Other Logical Notions

PHIL 500

September 4th, 2019

Outline

Joint Possibility and Joint Impossibility

Validity and Joint Impossibility

Necessary Truths, Necessary Falsehoods, and Contingencies

Validity

If an argument is *valid*, then it is **impossible** for its premises to all be true while its conclusion is simultaneously false.

Invalidity

If an argument is *invalid*, then it is possible for its premises to all be true while its conclusion is simultaneously false.

Validity

Invalidity

People younger than 21 aren't allowed to drink Sam is 22

: Sam is allowed to drink

People younger than 21 aren't allowed to drink Sam is 22

: Sam is allowed to drink

People older than 21 aren't allowed to drink Sam is 22

:. Sam isn't allowed to drink

People older than 21 aren't allowed to drink Sam is 22

:. Sam isn't allowed to drink

Chocolate and caramel are both tasty Protectionism is a good trade policy

:. Chocolate is tasty

Chocolate and caramel are both tasty Protectionism is a good trade policy

:. Chocolate is tasty

Eating soap cures cancer

 \therefore Either Trump will win in 2020 or he won't

Eating soap cures cancer

 \therefore Either Trump will win in 2020 or he won't

Special Cases of Validity

Validity

If an argument is *valid*, then it is impossible for its premises to all be true while its conclusion is simultaneously false.

• If it's impossible for the conclusion to be false, then the argument must be valid.

Trump will win in 2020 and Trump will not win in 2020

∴ Eating soap cures cancer

Trump will win in 2020 and Trump will not win in 2020

∴ Eating soap cures cancer

Special Cases of Validity

Validity

If an argument is *valid*, then it is impossible for its premises to all be true while its conclusion is simultaneously false.

• If it's impossible for the premises to all be true, then the argument must be valid.

Either Trump will win in 2020 or he won't

∴ Trump will win in 2020

Either Trump will win in 2020 or he won't

∴ Trump will win in 2020

Outline

Joint Possibility and Joint Impossibility

Validity and Joint Impossibility

Necessary Truths, Necessary Falsehoods, and Contingencies

• Whenever it rains, I go shopping

- Whenever it rains, I go shopping
- Last Tuesday, I didn't go shopping

- Whenever it rains, I go shopping
- Last Tuesday, I didn't go shopping
- It rained last Tuesday

Joint Possibility

Statements are *jointly possible* if and only if it is possible for them to all be true together.

Joint Impossibility

Statements are *jointly impossible* if and only if it is impossible for them to all be true together.

• A test: try to imagine a scenario in which all of the statements are true at once.

- A test: try to imagine a scenario in which all of the statements are true at once.
- If you can: then they are jointly possible.

- A test: try to imagine a scenario in which all of the statements are true at once.
- If you can: then they are jointly possible.
- If you cannot: then they are jointly impossible.

- A test: try to imagine a scenario in which all of the statements are true at once.
- If you can: then they are jointly possible.
- If you cannot: then they are jointly impossible.
- ► Although...maybe you just weren't creative enough...how can we be sure that there really *isn't* a possibility like that?

• Everyone who takes the exam passes

- Everyone who takes the exam passes
- Bob doesn't take the exam

- Everyone who takes the exam passes
- Bob doesn't take the exam
- Bob passes

- Everyone who takes the exam passes
- Bob doesn't take the exam
- Bob passes

• I only talked to the first person I saw at the party

- I only talked to the first person I saw at the party
- The person I talked to didn't seem happy to see me

- I only talked to the first person I saw at the party
- The person I talked to didn't seem happy to see me
- If I saw Sally at the party, then I talked to her

- I only talked to the first person I saw at the party
- The person I talked to didn't seem happy to see me
- If I saw Sally at the party, then I talked to her
- Sally is never happy to see me

- I only talked to the first person I saw at the party
- The person I talked to didn't seem happy to see me
- If I saw Sally at the party, then I talked to her
- Sally is never happy to see me
- I saw Sally at the party, but she wasn't the first person I saw

- I only talked to the first person I saw at the party
- The person I talked to didn't seem happy to see me
- If I saw Sally at the party, then I talked to her
- Sally is never happy to see me
- I saw Sally at the party, but she wasn't the first person I saw.

- I only talked to the first person I saw at the party
- The person I talked to didn't seem happy to see me
- If I saw Sally at the party, then I talked to her
- Sally is never happy to see me
- I saw Sally at the party, but she wasn't the first person I saw.

Outline

Joint Possibility and Joint Impossibility

Validity and Joint Impossibility

Necessary Truths, Necessary Falsehoods, and Contingencies

Validity

An argument is valid if and only if it is impossible for its premises to all be true while its conclusion is simultaneously false.

 \triangleright *P1*, *P2* ∴ *C* is valid iff it is impossible for '*P1*' and '*P2*' to both be true while '*C*' is false.

Validity

An argument is valid if and only if it is impossible for its premises to all be true while its conclusion is simultaneously false.

▶ P_1 , P_2 ∴ C is valid iff it is impossible for ' P_1 ' and ' P_2 ' to both be true while 'C' is false.

Validity

Validity

Validity

• ' \mathscr{A} ' is false iff 'It is not the case that \mathscr{A} ' is true

- 'A' is false iff 'It is not the case that A' is true

- ' \mathcal{A} ' is false iff 'It is not the case that \mathcal{A} ' is true
- ► 'I ate my keys' is false iff 'It is not the case that I ate my keys' is true
- ▶ 'It's raining' is false iff 'It's not raining' is true

- 'A' is false iff 'It is not the case that A' is true
- ► 'I ate my keys' is false iff 'It is not the case that I ate my keys' is true
- ▶ 'It's raining' is false iff 'It's not raining' is true
- ► 'Ice cream sundaes are the best' is false iff 'Ice cream sundaes are not the best' is true

Validity

An argument is valid if and only if it is impossible for its premises to all be true while its conclusion is simultaneously false.

▶ P_1 , P_2 ∴ C is valid iff it is impossible for ' P_1 ' and ' P_2 ' to both be true while 'C' is false.

Validity

An argument is valid if and only if it is impossible for its premises to all be true while its conclusion is simultaneously false.

▶ P_1 , P_2 ∴ C is valid iff it is impossible for ' P_1 ' and ' P_2 ' to both be true while 'C' is false.

Validity

An argument is valid if and only if it is impossible for its premises to all be true while its conclusion is simultaneously false.

▶ P_1 , P_2 ∴ C is valid iff it is impossible for ' P_1 ' and ' P_2 ' to both be true while 'not-C' is true.

Validity

An argument is valid if and only if it is impossible for its premises to all be true while its conclusion is simultaneously false.

▶ P_1 , P_2 ∴ C is valid iff it is impossible for ' P_1 ' and ' P_2 ' to both be true while 'not-C' is true.

Validity

An argument is valid if and only if it is impossible for its premises to all be true while its conclusion is simultaneously false.

 \triangleright *P*₁, *P*₂ ∴ *C* is valid iff it is impossible for '*P*₁', '*P*₂', and 'not-*C*' to all be true.

Validity

An argument is valid if and only if it is impossible for its premises to all be true while its conclusion is simultaneously false.

- ▶ *P*1, *P*2 ∴ *C* is valid iff it is impossible for '*P*1', '*P*2', and 'not-*C*' to all be true.
- ▶ P1, P2 : C is valid iff 'P1', 'P2', and 'not-C' are jointly impossible.

Validity

An argument is valid if and only if it is impossible for its premises to all be true while its conclusion is simultaneously false.

- ▶ P1, P2 : C is valid iff it is impossible for 'P1', 'P2', and 'not-C' to all be true.
- ▶ *P*₁, *P*₂ ∴ *C* is valid iff '*P*₁', '*P*₂', and 'not-*C*' are jointly impossible.
- ▶ *P*1, *P*2 ∴ *C* is invalid iff '*P*1', '*P*2', and 'not-*C*'are jointly possible.

Special Cases of Validity

• If not-*C* is impossible, then *P1*, *P2*, and not-*C* are jointly impossible.

Special Cases of Validity

- If not-*C* is impossible, then *P1*, *P2*, and not-*C* are jointly impossible.
- If *P*₁ and *P*₂ are jointly impossible, then *P*₁, *P*₂, and not-*C* are jointly impossible.

P1 P2 P3 ∴ C

The argument is valid—if you accept P_1 , P_2 , and P_3 , you must accept C—so accept C

These are jointly impossible—we must reject one of them—so reject 'not-*C*'

Outline

Joint Possibility and Joint Impossibility

Validity and Joint Impossibility

Necessary Truths, Necessary Falsehoods, and Contingencies

Necessary Truth

► Either Trump will win in 2020 or Trump will not win in 2020

Necessary Truth

- ► Either Trump will win in 2020 or Trump will not win in 2020
- ➤ If it snows here tomorrow, then it precipitates here tomorrow

- ► Either Trump will win in 2020 or Trump will not win in 2020
- ▶ If it snows here tomorrow, then it precipitates here tomorrow
- ▶ I'm not taller than myself

Necessary Truth

A statement is a *necessary truth* iff it is impossible for that statement to be false.

Necessary Truth

A statement is a *necessary truth* iff it is impossible for that statement to be false.

A statement is a *necessary truth* iff it is necessarily true

▶ Trump will win in 2020 and he will not win in 2020

- ▶ Trump will win in 2020 and he will not win in 2020
- ▶ It will snow here tomorrow, but it won't precipitate here tomorrow

- ▶ Trump will win in 2020 and he will not win in 2020
- ▶ It will snow here tomorrow, but it won't precipitate here tomorrow
- ▶ I am taller than myself.

Necessary Falsehood

A statement is a *necessary falsehood* iff it is impossible for that statement to be true.

Necessary Falsehood

A statement is a *necessary falsehood* iff it is impossible for that statement to be true.

A statement is a *necessary falsehood* iff it is necessarily false

Contingencies

▶ Trump will win in 2020

Contingencies

- ▶ Trump will win in 2020
- ▶ It will snow here tomorrow

Contingencies

- ▶ Trump will win in 2020
- ▶ It will snow here tomorrow
- ▶ I am taller than Travis

Contingencies

A statement is a *contingency* iff it is possible for it to be true and it is possible for it to be false.

Contingencies

A statement is a *contingency* iff it is possible for it to be true and it is possible for it to be false.

A statement is a *contingency* iff it is neither necessarily true nor necessarily false

Contingency

Contingency

Necessary Falsehood Necessary Truth

: Necessary Falsehood

Necessary Falsehood Necessary Truth ∴ Necessary Falsehood

Valid

Contingency Necessary Truth

: Necessary Falsehood

Contingency Necessary Truth

: Necessary Falsehood

Invalid

Contingency

Contingency

:. Contingency

Contingency
Contingency
∴ Contingency

Not enough information to say whether it's valid

Contingency

Contingency

: Necessary Falsehood

Contingency Contingency

:. Necessary Falsehood

Not enough information to say whether it's valid