neg (P \lor Q) \to R)$ is a sentence:

```
a) 'P' is a sentence [from (SL)]
b) 'Q' is a sentence [from (SL)]
c) So, '(P \lor Q)' is a sentence [from (a) and (b) and (\lor)]
```

d) So, ' $\neg (P \lor Q)$ ' is a sentence [from (c) and (\neg)]

e) 'R' is a sentence [from (SL)]

• To show that $(\neg (P \lor Q) \to R)$ is a sentence:

```
a) 'P' is a sentence [from (SL)]
```

- b) 'Q' is a sentence [from (SL)]
- c) So, $(P \lor Q)$ is a sentence [from (a) and (b) and (\lor)]
- d) So, ' $\neg (P \lor Q)$ ' is a sentence [from (c) and (\neg)]
- e) 'R' is a sentence [from (SL)]
- f) So, $(\neg (P \lor Q) \to R)$ is a sentence [from (d), (e), and (\to)]

 ${} \triangleright \ (\neg A) \to (\neg B)?$

$${\bf \triangleright}\ (\neg A) \to (\neg B)$$

- $\triangleright (\neg A) \to (\neg B)$
- $\, \triangleright \, ((\mathscr{A} \to \mathscr{B}) \to (\mathscr{B} \to \mathscr{A}))?$

• We will allow ourselves to omit the outermost parenthases, writing ' $\neg(P \lor Q) \to R$ ' instead of ' $(\neg(P \lor Q) \to R)$ '

- We will allow ourselves to omit the outermost parenthases, writing ' $\neg(P \lor Q) \to R$ ' instead of ' $(\neg(P \lor Q) \to R)$ '
 - ▶ Note: we *don't* drop them in '¬ $(P \land Q)$ '.

- We will allow ourselves to omit the outermost parenthases, writing ' $\neg(P \lor Q) \to R$ ' instead of ' $(\neg(P \lor Q) \to R)$ '
 - ▶ Note: we *don't* drop them in ' \neg ($P \land Q$)'.
- We will allow ourselves to use square brackets in addition to parentheses, for clarity.

- We will allow ourselves to omit the outermost parenthases, writing ' $\neg(P \lor Q) \to R$ ' instead of ' $(\neg(P \lor Q) \to R)$ '
 - ▶ Note: we *don't* drop them in ' \neg ($P \land Q$)'.
- We will allow ourselves to use square brackets in addition to parentheses, for clarity.

$${} \triangleright \ ((A \lor B) \land (A \longleftrightarrow S)) \to ((R \land T) \to \neg Q)$$

- We will allow ourselves to omit the outermost parenthases, writing ' $\neg(P \lor Q) \to R$ ' instead of ' $(\neg(P \lor Q) \to R)$ '
 - ▶ Note: we *don't* drop them in ' \neg ($P \land Q$)'.
- We will allow ourselves to use square brackets in addition to parentheses, for clarity.

$$\triangleright ((A \lor B) \land (A \longleftrightarrow S)) \to ((R \land T) \to \neg Q)$$

$${} \triangleright \ [(A \lor B) \land (A \longleftrightarrow S)] \to [(R \land T) \to \neg Q]$$

A sentence's *main operator* is just the operator associated
with the last rule which would have to be applied if we were
building the formula up by applying the rules for sentences.

- A sentence's *main operator* is just the operator associated with the last rule which would have to be applied if we were building the formula up by applying the rules for sentences.
- E.g., what is the main operator of ' $\neg P \land Q$ '?

- A sentence's *main operator* is just the operator associated
 with the last rule which would have to be applied if we were
 building the formula up by applying the rules for sentences.
- E.g., what is the main operator of ' $\neg P \land Q$ '?
 - a) 'P' is a sentence

[from (SL)]

- A sentence's *main operator* is just the operator associated with the last rule which would have to be applied if we were building the formula up by applying the rules for sentences.
- E.g., what is the main operator of ' $\neg P \land Q$ '?
 - a) 'P' is a sentence [from (SL)]
 - b) So, ' $\neg P$ ' is a sentence [from (a) and (\neg)]

- A sentence's *main operator* is just the operator associated with the last rule which would have to be applied if we were building the formula up by applying the rules for sentences.
- E.g., what is the main operator of ' $\neg P \land Q$ '?

```
a) 'P' is a sentence [from (SL)]
b) So, '\negP' is a sentence [from (a) and (\neg)]
```

c) 'Q' is a sentence [from (SL)]

- A sentence's *main operator* is just the operator associated with the last rule which would have to be applied if we were building the formula up by applying the rules for sentences.
- E.g., what is the main operator of ' $\neg P \land Q$ '?

```
a) 'P' is a sentence [from (SL)]
b) So, '¬P' is a sentence [from (a) and (¬)]
c) 'O' is a sentence [from (SL)]
```

d) So, $(\neg P \land Q)$ is a sentence [from (b), (c), and (\land)]

- A sentence's *main operator* is just the operator associated with the last rule which would have to be applied if we were building the formula up by applying the rules for sentences.
- E.g., what is the main operator of ' $\neg P \land Q$ '?
 - a) 'P' is a sentence [from (SL)]
 - b) So, ' $\neg P$ ' is a sentence [from (a) and (\neg)]
 - c) 'Q' is a sentence [from (SL)]
 - d) So, $(\neg P \land Q)$ is a sentence [from (b), (c), and (\land)]
- So, the main operator is '∧'

 What if we had applied the rule (∧) first, and then applied the rule (¬)?

 What if we had applied the rule (∧) first, and then applied the rule (¬)?

a) 'P' is a sentence

[from (SL)]

 What if we had applied the rule (∧) first, and then applied the rule (¬)?

```
a) 'P' is a sentence [from (SL)]
```

b) 'Q' is a sentence [from (SL)]

 What if we had applied the rule (∧) first, and then applied the rule (¬)?

```
a) 'P' is a sentence [from (SL)]
b) 'Q' is a sentence [from (SL)]
```

c) So, $(P \land Q)$ is a sentence [from (a), (b), and (\land)]

 What if we had applied the rule (∧) first, and then applied the rule (¬)?

```
a) 'P' is a sentence
```

[from (SL)]

b) 'Q' is a sentence

[from (SL)]

c) So, ' $(P \wedge Q)$ ' is a sentence

[from (a), (b), and (\land)]

d) So, ' $\neg (P \land Q)$ ' is a sentence

[from (c) and (\neg)]

 What if we had applied the rule (∧) first, and then applied the rule (¬)?

```
a) 'P' is a sentence [from (SL)]
b) 'Q' is a sentence [from (SL)]
c) So, '(P \land Q)' is a sentence [from (a), (b), and (\land)]
d) So, '\neg (P \land Q)' is a sentence [from (c) and (\neg)]
```

• '¬ $(P \land Q)$ ' is not the same sentence as '(¬ $P \land Q$)'

Subsentences

• '\mathbb{R}' is a *subsentence* of '\mathbb{A}' if and only if, in the course of building up '\mathbb{A}' by applying the rules for sentences, '\mathbb{R}' appears on a line before '\mathbb{A}'.

Subsentences

- '\mathfrak{C}' is a *subsentence* of '\mathfrak{A}' if and only if, in the course of building up '\mathfrak{A}' by applying the rules for sentences, '\mathfrak{C}' appears on a line before '\mathfrak{A}'.
 - ' $\neg P$ ' is a subsentence of ' $\neg P \land Q$ '

Subsentences

- '\mathfrak{C}' is a *subsentence* of '\mathfrak{A}' if and only if, in the course of building up '\mathfrak{A}' by applying the rules for sentences, '\mathfrak{C}' appears on a line before '\mathfrak{A}'.
 - ' $\neg P$ ' is a subsentence of ' $\neg P \land Q$ '
 - ' $\neg P$ ' is *not* a subsentence of ' $\neg (P \land Q)$ '

Syntactic Structure

$$(\neg(P \lor Q) \to R)$$

$$| (\to)$$

$$\neg(P \lor Q) \qquad R$$

$$| \qquad | \qquad |$$

$$(\neg) \qquad (SL)$$

$$| \qquad |$$

$$(V)$$

$$P \qquad Q$$

$$| \qquad | \qquad |$$

$$(SL) \qquad (SL)$$

Syntactic Structure

Syntactic Structure

$$(\neg P \land Q)$$

$$\neg P Q$$

$$|$$

$$P$$

$$\neg (P \land Q)$$

$$|$$

$$(P \land Q)$$

$$\widehat{P \quad Q}$$

• The *scope* of a logical operator (in a sentence) is the sub-sentence for which that operator is the main operator.

- The *scope* of a logical operator (in a sentence) is the sub-sentence for which that operator is the main operator.
- ▶ The scope of '¬' in

$$\neg(P \land Q) \to (R \leftrightarrow S)$$

- The *scope* of a logical operator (in a sentence) is the sub-sentence for which that operator is the main operator.
- ▶ The scope of '¬' in

$$\neg (P \land Q) \to (R \leftrightarrow S)$$

- The *scope* of a logical operator (in a sentence) is the sub-sentence for which that operator is the main operator.
- ▶ The scope of '¬' in

$$\neg (P \land Q) \to (R \leftrightarrow S)$$

ightharpoonup The scope of ' \wedge ' in

$$\neg[(A \leftrightarrow B) \land (S \lor \neg T)]$$

- The *scope* of a logical operator (in a sentence) is the sub-sentence for which that operator is the main operator.
- ▶ The scope of '¬' in

$$\neg (P \land Q) \to (R \leftrightarrow S)$$

▶ The scope of '∧' in

$$\neg[(A \leftrightarrow B) \land (S \lor \neg T)]$$

Outline

The Language SL

Syntax for SL

Semantics for SL

Meaning

 Our guiding assumption: what it is to understand the meaning of an expression is just to understand the circumstances in which it is true

Meaning

- Our guiding assumption: what it is to understand the meaning of an expression is just to understand the circumstances in which it is true
- Parenthases just make syntactic structure explicit. They do not make any contribution to meaning beyond that.

Meaning

- Our guiding assumption: what it is to understand the meaning of an expression is just to understand the circumstances in which it is true
- Parenthases just make syntactic structure explicit. They do not make any contribution to meaning beyond that.
- So: we must say what the meanings of the statements letters are and what the meanings of the logical operators are

The Meaning of the Statement Letters

• Each statement letter represents a statement in English.

The Meaning of the Statement Letters

- Each statement letter represents a statement in English.
- The statement letter is true if and only if the statement in English is true.

• A sentence with ' \neg ' as its main operator is called a *negation*.

• A sentence with ' \neg ' as its main operator is called a *negation*.

$$egin{array}{c|c} \mathcal{A} & \neg \mathcal{A} \\ \hline T & F \\ F & T \\ \hline \end{array}$$

• A sentence with ' \neg ' as its main operator is called a *negation*.

$$egin{array}{c|c} \mathcal{A} & \neg \mathcal{A} \\ \hline T & F \\ F & T \\ \hline \end{array}$$

• Note: 'A' is not a sentence of SL

• A sentence with ' \neg ' as its main operator is called a *negation*.

$$\begin{array}{c|c}
\mathcal{A} & \neg \mathcal{A} \\
\hline
T & F \\
F & T
\end{array}$$

- Note: 'A' is not a sentence of SL
 - we are using 'A' and 'B' as variables ranging over the sentences of SL

A	98	$A \wedge B$
T	T	
T	F	
F	T	
F	F	

A	98	A 1 38
T	T	T
T	F	
\boldsymbol{F}	T	
F	F	

A	98	$A \wedge B$
T	T	T
T	F	F
\boldsymbol{F}	T	
F	F	

A	98	A 1 38
T	T	T
T	F	F
\boldsymbol{F}	T	F
F	F	

\mathcal{A}	B	$A \wedge B$
\overline{T}	T	T
T	F	F
F	T	F
F	F	F

A	B	A V B
T	T	
T	F	
\boldsymbol{F}	T	
F	F	

A	98	A V B
T	T	T
T	F	
\boldsymbol{F}	T	
F	F	

A	98	$A \vee \mathcal{B}$
T	T	T
T	F	T
F	T	
F	F	

\mathcal{A}	B	$A \vee B$
T	T	T
T	F	T
\boldsymbol{F}	T	T
F	F	

\mathcal{A}	\mathfrak{B}	$A \vee B$
T	T	T
T	F	T
\boldsymbol{F}	T	T
F	F	F

The Meaning of $\stackrel{\cdot}{\rightarrow}$

A	B	$\mathcal{A} \to \mathcal{B}$
T	T	
T	F	
F	T	
F	F	

\mathcal{A}	B	$\mathcal{A} \to \mathcal{B}$
\overline{T}	T	T
T	F	F
F	T	
F	F	

\mathcal{A}	B	$\mathcal{A} \to \mathcal{B}$
T	T	T
T	F	$\boldsymbol{\mathit{F}}$
\boldsymbol{F}	T	T
F	F	

The Meaning of ' \rightarrow '

A	B	$\mathcal{A} \to \mathcal{B}$
T	T	T
T	F	F
\boldsymbol{F}	T	T
F	F	T

The Meaning of \rightarrow

 A sentence whose main operator is → is known as a conditional.

$$\begin{array}{c|cccc} \mathcal{A} & \mathcal{B} & \mathcal{A} \rightarrow \mathcal{B} \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \\ \end{array}$$

• Note: this is the only binary operator which is not symmetric.

The Meaning of '→'

- Note: this is the only binary operator which is not symmetric.
 - ' $\mathcal{A} \to \mathcal{B}$ ' does not have the same meaning as ' $\mathcal{B} \to \mathcal{A}$ '

The Meaning of \hookrightarrow

The Meaning of \leftrightarrow

A	98	$\mathcal{A} \to \mathfrak{B}$
T	T	
T	F	
F	T	
F	F	

The Meaning of \leftrightarrow

A	98	$\mathcal{A} \to \mathfrak{B}$
T	T	T
T	F	
\boldsymbol{F}	T	
F	F	

The Meaning of \leftrightarrow

A	98	$\mathcal{A} \to \mathcal{B}$
T	T	T
T	F	F
\boldsymbol{F}	T	
F	F	

The Meaning of '↔'

A	98	$\mathcal{A} \to \mathcal{B}$
\overline{T}	T	T
T	F	F
F	T	F
F	F	

The Meaning of '↔'

\mathcal{A}	98	$\mathcal{A} \to \mathcal{B}$
T	T	T
T	F	F
\boldsymbol{F}	T	F
\boldsymbol{F}	F	T

• Suppose 'P' is true and 'Q' is false

- Suppose 'P' is true and 'Q' is false
- What are the truth-values of ' $\neg P \land Q$ ' and ' $\neg (P \land Q)$ '?

- Suppose 'P' is true and 'Q' is false
- What are the truth-values of ' $\neg P \land Q$ ' and ' $\neg (P \land Q)$ '?

- Suppose 'P' is true and 'Q' is false
- What are the truth-values of ' $\neg P \land Q$ ' and ' $\neg (P \land Q)$ '?

- Suppose 'P' is true and 'Q' is false
- What are the truth-values of ' $\neg P \land Q$ ' and ' $\neg (P \land Q)$ '?

- Suppose 'P' is true and 'Q' is false
- What are the truth-values of ' $\neg P \land Q$ ' and ' $\neg (P \land Q)$ '?

- Suppose 'P' is true and 'Q' is false
- What are the truth-values of ' $\neg P \land Q$ ' and ' $\neg (P \land Q)$ '?

- Suppose 'P' is true and 'Q' is false
- What are the truth-values of ' $\neg P \land Q$ ' and ' $\neg (P \land Q)$ '?

- Suppose 'P' is true and 'Q' is false
- What are the truth-values of ' $\neg P \land Q$ ' and ' $\neg (P \land Q)$ '?

P	Q	\neg	P	\wedge	Q

P	Q	\neg	P	\wedge	Q
T	T				
T	F				
F	T				
F	F				

P	Q	$\neg P \land$	Q
T	T	T	T
T	F	T	F
F	T	F	T
F	F	F	F

P	Q	\neg	P	\land	Q
T	T	\boldsymbol{F}	T		T
T	F	\boldsymbol{F}	T		F
F	T	T	F		T
F	F	T	F		F

P	Q	\neg	P	\wedge	Q
T	T	F	T	\boldsymbol{F}	T
T	F	F	T	\boldsymbol{F}	F
F	T	T	F	T	T
F	F	T	F	\boldsymbol{F}	F

P	Q	\neg	P	٨	Q
T	T	F	T	F	T
T	F	F	T	F	F
F	T	T	F	T	T
F	F	T	F	F	F

P	Q	\neg	(P	\wedge	Q)

P	Q	$\neg (P \land$	Q)
T	T	T	T
T	F	T	\boldsymbol{F}
F	T	F	T
F	F	F	F

	Q	¬	(P	\land	Q)
T	T		T	T	T
T	F		T	\boldsymbol{F}	F
F	T		F	\boldsymbol{F}	T
F	T F T F		F	F	F

P	Q	_	(P	\wedge	Q)
T	T F	F	T	T	T
	F	T	T	F	F
F	T	T	F	F	T
F	F	T	F	F	F