Translation into SL

PHIL 500

September 11th, 2019

An argument is *valid* if and only if it is impossible for its premises to be true while its conclusion is false.

An argument form is *valid* if and only if there is no substitution instance of the argument form which has all true premises and a false conclusion.

2

• To show that an argument is valid:

- To show that an argument is valid:
- ▶ Show that it has a certain *form*

- To show that an argument is valid:
- ▶ Show that it has a certain *form*
- ▶ Show that that form is valid

- To show that an argument is valid:
- ▶ Show that it has a certain *form*
- ▶ Show that that form is valid

Preliminary Orientation

• The problem: English is messy and complicated

Preliminary Orientation

- The problem: English is messy and complicated
- The plan: introduce a formal language (SL) which is less messy and less complicated.

Preliminary Orientation

- The problem: English is messy and complicated
- The plan: introduce a formal language (SL) which is less messy and less complicated.
- SL will allow us to think about the validity of (some) argument forms

Outline

The Language SL

The Logical Operators

Negation

Conjunction

Disjunction

Conditional

Biconditional

Translation Tips

Outline

The Language SL

The Logical Operators

Negation

Conjunction

Disjunction

Conditional

Biconditional

Translation Tips

• We're going to be focused on the following statement forms:

- We're going to be focused on the following statement forms:
- ▶ It is not the case that 🖋

- We're going to be focused on the following statement forms:
- ▶ It is not the case that A
- ▶ Both ≰ and ∰

- We're going to be focused on the following statement forms:
- ▶ It is not the case that 🔏
- ▶ Both 🛭 and 🥦
- ▶ Either ≰ or €

- We're going to be focused on the following statement forms:
- ▶ It is not the case that 🔏
- ▶ Both

 and

 and

 solutions

 Both

 and

 and

 solutions

 Both

 and

 and

 solutions

 Both

 and

 and

 solutions

 Both

 and

 an
- ▶ Either ≰ or ∰
- ▶ If ᠕, then ℬ

- We're going to be focused on the following statement forms:
- ▶ It is not the case that A
- ▶ Both 🛭 and 🥦
- ▶ Either ≰ or ∰
- ▶ If ᠕, then ℬ

It is not the case that $\mathcal{A} \qquad \neg \mathcal{A}$

```
It is not the case that \mathcal{A} \neg \mathcal{A}
Both \mathcal{A} and \mathcal{B} (\mathcal{A} \land \mathcal{B})
```

It is not the case that \mathcal{A}	$\neg \mathcal{A}$
Both A and B	$(A \wedge B)$
Either A or B	$(\mathcal{A} \vee \mathcal{B})$

It is not the case that \mathcal{A}	$\neg \mathcal{A}$
Both A and B	$(A \wedge B)$
Either A or B	$(A \vee B)$
If A, then B	$(\mathcal{A} \to \mathcal{B})$

It is not the case that \mathcal{A}	$\neg A$
Both A and B	$(A \wedge B)$
Either A or B	$(A \vee B)$
If A, then B	$(\mathcal{A} \to \mathcal{B})$
A if and only if B	$(\mathcal{A} \longleftrightarrow \mathcal{B})$

• Statements without any of these forms are *atomic*

- Statements without any of these forms are *atomic*
- Atomic statements will be represented with *statement letters*

- Statements without any of these forms are *atomic*
- Atomic statements will be represented with *statement letters*
- ► E.g., we may use 'A' for 'Albino rhinos throw dough in the rodeo'

- Statements without any of these forms are *atomic*
- Atomic statements will be represented with *statement letters*
- ► E.g., we may use 'A' for 'Albino rhinos throw dough in the rodeo'
- ▶ And we may use 'B' for 'Bold marigolds got a foothold in the old scaffold.'

• We will provide a *symbolization key* to help us translate from English into SL

• We will provide a *symbolization key* to help us translate from English into SL

N : Nobody knows the trouble I've seen

A : Ants ate my car keys

S: Santa Claus exists

• We will provide a *symbolization key* to help us translate from English into SL

N : Nobody knows the trouble I've seen

A : Ants ate my car keys

S: Santa Claus exists

▶ ¬S

• We will provide a *symbolization key* to help us translate from English into SL

Nobody knows the trouble I've seen

A: Ants ate my car keys

S: Santa Claus exists

• We will provide a *symbolization key* to help us translate from English into SL

N : Nobody knows the trouble I've seen

A : Ants ate my car keys

S: Santa Claus exists

- > ¬S
- \triangleright $(N \land A)$
- $(\neg A \to S)$

• We will provide a *symbolization key* to help us translate from English into SL

N : Nobody knows the trouble I've seen

A: Ants ate my car keys

S: Santa Claus exists

- > ¬S
- $\triangleright (N \land A)$
- $\triangleright (\neg A \rightarrow S)$
- $ightharpoonup \neg (A \lor S)$

Statement letters and statement variables

• 'A' and 'B' are *variables*. They don't represent any particular statement.

Statement letters and statement variables

- 'A' and 'B' are *variables*. They don't represent any particular statement.
- 'A' and 'B' are *statement letters*. They represent a *particular* statement.

Statement letters and statement variables

- 'A' and 'B' are *variables*. They don't represent any particular statement.
- 'A' and 'B' are *statement letters*. They represent a *particular* statement.
- ► The symbolization key tells us which statements letters like 'A' and 'B' represent.

Outline

The Language SL

The Logical Operators

Negation

Conjunction

Disjunction

Conditional

Biconditional

Translation Tips

Outline

The Language SL

The Logical Operators

Negation

Conjunction

Disjunction

Conditional

Biconditional

Translation Tips

• In SL, a sentence of the form ' $\neg A$ ' is a *negation*.

- In SL, a sentence of the form ' $\neg A$ ' is a *negation*.
- '¬\mathsilean' is not the case that \mathsilean'.

• Symbolization key:

A : Abelard loves Heloise

• Symbolization key:

A: Abelard loves Heloise

▶ English: 'Abelard doesn't love Heloise'

• Symbolization key:

A: Abelard loves Heloise

English: 'Abelard doesn't love Heloise'

▶ English: 'It is not the case that Abelard loves Heloise'

• Symbolization key:

A : Abelard loves Heloise

English: 'Abelard doesn't love Heloise'

▶ English: 'It is not the case that Abelard loves Heloise'

• Symbolization key:

A: Abelard loves Heloise

- ▶ English: 'Abelard doesn't love Heloise'
- ▶ English: 'It is not the case that Abelard loves Heloise'
- ▶ SL: '¬A'

• Symbolization key:

G : I believe God exists

• Symbolization key:

G : I believe God exists

▶ English: 'I believe God doesn't exist'

• Symbolization key:

G : I believe God exists

► English: 'I believe God doesn't exist'

• Symbolization key:

G : I believe God exists

- ▶ English: 'I believe God doesn't exist'
- ▶ SL: '¬G'?

• Symbolization key:

G : I believe God exists

- ▶ English: 'I believe God doesn't exist'
- ▶ SL: '¬G'?
- ▶ No

Outline

The Language SL

The Logical Operators

Negation

Conjunction

Disjunction

Conditional

Biconditional

Translation Tips

• In SL, a sentence of the form '($\mathcal{A} \land \mathcal{B}$)' is a *conjunction*.

- In SL, a sentence of the form '($\mathcal{A} \wedge \mathcal{B}$)' is a *conjunction*.
- ▶ In this sentence, 'A' and 'B' are called *conjuncts*.

- In SL, a sentence of the form '($\mathcal{A} \wedge \mathcal{B}$)' is a *conjunction*.
- ▶ In this sentence, 'A' and 'B' are called *conjuncts*.
- '($\mathcal{A} \wedge \mathcal{B}$)' means 'Both \mathcal{A} and \mathcal{B} '.

• Symbolization key:

A : Abelard loves Heloise

H: Heloise loves Abelard

• Symbolization key:

A: Abelard loves Heloise

H: Heloise loves Abelard

▶ English: 'Abelard loves Heloise and Heloise doesn't love Abelard'

• Symbolization key:

A: Abelard loves Heloise

H: Heloise loves Abelard

- ▶ English: 'Abelard loves Heloise and Heloise doesn't love Abelard'
- ▶ SL: ' $(A \land \neg H)$ '

• Symbolization key:

A : Abelard loves Heloise

H: Heloise loves Abelard

• Symbolization key:

A: Abelard loves Heloise

H: Heloise loves Abelard

▶ English: 'Abelard loves Heloise, but Heloise doesn't love Abelard'

• Symbolization key:

A: Abelard loves Heloise

H: Heloise loves Abelard

- ► English: 'Abelard loves Heloise, but Heloise doesn't love Abelard'
- \triangleright SL: ' $(A \land \neg H)$ '

```
A and A, but A, but A, however, A, though A as well as A
```

• Symbolization key:

A : Adam will go to the party

B: Betsy will go to the party

• Symbolization key:

A : Adam will go to the party

B : Betsy will go to the party

► English: 'Adam and Betsy won't both go to the party'

• Symbolization key:

A: Adam will go to the partyB: Betsy will go to the party

- ► English: 'Adam and Betsy won't both go to the party'
- \triangleright SL: ' $\neg(A \land B)$ '

• Symbolization key:

A : Adam will go to the party*B* : Betsy will go to the party

- ► English: 'Adam and Betsy both won't go to the party'
- \triangleright SL: ' $\neg(A \land B)$ '

• Symbolization key:

A: Adam will go to the partyB: Betsy will go to the party

- ► English: 'Adam and Betsy both won't go to the party'
- \triangleright SL: ' $(\neg A \land \neg B)$ '

Outline

The Language SL

The Logical Operators

Negation

Conjunction

Disjunction

Conditional

Biconditional

Translation Tips

• In SL, a sentence of the form '($\mathcal{A} \vee \mathcal{B}$)' is a *disjunction*.

- In SL, a sentence of the form '($A \lor B$)' is a *disjunction*.
- ▶ In this sentence, 'A' and 'B' are called *disjuncts*.

- In SL, a sentence of the form '($A \lor B$)' is a *disjunction*.
- ▶ In this sentence, 'A' and 'B' are called *disjuncts*.
- '($\mathcal{A} \vee \mathcal{B}$)' means 'Either \mathcal{A} or \mathcal{B} '.

Inclusive 'or'

If 'or' is *inclusive*, then 'Either $\mathcal A$ or $\mathcal B$ ' is true when both ' $\mathcal A$ ' and ' $\mathcal B$ ' are true.

Exclusive 'or'

If 'or' is *exclusive*, then 'Either $\mathcal A$ or $\mathcal B$ ' is false when both ' $\mathcal A$ ' and ' $\mathcal B$ ' are true.

• Exclusive 'or': 'Either you clean your room or you're grounded'

- Exclusive 'or': 'Either you clean your room or you're grounded'
- Inclusive 'or': 'Either Adam or Betsy could lift that'

• In SL, '($\mathscr{A} \vee \mathscr{B}$)' translates the *inclusive* 'or'.

- In SL, '($A \vee B$)' translates the *inclusive* 'or'.
- In this class, whenever we say 'or', we mean the inclusive 'or'.

• Symbolization key:

B : Tamara bought a bicycle

M : Tamara bought a motorcycle

• Symbolization key:

B : Tamara bought a bicycle

M : Tamara bought a motorcycle

▶ English: 'Tamara bought either a bicycle or a motorcycle'

• Symbolization key:

B : Tamara bought a bicycle*M* : Tamara bought a motorcycle

- ► English: 'Tamara bought either a bicycle or a motorcycle'
- ▶ SL: '(B ∨ M)'

• Symbolization key:

B: Tamara bought a bicycleM: Tamara bought a motorcycle

▶ English: 'Tamara bought neither a bicycle nor a motorcycle'

ightharpoonup SL: ' $(B \lor M)$ '

• Symbolization key:

B : Tamara bought a bicycle*M* : Tamara bought a motorcycle

- ▶ English: 'Tamara bought neither a bicycle nor a motorcycle'
- ightharpoonup SL: ' $\neg(B \lor M)$ '

• Symbolization key:

B : Tamara bought a bicycle*M* : Tamara bought a motorcycle

- ▶ English: 'Tamara bought neither a bicycle nor a motorcycle'
- \triangleright SL: ' $(\neg B \land \neg M)$ '

• Symbolization key:

C: Craig will go sailing on Monday
R: It rains on Monday

• Symbolization key:

C: Craig will go sailing on Monday
R: It rains on Monday

▶ English: 'Craig will go sailing on Monday, unless it rains'

• Symbolization key:

C: Craig will go sailing on Monday
R: It rains on Monday

- ▶ English: 'Craig will go sailing on Monday, unless it rains'
- ▶ SL: '(C ∨ R)'

$$\begin{array}{c} \text{Either } \mathscr{A} \text{ or } \mathscr{R} \\ \mathscr{A} \text{ unless } \mathscr{R} \end{array} \right\} \rightarrow (\mathscr{A} \vee \mathscr{R})$$

Either
$$\mathscr{A}$$
 or \mathscr{B}

$$\mathscr{A} \text{ unless } \mathscr{B} \longrightarrow (\mathscr{A} \vee \mathscr{B})$$
Neither \mathscr{A} nor \mathscr{B}

$$\rightarrow \neg(\mathscr{A} \vee \mathscr{B})$$

Outline

The Language SL

The Logical Operators

Negation

Conjunction

Disjunction

Conditional

Biconditional

Translation Tips

• In SL, a sentence of the form '($\mathcal{A} \to \mathcal{B}$)' is a *conditional*.

- In SL, a sentence of the form '($A \rightarrow B$)' is a *conditional*.
- ▶ In '($\mathcal{A} \to \mathcal{B}$)', ' \mathcal{A} ' is called the *antecedent*

- In SL, a sentence of the form '($A \rightarrow B$)' is a *conditional*.
- ▶ In '($\mathcal{A} \to \mathcal{B}$)', ' \mathcal{A} ' is called the *antecedent*
- ▶ In '($\mathcal{A} \to \mathcal{B}$)', ' \mathcal{B} ' is called the *consequent*

- In SL, a sentence of the form '($A \rightarrow B$)' is a *conditional*.
- ▶ In '($\mathcal{A} \to \mathcal{B}$)', ' \mathcal{A} ' is called the *antecedent*
- ▶ In '($\mathcal{A} \to \mathcal{B}$)', ' \mathcal{B} ' is called the *consequent*
- '($\mathcal{A} \to \mathcal{B}$)' means 'If \mathcal{A} , then \mathcal{B} '.

• Symbolization key:

A : Adam will go to the party

• Symbolization key:

A : Adam will go to the party

B : Betsy will go to the party

▶ English: 'If Adam goes to the party, then Betsy will, too.'

• Symbolization key:

A : Adam will go to the party

- ▶ English: 'If Adam goes to the party, then Betsy will, too.'
- ightharpoonup SL: ' $(A \rightarrow B)$ '

• Symbolization key:

A : Adam will go to the party

- ► English: 'Adam will go to the party only if Betsy does, too'
- ▶ SL:

• Symbolization key:

A : Adam will go to the party

- ► English: 'Adam will go to the party only if Betsy does, too'
- ightharpoonup SL: ' $(A \rightarrow B)$ '

• Symbolization key:

A : Adam will go to the party

- ► English: 'Betsy will go to the party if Adam does'
- ▶ SL:

• Symbolization key:

A : Adam will go to the partyB : Betsy will go to the party

- ► English: 'Betsy will go to the party if Adam does'
- ightharpoonup SL: ' $(A \rightarrow B)$ '

If
$$\mathscr{A}$$
, then \mathscr{B}
 \mathscr{A} only if \mathscr{B}
 \mathscr{B} if \mathscr{A}

$$\Rightarrow (\mathscr{A} \to \mathscr{B})$$

Outline

The Language SL

The Logical Operators

Negation

Conjunction

Disjunction

Conditional

Biconditional

Translation Tips

• In SL, a sentence of the form '($\mathcal{A} \leftrightarrow \mathcal{B}$)' is a *biconditional*.

- In SL, a sentence of the form '($\mathcal{A} \leftrightarrow \mathcal{B}$)' is a *biconditional*.
- $\quad \textbf{ In `}(\mathscr{A} \longleftrightarrow \mathscr{B})\text{', `}\mathscr{A}\text{' is called the }\textit{left-hand-side}$

- In SL, a sentence of the form '($\mathcal{A} \leftrightarrow \mathcal{B}$)' is a *biconditional*.
- ▶ In '($\mathcal{A} \leftrightarrow \mathcal{B}$)', ' \mathcal{A} ' is called the *left-hand-side*
- ▶ In '($\mathscr{A} \leftrightarrow \mathscr{B}$)', ' \mathscr{B} ' is called the *right-hand-side*

- In SL, a sentence of the form '($\mathcal{A} \leftrightarrow \mathcal{B}$)' is a *biconditional*.
- ▶ In '($\mathscr{A} \leftrightarrow \mathscr{B}$)', ' \mathscr{A} ' is called the *left-hand-side*
- ▶ In '($\mathscr{A} \leftrightarrow \mathscr{B}$)', ' \mathscr{B} ' is called the *right-hand-side*
- '($\mathcal{A} \leftrightarrow \mathcal{B}$)' means ' \mathcal{A} if and only if \mathcal{B} '.

- In SL, a sentence of the form '($\mathcal{A} \leftrightarrow \mathcal{B}$)' is a *biconditional*.
- ▶ In '($\mathscr{A} \leftrightarrow \mathscr{B}$)', ' \mathscr{A} ' is called the *left-hand-side*
- ▶ In '($\mathcal{A} \leftrightarrow \mathcal{B}$)', ' \mathcal{B} ' is called the *right-hand-side*
- '($\mathcal{A} \leftrightarrow \mathcal{B}$)' means ' \mathcal{A} if and only if \mathcal{B} '.
- ▶ We will see that it means the same thing as $((A \to B) \land (B \to A))$.

• Symbolization key:

R : Rusty runs for Mayor

S: Sandy votes for Teddy

• Symbolization key:

R : Rusty runs for Mayor

S : Sandy votes for Teddy

► English: 'Sandy will vote for Teddy if and only if Rusty runs for Mayor.'

• Symbolization key:

R : Rusty runs for Mayor

S : Sandy votes for Teddy

- ► English: 'Sandy will vote for Teddy if and only if Rusty runs for Mayor.'
- \triangleright SL: ' $(S \longleftrightarrow R)$ '

• Symbolization key:

R : Rusty runs for Mayor

S : Sandy votes for Teddy

- ► English: 'Sandy will vote for Teddy if and only if Rusty doesn't run for Mayor.'
- \triangleright SL: ' $(S \longleftrightarrow \neg R)$ '

Biconditional

Outline

The Language SL

The Logical Operators

Negation

Conjunction

Disjunction

Conditional

Biconditional

Translation Tips

Canonical Logical Expressions

- ▶ It is not the case that 🔏
- ▶ Both ≰ and ∰
- ▶ Either ≰ or ∰
- ▶ If Ø, then ℬ
- ▶

 ✓ if and only if

 ✓

• An English sentence is in *canonical logical form* iff it uses only the canonical logical expressions.

- An English sentence is in *canonical logical form* iff it uses only the canonical logical expressions.
- English: 'If both John loves Andrew and it is not the case that Andrew loves John, then it is not the case that John and Andrew will be friends.'

- An English sentence is in *canonical logical form* iff it uses only the canonical logical expressions.
- English: 'If both John loves Andrew and it is not the case that Andrew loves John, then it is not the case that John and Andrew will be friends.'
- Let *J* = 'John loves Andrew', *A* = Andrew loves John, and
 F = 'John and Andrew will be friends'. Then, in SL:

$$((J \land \neg A) \to \neg F)$$

- An English sentence is in *canonical logical form* iff it uses only the canonical logical expressions.
- English: 'If both John loves Andrew and it is not the case that Andrew loves John, then it is not the case that John and Andrew will be friends.'
- Let *J* = 'John loves Andrew', *A* = Andrew loves John, and
 F = 'John and Andrew will be friends'. Then, in SL:

$$((J \land \neg A) \to \neg F)$$

- An English sentence is in *canonical logical form* iff it uses only the canonical logical expressions.
- English: 'If both John loves Andrew and it is not the case that Andrew loves John, then it is not the case that John and Andrew will be friends.'
- Let *J* = 'John loves Andrew', *A* = Andrew loves John, and
 F = 'John and Andrew will be friends'. Then, in SL:

$$((J \land \neg A) \to \neg F)$$

- An English sentence is in *canonical logical form* iff it uses only the canonical logical expressions.
- English: 'If both John loves Andrew and it is not the case that Andrew loves John, then it is not the case that John and Andrew will be friends.'
- Let *J* = 'John loves Andrew', *A* = Andrew loves John, and
 F = 'John and Andrew will be friends'. Then, in SL:

$$((J \land \neg A) \to \neg F)$$

- An English sentence is in *canonical logical form* iff it uses only the canonical logical expressions.
- English: 'If both John loves Andrew and it is not the case that Andrew loves John, then it is not the case that John and Andrew will be friends.'
- Let *J* = 'John loves Andrew', *A* = Andrew loves John, and
 F = 'John and Andrew will be friends'. Then, in SL:

$$((J \land \neg A) \longrightarrow \neg F)$$

- An English sentence is in *canonical logical form* iff it uses only the canonical logical expressions.
- English: 'If both John loves Andrew and it is not the case that Andrew loves John, then it is not the case that John and Andrew will be friends.'
- Let *J* = 'John loves Andrew', *A* = Andrew loves John, and
 F = 'John and Andrew will be friends'. Then, in SL:

$$((J \land \neg A) \to \neg F)$$

- An English sentence is in *canonical logical form* iff it uses only the canonical logical expressions.
- English: 'If both John loves Andrew and it is not the case that Andrew loves John, then it is not the case that John and Andrew will be friends.'
- Let *J* = 'John loves Andrew', *A* = Andrew loves John, and
 F = 'John and Andrew will be friends'. Then, in SL:

$$((J \land \neg A) \to \neg F)$$

• John and Andrew won't be friends if John loves Andrew but Andrew doesn't love him back

- John and Andrew won't be friends if John loves Andrew but Andrew doesn't love him back
- If John loves Andrew but Andrew doesn't love him back, John and Andrew won't be friends

- John and Andrew won't be friends if John loves Andrew but Andrew doesn't love him back
- If John loves Andrew but Andrew doesn't love him back, John and Andrew won't be friends
- If both John loves Andrew and Andrew doesn't love John, then John and Andrew won't be friends

- John and Andrew won't be friends if John loves Andrew but Andrew doesn't love him back
- If John loves Andrew but Andrew doesn't love him back, John and Andrew won't be friends
- If both John loves Andrew and Andrew doesn't love John, then John and Andrew won't be friends
- If both John loves Andrew and it is not the case that Andrew loves John, then it is not the case that John and Andrew will be friends.

- John and Andrew won't be friends if John loves Andrew but Andrew doesn't love him back
- If John loves Andrew but Andrew doesn't love him back, John and Andrew won't be friends
- If both John loves Andrew and Andrew doesn't love John, then John and Andrew won't be friends
- If both John loves Andrew and it is not the case that Andrew loves John, then it is not the case that John and Andrew will be friends.
- $((J \land \neg A) \to \neg F)$

• A general strategy:

- A general strategy:
- ➤ To translate a sentence of English into SL, find another sentence of English which is synonymous with the first, and which is in *canonical logical form*.

- A general strategy:
- ➤ To translate a sentence of English into SL, find another sentence of English which is synonymous with the first, and which is in *canonical logical form*.
- ► Then, translate the sentence into SL using the translation guide:

It is not the case that
$$\mathcal{A} \mapsto \neg \mathcal{A}$$
Both \mathcal{A} and $\mathcal{B} \mapsto (\mathcal{A} \land \mathcal{B})$
Either \mathcal{A} or $\mathcal{B} \mapsto (\mathcal{A} \lor \mathcal{B})$
If \mathcal{A} , then $\mathcal{B} \mapsto (\mathcal{A} \to \mathcal{B})$
 \mathcal{A} if and only if $\mathcal{B} \mapsto (\mathcal{A} \leftrightarrow \mathcal{B})$

▶ I won't go if John does

- ▶ I won't go if John does
- $\quad \triangleright \ \textit{If John goes, then I won't go}$

- ▶ I won't go if John does
- ▶ If John goes, then I won't go
- ▶ If John goes, then it is not the case that I go

- ▶ I won't go if John does
- ▶ If John goes, then I won't go
- ▶ *If John goes, then it is not the case that I go*
- \triangleright (John goes \rightarrow it is not the case that I go)

- ▶ I won't go if John does
- ▶ If John goes, then I won't go
- ▶ If John goes, then it is not the case that I go
- \triangleright (John goes → it is not the case that I go)
- \triangleright (John goes $\rightarrow \neg I$ go)

- ▶ I won't go if John does
- ▶ If John goes, then I won't go
- ▶ If John goes, then it is not the case that I go
- ightharpoonup (John goes → it is not the case that I go)
- \triangleright (John goes → ¬ I go)
- $\triangleright \ (\underline{J} \longrightarrow \neg \underline{I})$

- ▶ I won't go if John does
- ▶ If John goes, then I won't go
- ▶ If John goes, then it is not the case that I go
- ightharpoonup (John goes → it is not the case that I go)
- \triangleright (John goes → \neg I go)
- \triangleright $(J \rightarrow \neg I)$

ightharpoonup I hate getting what I want and I hate not getting what I want

- ▶ I hate getting what I want and I hate not getting what I want
- ▶ Both I hate getting what I want and it is not the case that I hate getting what I want

- ▶ I hate getting what I want and I hate not getting what I want
- ▶ Both I hate getting what I want and it is not the case that I hate getting what I want
- $ightharpoonup (I hate getting what I want \land it is not the case that I hate getting what I want)$

- ▶ I hate getting what I want and I hate not getting what I want
- ▶ Both I hate getting what I want and it is not the case that I hate getting what I want
- $ightharpoonup (I hate getting what I want \land it is not the case that I hate getting what I want)$
- ightharpoonup (I hate getting what I want $\land \neg$ I hate getting what I want)

- ▶ I hate getting what I want and I hate not getting what I want
- ▶ Both I hate getting what I want and it is not the case that I hate getting what I want
- $ightharpoonup (I hate getting what I want \land it is not the case that I hate getting what I want)$
- ▶ (I hate getting what I want $\land \neg$ I hate getting what I want)
- $\triangleright (H \land \neg H)$

- ▶ I hate getting what I want and I hate not getting what I want
- ▶ Both I hate getting what I want and it is not the case that I hate getting what I want
- $ightharpoonup (I hate getting what I want \land it is not the case that I hate getting what I want)$
- ightharpoonup (I hate getting what I want $\land \neg$ I hate getting what I want)
- $\triangleright (H \land \neg H)$
- Oh no! We started off with a truth and ended up with a necessary falsehood. Where did we go wrong?