Predicate Logic

Syntax

PHIL 500

Outline

Syntax for PL

Free and Bound Variables

Important Syntactic Features in PL

Semantics for PL

Interpretations

Truth on an Interpretation

Four Important Statement Forms

Order of Quantifiers

Syntax for PL

Syntax for PL

A variable x in a sentence of PL is BOUND if and only if it occurs within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

A variable x in a sentence of PL is free if and only if it does not occur within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

A variable x in a sentence of PL is BOUND if and only if it occurs within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

A variable x in a sentence of PL is free if and only if it does not occur within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

$$\forall x \, \forall y \, Fy \to \exists z \, Gzx$$

A variable x in a sentence of PL is BOUND if and only if it occurs within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

A variable x in a sentence of PL is free if and only if it does not occur within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

$$\forall x \, \forall y \, F_y \to \exists z \, Gzx$$

A variable x in a sentence of PL is BOUND if and only if it occurs within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

A variable x in a sentence of PL is free if and only if it does not occur within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

$$\forall x \, \forall y \, Fy \to \exists z \, Gzx$$

A variable x in a sentence of PL is BOUND if and only if it occurs within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

A variable x in a sentence of PL is free if and only if it does not occur within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

$$\forall x \, \forall y \, Fy \to \exists z \, Gz x$$

A variable x in a sentence of PL is BOUND if and only if it occurs within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

A variable x in a sentence of PL is free if and only if it does not occur within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

• E.g.,

$$\forall x \, (\forall y \, Fy \to \exists z \, Gzx)$$

A variable x in a sentence of PL is BOUND if and only if it occurs within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

A variable x in a sentence of PL is free if and only if it does not occur within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

• E.g.,

$$\forall x \, (\forall y \, F_{\mathbf{y}} \to \exists z \, Gzx)$$

A variable x in a sentence of PL is BOUND if and only if it occurs within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

A variable x in a sentence of PL is free if and only if it does not occur within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

• E.g.,

$$\forall x \, (\forall y \, Fy \to \exists z \, Gzx)$$

A variable x in a sentence of PL is BOUND if and only if it occurs within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

A variable x in a sentence of PL is free if and only if it does not occur within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

• E.g.,

$$\forall x \, (\forall y \, Fy \to \exists z \, Gzx)$$

A variable x in a sentence of PL is BOUND if and only if it occurs within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

A variable x in a sentence of PL is FREE if and only if it does not occur within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

• E.g.,

$$\forall x \, (\forall y \, Fy \to \exists z \, Gzx)$$

$$\forall w (\exists y \, Lwy \to \exists w \, Aw)$$

$$\forall w (\exists y \, Lwy \to \exists w \, Aw)$$

In a sentence of the form $\forall x \mathcal{A}$ or $\exists x \mathcal{A}$, the quantifier binds every *free* occurrence of x in \mathcal{A} . If an occurrence of x in \mathcal{A} is already bound, then the quantifier does not bind it.

In a sentence of the form $\forall x \mathcal{A}$ or $\exists x \mathcal{A}$, the quantifier binds every *free* occurrence of x in \mathcal{A} . If an occurrence of x in \mathcal{A} is already bound, then the quantifier does not bind it.

• E.g., in

 $\exists x \, \forall x \, Fx$

the variable 'x' is bound by the *universal* quantifier ' $\forall x$ '. It is *not* bound by the existential quantifier ' $\exists x$ '.

Open and Closed

• If all variables in $\mathcal A$ are bound, then we'll say that $\mathcal A$ is *closed*

Open and Closed

- If all variables in $\mathcal A$ are bound, then we'll say that $\mathcal A$ is *closed*
- If a variable occurs free in \mathcal{A} , then we'll say that \mathcal{A} is *open*

Open and Closed

- If all variables in $\mathcal A$ are bound, then we'll say that $\mathcal A$ is *closed*
- If a variable occurs free in \mathcal{A} , then we'll say that \mathcal{A} is *open*
- When translating into PL, we want our translations to be *closed*.

$$\forall x (Ax \land Bx) \land \forall y (Cx \land Dy)$$

$$\forall x (Ax \wedge Bx) \wedge \forall y (Cx \wedge Dy)$$

$$\forall x (Ax \wedge Bx) \wedge \forall y (Cx \wedge Dy)$$

$$\forall x (Ax \wedge Bx) \wedge \forall y (Cx \wedge Dy)$$

$$\forall x (Ax \wedge Bx) \wedge \forall y (Cx \wedge Dy)$$

$$\forall x \,\exists y \, [Rxy \to (Jz \land Kx)] \lor Ryx$$

$$\forall x \,\exists y \, [Rxy \to (Jz \land Kx)] \lor Ryx$$

$$\forall x \exists y [Rxy \rightarrow (Jz \land Kx)] \lor Ryx$$

$$\forall x \,\exists y \, [Rxy \to (Jz \wedge Kx)] \vee Ryx$$

$$\forall x \,\exists y \, [Rxy \to (Jz \wedge Kx)] \vee Ryx$$

$$\forall x \,\exists y \, [Rxy \to (Jz \land Kx)] \lor Ryx$$

$$\forall x \,\exists y \, [Rxy \to (Jz \land Kx)] \lor Ryx$$

Syntax for PL

Important Syntactic Features in PL

Parenthases

$$\forall x \,\exists y \, Lxy \to Gx)$$

$$\exists y \, Lxy \to Gx$$

$$\exists y \, Lxy \quad Gx$$

$$\mid Lxy$$

Term Order

Quantifier Order

$$\exists y \, \forall x \, Lxy \\ \mid \\ \forall x \, Lxy \\ \mid \\ Lxy$$

Predicate Logic

Semantics

PHIL 500

Outline

Syntax for PL

Free and Bound Variables

Important Syntactic Features in PL

Semantics for PL

Interpretations

Truth on an Interpretation

Four Important Statement Forms

Order of Quantifiers

A VALUATION is an assignment of truth-value—either true or false—to every statement letter of SL.

▶ Given a valuation, we can determine whether sentences of SL are true or false.

➤ An argument of SL is *an entailment* iff every valuation which makes all the premises true makes the conclusion true as well

- ➤ An argument of SL is *an entailment* iff every valuation which makes all the premises true makes the conclusion true as well
- ▶ A collection of sentences of SL are *consistent* iff there is some valution which makes all of the sentences true.

- ➤ An argument of SL is *an entailment* iff every valuation which makes all the premises true makes the conclusion true as well
- ▶ A collection of sentences of SL are *consistent* iff there is some valution which makes all of the sentences true.
- ▶ A sentence is a *tautology* iff it is true on every valuation.

An interpretation, I, tells us:

1) What domain of things we are talking about

An interpretation, I, tells us:

- 1) What domain of things we are talking about
- 2) For each relevant term (name or variable), what thing in the domain it refers to

An interpretation, I, tells us:

- 1) What domain of things we are talking about
- 2) For each relevant term (name or variable), what thing in the domain it refers to
- 3) For every relevant predicate of PL, which things in the domain the predicate is true of

An interpretation, I, tells us:

- 1) What domain of things we are talking about
- 2) For each relevant term (name or variable), what thing in the domain it refers to
- 3) For every relevant predicate of PL, which things in the domain the predicate is true of

➢ Given an interpretation, we can determine whether sentences of PL are true or false.

$$\forall z(Dz \rightarrow Hz), Do :: Ho$$

$$\forall z(Dz \rightarrow Hz), Do :: Ho$$

Domain: all people

 $Hx : \underline{\hspace{1cm}}_x$ is happy

 $Dx : \underline{}_x$ has a dog

o: Obama

$$\forall z(Dz \rightarrow Hz), Do :: Ho$$

$$\forall z(Dz \rightarrow Hz), Do :: Ho$$

Domain: Adam, Betty, and Carl

H : Adam and Betty

D: Adam

o: Adam

$$\forall z(Dz \rightarrow Hz), Do :: Ho$$

Domain: 1, 2, and 3

H: 1 and 2

D : 1

o:1

• There are two ways to specify what things in the domain a predicate of PL is true of:

- There are two ways to specify what things in the domain a predicate of PL is true of:
- ▶ provide a gappy English sentence, with the understanding that the predicate is true of whatever makes that sentence true.

- There are two ways to specify what things in the domain a predicate of PL is true of:
- ▶ provide a gappy English sentence, with the understanding that the predicate is true of whatever makes that sentence true.
- provide a list of things from the domain, with the understanding that the predicate is true of those and only those things.

- There are two ways to specify what things in the domain a predicate of PL is true of:
- ▶ provide a gappy English sentence, with the understanding that the predicate is true of whatever makes that sentence true.
- provide a list of things from the domain, with the understanding that the predicate is true of those and only those things.
- Either method is acceptable, but if you use the former: make sure your grader knows which things in the domain make the sentence true.

 $\exists zHz \rightarrow Fa$

Domain: Sabeen and Matthew

 $Hx: \underline{\hspace{1cm}}_x$ lives in New York

 $Fx: \underline{\hspace{1cm}}_x$ lives in London

a : Sabeen

• When you're specifying which things satisfy a 1-place predicate, you can just *list* them.

- When you're specifying which things satisfy a 1-place predicate, you can just *list* them.
- When you're specifying which things satisfy a 2-place predicate, you need to list them, *in order*.

 $\forall x Lax \land \exists y Lya$

$\forall x Lax \land \exists y Lya$

Domain: Sammy and Tammy

 $L:\langle$ Sammy, Tammy \rangle , \langle Sammy, Sammy \rangle

a : Sammy

2-place Predicates

$$\forall x Lax \land \exists y Lya$$

Domain: 1 and 2
$$L: \langle 1, 2 \rangle, \langle 1, 1 \rangle$$

$$a: 1$$

Semantics for PL

• An *atomic* sentence is an *N*-place predicate followed by *N* terms.

- An *atomic* sentence is an *N*-place predicate followed by *N* terms.
- ▶ E.g., '*Fa*', '*Gxb*', '*Raja*', . . .

- An *atomic* sentence is an *N*-place predicate followed by *N* terms.
- ▶ E.g., 'Fa', 'Gxb', 'Raja', . . .

An atomic sentence ' $\Re t_1 t_2 \dots t_N$ ' is true on an interpretation I iff, according to I, \Re is true of the objects referred to by t_1, t_2, \dots, t_N (in that order).

Ha

На

Domain: Adam, Betty, and Carl

H: Adam and Betty

D: Adam

a: Adam

Ha [T]

Domain: Adam, Betty, and Carl

H: Adam and Betty

D: Adam

a: Adam

Lxa

Lxa

Domain: Sammy and Tammy

 $L:\langle$ Sammy, Tammy \rangle , \langle Sammy, Sammy \rangle

a : Sammy

Lxa [F]

Domain: Sammy and Tammy

 $L:\langle$ Sammy, Tammy \rangle , \langle Sammy, Sammy \rangle

a : Sammy

Lxa

Lxa

```
Domain: 1, 2, 3, 4, 5, ...

Lxy: \underline{\hspace{1cm}}_x is greater than \underline{\hspace{1cm}}_y
a:1
x:3
```

Lxa [T]

```
Domain: 1, 2, 3, 4, 5, ...

Lxy: \underline{\hspace{1cm}}_x is greater than \underline{\hspace{1cm}}_y
a:1
x:3
```

¬) '¬᠕' is true on **I** iff '᠕' is false on **I**

- \neg) ' $\neg \varnothing$ ' is true on I iff ' \varnothing ' is false on I
- \wedge) '($A \wedge B$)' is true on I iff both 'A' and 'B' are true on I

- ¬) '¬A' is true on I iff 'A' is false on I
- \wedge) '($A \wedge B$)' is true on I iff both 'A' and 'B' are true on I
- \vee) '(\varnothing \vee \varnothing)' is true on I iff either ' \varnothing ' or ' \varnothing ' is true on I

- ¬) '¬A' is true on I iff 'A' is false on I
- \wedge) '($A \wedge B$)' is true on I iff both 'A' and 'B' are true on I
- \vee) '($\varnothing \vee \mathscr{B}$)' is true on I iff either ' \varnothing ' or ' \mathscr{B} ' is true on I
- \rightarrow) '($\varnothing \to \mathscr{B}$)' is true on I iff either ' \varnothing ' is false on I or ' \mathscr{B} ' is true on I

- ¬) '¬Д' is true on I iff 'Д' is false on I
- \wedge) '($A \wedge B$)' is true on I iff both 'A' and 'B' are true on I
- \vee) '($\varnothing \vee \mathscr{B}$)' is true on I iff either ' \varnothing ' or ' \mathscr{B} ' is true on I
- \rightarrow) '($\varnothing \to \mathscr{B}$)' is true on I iff either ' \varnothing ' is false on I or ' \mathscr{B} ' is true on I
- \iff) '($\mathscr{A} \leftrightarrow \mathscr{B}$)' is true on I iff ' \mathscr{A} ' and ' \mathscr{B} ' have the same truth-value on I

$$Lax \rightarrow \neg Laa$$

$$Lax \rightarrow \neg Laa$$

Domain: Sammy and Tammy

 $L:\langle$ Sammy, Tammy \rangle , \langle Sammy, Sammy \rangle

a : Sammy

$$\begin{array}{c} Lax \rightarrow \neg \ Laa \\ T \end{array}$$

Domain: Sammy and Tammy

 $L:\langle$ Sammy, Tammy \rangle , \langle Sammy, Sammy \rangle

a : Sammy

$$\begin{array}{ccc} Lax & \to & \neg \ Laa \\ T & & T \end{array}$$

Domain: Sammy and Tammy

 $L:\langle$ Sammy, Tammy \rangle , \langle Sammy, Sammy \rangle

a : Sammy

$$\begin{array}{ccc} Lax & \to & \neg \ Laa \\ T & F & T \end{array}$$

Domain: Sammy and Tammy

 $L:\langle$ Sammy, Tammy \rangle , \langle Sammy, Sammy \rangle

a : Sammy

$$\begin{array}{cccc} Lax & \rightarrow & \neg & Laa \\ T & \textbf{\textit{F}} & \textbf{\textit{F}} & T \end{array}$$

Domain: Sammy and Tammy

 $L:\langle$ Sammy, Tammy \rangle , \langle Sammy, Sammy \rangle

a : Sammy

$$(Ha \lor Dc) \longleftrightarrow (Ha \to Dc)$$

$$(Ha \lor Dc) \longleftrightarrow (Ha \to Dc)$$

Domain: Adam, Betty, and Carl

H : Adam and Betty

D: Adam

a: Adam

$$\begin{array}{cccc} (Ha & \lor & Dc) & \longleftrightarrow & (Ha & \to & Dc) \\ T & & & & \end{array}$$

Domain: Adam, Betty, and Carl

H : Adam and Betty

D: Adam

a: Adam

$$\begin{array}{cccc} (Ha & \lor & Dc) & \longleftrightarrow & (Ha & \to & Dc) \\ T & & F & & \end{array}$$

Domain: Adam, Betty, and Carl

H : Adam and Betty

D: Adam

a: Adam

$$\begin{array}{cccc} (Ha & \lor & Dc) & \longleftrightarrow & (Ha & \to & Dc) \\ T & & F & & T \end{array}$$

Domain: Adam, Betty, and Carl

H: Adam and Betty

D: Adam

a: Adam

$$\begin{array}{cccc} (Ha & \lor & Dc) & \longleftrightarrow & (Ha & \to & Dc) \\ T & & F & & T & & F \end{array}$$

Domain: Adam, Betty, and Carl

H: Adam and Betty

D: Adam

a: Adam

$$(Ha \lor Dc) \longleftrightarrow (Ha \to Dc)$$

$$T T F T F$$

Domain: Adam, Betty, and Carl

H: Adam and Betty

D: Adam

a: Adam

$$(Ha \lor Dc) \longleftrightarrow (Ha \to Dc)$$

$$T \quad T \quad F \quad T \quad F \quad F$$

Domain: Adam, Betty, and Carl

H : Adam and Betty

D: Adam

a: Adam

$$(Ha \lor Dc) \longleftrightarrow (Ha \to Dc)$$

$$T \quad T \quad F \quad F \quad T \quad F \quad F$$

Domain: Adam, Betty, and Carl

H: Adam and Betty

D: Adam

a: Adam

Modified Interpretations

The interpretation **I**:

```
Domain: Sammy and Tammy
```

 $L:\langle$ Sammy, Tammy \rangle , \langle Sammy, Sammy \rangle

a : Sammy

Modified Interpretations

```
The interpretation I[x : Sammy]
```

```
Domain: Sammy and Tammy
```

 $L:\langle$ Sammy, Tammy \rangle , \langle Sammy, Sammy \rangle

a : Sammy

x : Sammy

The interpretation **I**:

```
Domain: 1, 2, 3, 4, and 5
Rxy: \langle 1, 2 \rangle, \langle 2, 5 \rangle, \langle 5, 1 \rangle, \langle 4, 4 \rangle
F: 4, 5
a: 1
```

The interpretation I[x:3]

```
Domain: 1, 2, 3, 4, and 5

Rxy: \langle 1, 2 \rangle, \langle 2, 5 \rangle, \langle 5, 1 \rangle, \langle 4, 4 \rangle

F: 4, 5

a: 1

x: 3
```

```
The interpretation I[x:3, y:5]:
```

```
Domain: 1, 2, 3, 4, and 5

Rxy: \langle 1, 2 \rangle, \langle 2, 5 \rangle, \langle 5, 1 \rangle, \langle 4, 4 \rangle

F: 4, 5

a: 1

x: 3

y: 5
```

If **I** is an interpretation, d is something in the domain of **I**, and x is a variable, then the modified interpretation $\mathbf{I}[x:d]$ is the interpretation which is exactly like **I**, except that the variable x refers to d.

 \exists) ' $\exists x \, \mathcal{A}$ ' is true on \mathbf{I} iff ' \mathcal{A} ' is true on $\mathbf{I}[x:d]$ for *some* d in the domain of \mathbf{I}

- \exists) ' $\exists x \, \mathcal{A}$ ' is true on \mathbf{I} iff ' \mathcal{A} ' is true on $\mathbf{I}[x:d]$ for *some* d in the domain of \mathbf{I}
- \forall) ' $\forall x \mathcal{A}$ ' is true on \mathbf{I} iff ' \mathcal{A} ' is true on $\mathbf{I}[x:d]$ for *every d* in the domain of \mathbf{I}

<u>I</u>

Domain: Amy and Bruce

 $\mathbf{I}[w:\mathsf{Amy}]$

Domain: Amy and Bruce

F: Bruce

w: Amy

I[w : Amy]

Domain: Amy and Bruce

F: Bruce

w: Amy

```
∃w Fw
|
|
|
| Fw [F]
```

I[w : Bruce]

Domain: Amy and Bruce

F: Bruce

w: Bruce

$$\exists w Fw$$
 \vdash
 $Fw [F, T]$

I[w : Bruce]

Domain: Amy and Bruce

$$\exists w Fw$$
 \mid
 $Fw [F, T]$

<u>I</u>

Domain: Amy and Bruce

$$\exists w Fw \text{ [T]}$$
 \vdash
 $Fw \text{ [F, T]}$

Ι

Domain: Amy and Bruce

Ι

Domain: Amy and Bruce

I[y : Amy]

Domain: Amy and Bruce

F: Bruce

y: Amy

$$\forall y \, Fy$$
 $|$
 $Fy \, [F]$

 $\mathbf{I}[y: Amy]$

Domain: Amy and Bruce

F: Bruce

y: Amy

$$\forall y \, Fy$$
 $|$
 $Fy \, [F]$

I[y : Bruce]

Domain: Amy and Bruce

F: Bruce

y: Bruce

$$\forall y \, Fy$$
 \mid
 $Fy \, [F, T]$

I[y : Bruce]

Domain: Amy and Bruce

$$\forall y \, Fy$$
 \mid
 $Fy \, [F, T]$

Ι

Domain: Amy and Bruce

Ι

Domain: Amy and Bruce

Predicate Logic

Semantics

PHIL 500

Outline

Syntax for PL

Free and Bound Variables

Important Syntactic Features in PL

Semantics for PL

Interpretations

Truth on an Interpretation

Four Important Statement Forms

Order of Quantifiers

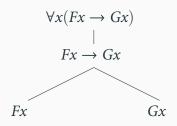
If **I** is an interpretation, d is something in the domain of **I**, and x is a variable, then the modified interpretation $\mathbf{I}[x:d]$ is the interpretation which is exactly like **I**, except that the variable x refers to d.

 \exists) ' $\exists x \, \mathcal{A}$ ' is true on \mathbf{I} iff ' \mathcal{A} ' is true on $\mathbf{I}[x:d]$ for *some d* in the domain of \mathbf{I}

- \exists) ' $\exists x \, \mathcal{A}$ ' is true on \mathbf{I} iff ' \mathcal{A} ' is true on $\mathbf{I}[x:d]$ for *some* d in the domain of \mathbf{I}
- \forall) ' $\forall x \mathcal{A}$ ' is true on \mathbf{I} iff ' \mathcal{A} ' is true on $\mathbf{I}[x:d]$ for *every d* in the domain of \mathbf{I}

Semantics for PL

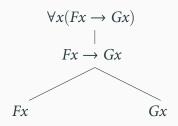
Four Important Statement Forms



Domain: Amy and Bruce

F: Bruce

G: Amy and Bruce

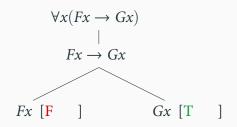


Domain: Amy and Bruce

F: Bruce

G : Amy and Bruce

x : Amy

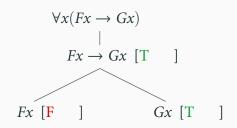


Domain: Amy and Bruce

F: Bruce

G: Amy and Bruce

x : Amy

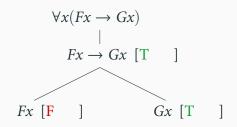


Domain: Amy and Bruce

F: Bruce

G : Amy and Bruce

x : Amy

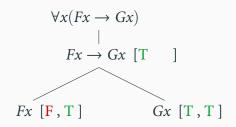


Domain: Amy and Bruce

F: Bruce

G : Amy and Bruce

x: Bruce

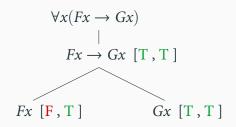


Domain: Amy and Bruce

F: Bruce

G : Amy and Bruce

x: Bruce

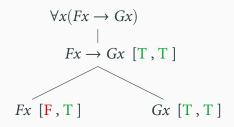


Domain: Amy and Bruce

F: Bruce

G : Amy and Bruce

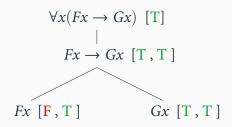
x: Bruce



Domain: Amy and Bruce

F: Bruce

G : Amy and Bruce

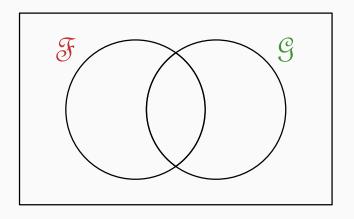


Domain: Amy and Bruce

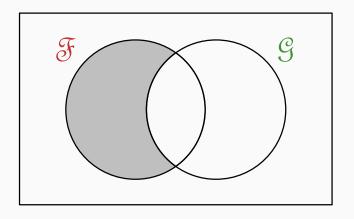
F: Bruce

G : Amy and Bruce

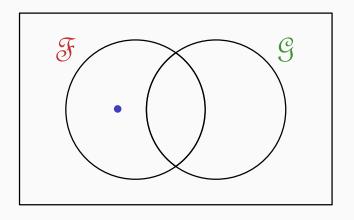
All Fs are Ss

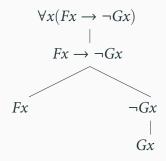


All Fs are Ss



All Fs are Ss

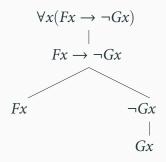




Domain: Amy and Bruce

F: Bruce

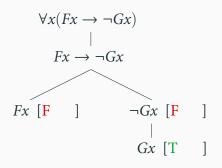
G : Amy and Bruce



Domain: Amy and Bruce

F: Bruce

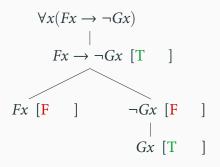
G: Amy and Bruce



Domain: Amy and Bruce

F: Bruce

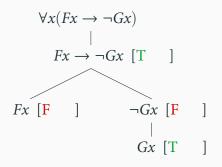
G : Amy and Bruce



Domain: Amy and Bruce

F: Bruce

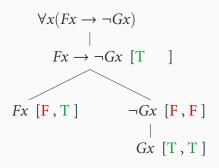
G : Amy and Bruce



Domain: Amy and Bruce

F: Bruce

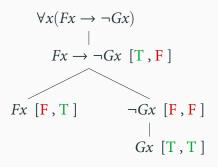
G : Amy and Bruce



Domain: Amy and Bruce

F: Bruce

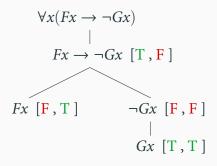
G : Amy and Bruce



Domain: Amy and Bruce

F: Bruce

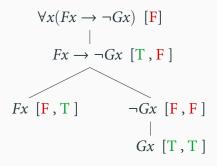
G : Amy and Bruce



Domain: Amy and Bruce

F: Bruce

G : Amy and Bruce

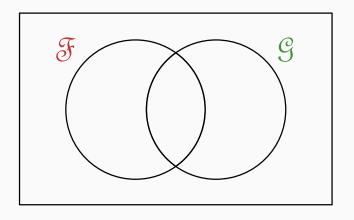


Domain: Amy and Bruce

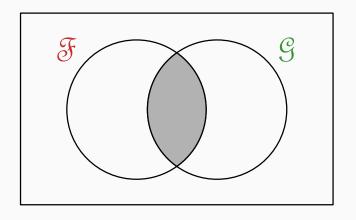
F: Bruce

G : Amy and Bruce

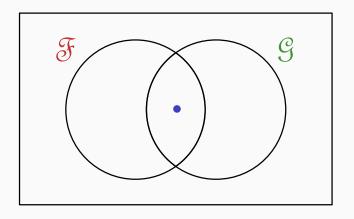
No Fs are Ss

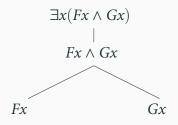


No Fs are Ss



No Fs are Ss

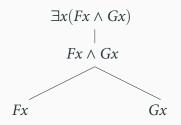




Domain: Amy and Bruce

F: Bruce

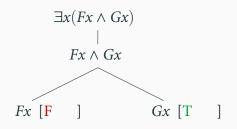
G: Amy and Bruce



Domain: Amy and Bruce

F: Bruce

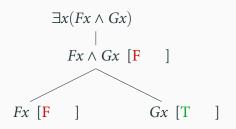
G : Amy and Bruce



Domain: Amy and Bruce

F: Bruce

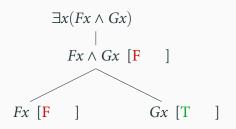
G : Amy and Bruce



Domain: Amy and Bruce

F: Bruce

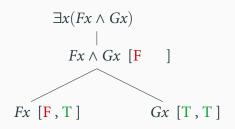
G : Amy and Bruce



Domain: Amy and Bruce

F: Bruce

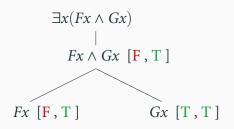
G : Amy and Bruce



Domain: Amy and Bruce

F: Bruce

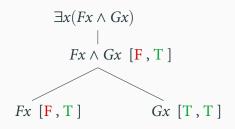
G : Amy and Bruce



Domain: Amy and Bruce

F: Bruce

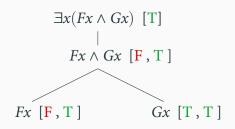
G : Amy and Bruce



Domain: Amy and Bruce

F: Bruce

G: Amy and Bruce

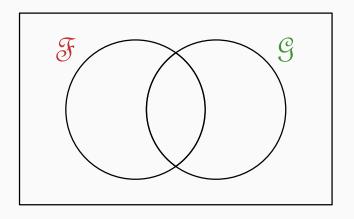


Domain: Amy and Bruce

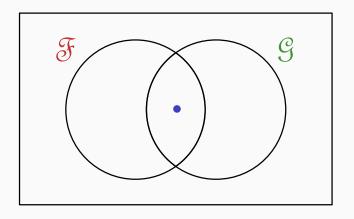
F: Bruce

G: Amy and Bruce

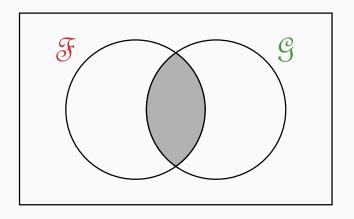
Some Fs are Ss

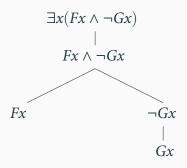


Some Fs are Ss



Some Fs are Ss

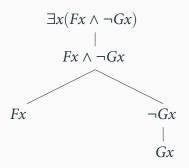




Domain: Amy and Bruce

F: Bruce

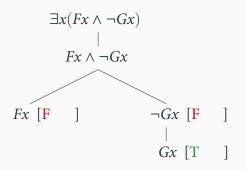
G : Amy and Bruce



Domain: Amy and Bruce

F: Bruce

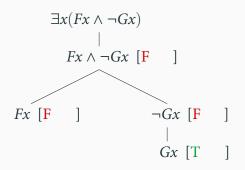
G: Amy and Bruce



Domain: Amy and Bruce

F: Bruce

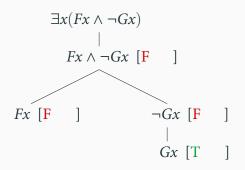
G: Amy and Bruce



Domain: Amy and Bruce

F: Bruce

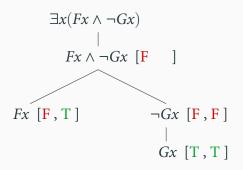
G: Amy and Bruce



Domain: Amy and Bruce

F: Bruce

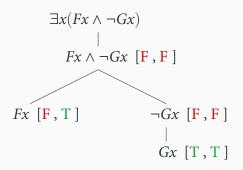
G: Amy and Bruce



Domain: Amy and Bruce

F: Bruce

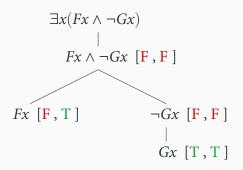
G: Amy and Bruce



Domain: Amy and Bruce

F: Bruce

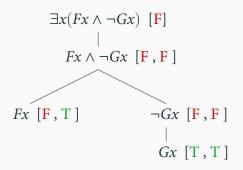
G: Amy and Bruce



Domain: Amy and Bruce

F: Bruce

G : Amy and Bruce

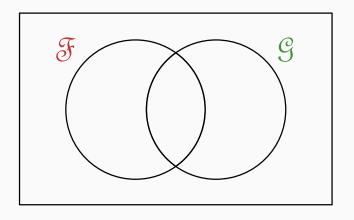


Domain: Amy and Bruce

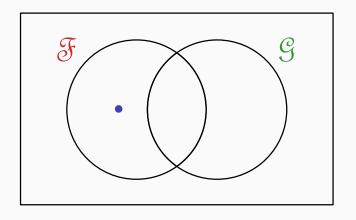
F: Bruce

G : Amy and Bruce

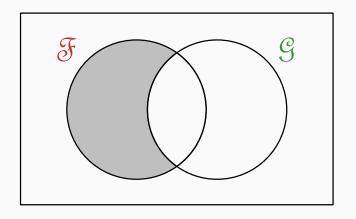
Some Fs are not Ss



Some Fs are not Ss



Some Fs are not Ss



Semantics for PL

Order of Quantifiers

Truth on an Interpretation

- $ightharpoonup \exists x \mathcal{A}$ is true on I iff \mathcal{A} is true on I[x : d] for *some* d in the domain of I
- $ightharpoonup \forall x \mathcal{A}$ is true on \mathbf{I} iff \mathcal{A} is true on $\mathbf{I}[x:d]$ for *every d* in the domain of \mathbf{I}

```
domain: all people
L xy : \underline{\hspace{1cm}}_x \text{ loves } \underline{\hspace{1cm}}_y
```

a : Abelard

```
domain: all people
L xy: \underline{\hspace{1cm}}_x \text{ loves } \underline{\hspace{1cm}}_y
```

a: Abelard

Abelard loves someone:

```
domain: all people
L xy : \underline{\hspace{1cm}}_x \text{ loves } \underline{\hspace{1cm}}_y
a: \text{Abelard}
```

Abelard loves someone:

 $\exists y \, Lay$

domain : all people $L xy : __x \text{ loves } __y$

a: Abelard

Abelard loves someone:

 $\exists y \, Lay$

Everyone loves someone:

domain: all people L xy : x loves

a : Abelard

Abelard loves someone:

 $\exists y \, Lay$

Everyone loves someone:

 $\forall x \exists y Lxy$

```
domain: all people
L xy : \underline{\hspace{1cm}}_x \text{ loves } \underline{\hspace{1cm}}_y
```

a : Abelard

```
domain: all people
L xy: \underline{\hspace{1cm}}_x \text{ loves } \underline{\hspace{1cm}}_y
```

a: Abelard

Abelard is loved by everyone:

domain: all people

 $L xy : \underline{\hspace{1cm}}_x \text{ loves } \underline{\hspace{1cm}}_y$

a: Abelard

Abelard is loved by everyone:

 $\forall x Lxa$

domain: all people

 $L xy : \underline{\hspace{1cm}}_x \text{ loves } \underline{\hspace{1cm}}_y$

a: Abelard

Abelard is loved by everyone:

 $\forall x Lxa$

Someone is loved by everyone:

domain: all people

 $L xy : \underline{\hspace{1cm}}_x \text{ loves } \underline{\hspace{1cm}}_y$

a: Abelard

Abelard is loved by everyone:

 $\forall x Lxa$

Someone is loved by everyone:

 $\exists y \, \forall x \, Lxy$

domain: all people

 $Lxy : \underline{\hspace{1cm}}_x \text{ loves } \underline{\hspace{1cm}}_y$

a: Abelard

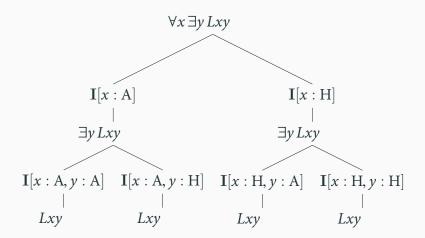
Everyone loves someone

 $\forall x \exists y Lxy$

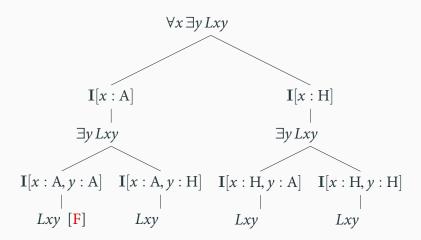
Someone is loved by everyone

 $\exists y \, \forall x \, Lxy$

Domain: Abelard and Heloise



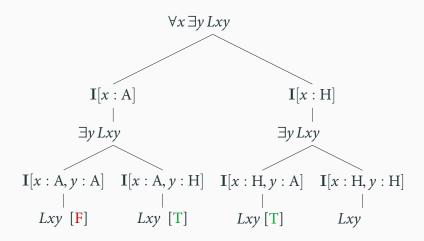
Domain: Abelard and Heloise



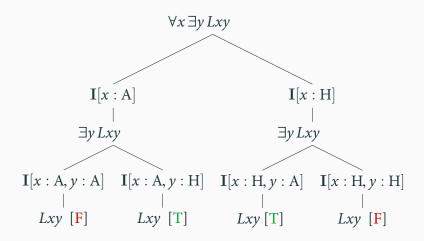
Domain: Abelard and Heloise



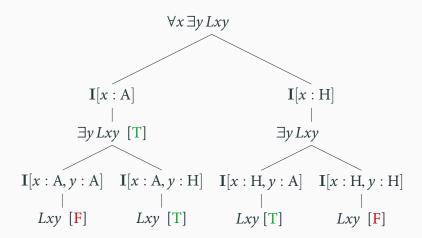
Domain: Abelard and Heloise



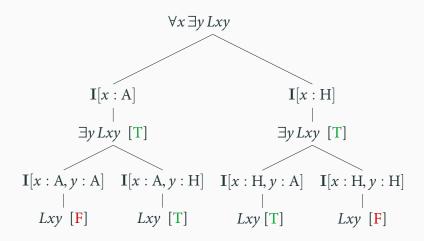
Domain: Abelard and Heloise



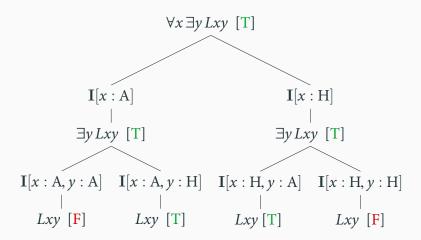
Domain: Abelard and Heloise



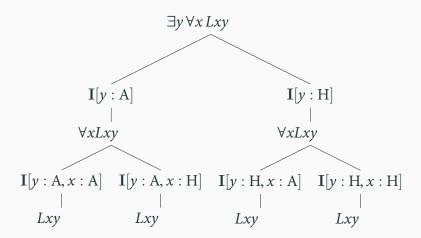
Domain: Abelard and Heloise



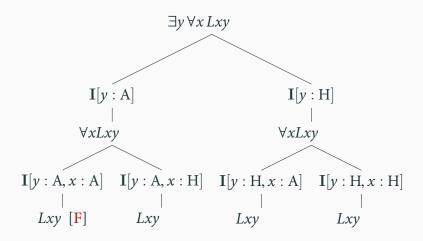
Domain: Abelard and Heloise



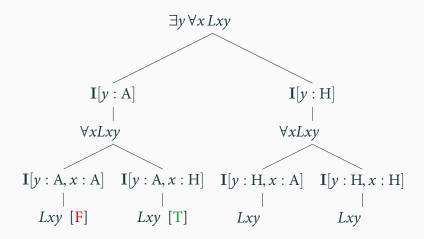
Domain: Abelard and Heloise



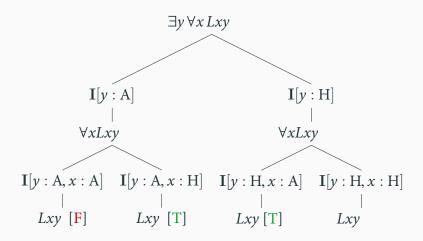
Domain: Abelard and Heloise



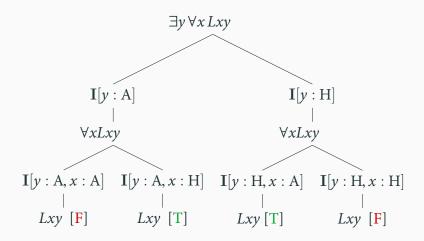
Domain: Abelard and Heloise



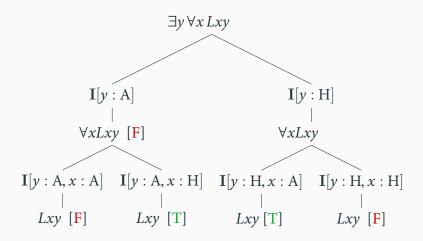
Domain: Abelard and Heloise



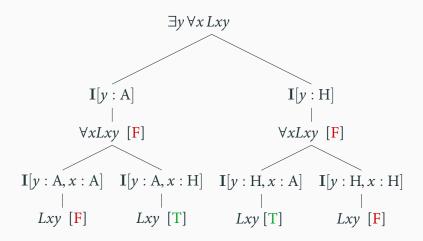
Domain: Abelard and Heloise



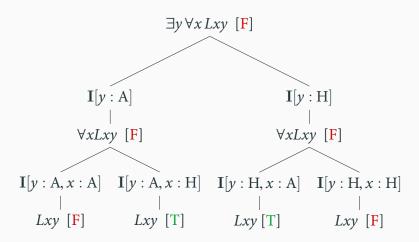
Domain: Abelard and Heloise



Domain: Abelard and Heloise



Domain: Abelard and Heloise



```
domain: all people
Lxy: \_\__x \text{ loves } \_\__y
```

a: Abelard

```
domain: all people
Lxy: \underline{\hspace{1cm}}_x \text{ loves } \underline{\hspace{1cm}}_y
```

a: Abelard

Abelard loves everyone:

```
domain: all people
Lxy: \_\__x \text{ loves} \_\__y
```

a : Abelard

Abelard loves everyone:

 $\forall x Lax$

domain: all people $Lxy: ___x \text{ loves} ___y$

a: Abelard

Abelard loves everyone:

 $\forall x Lax$

Someone loves everyone:

domain: all people

 $Lxy : \underline{\hspace{1cm}}_x \text{ loves } \underline{\hspace{1cm}}_y$

a: Abelard

Abelard loves everyone:

 $\forall x Lax$

Someone loves everyone:

 $\exists y \, \forall x \, Lyx$

```
domain: all people
Lxy: \_\__x \text{ loves } \_\__y
```

a : Abelard

```
domain: all people
Lxy: \underline{\hspace{1cm}}_x \text{ loves } \underline{\hspace{1cm}}_y
a: \text{Abelard}
```

Abelard is loved by someone:

domain: all people

 $Lxy : \underline{\hspace{1cm}}_x \text{ loves } \underline{\hspace{1cm}}_y$

a: Abelard

Abelard is loved by someone:

 $\exists y L y a$

domain: all people

 $Lxy : \underline{\hspace{1cm}}_x \text{ loves } \underline{\hspace{1cm}}_y$ a : Abelard

Abelard is loved by someone:

 $\exists y L y a$

Everyone is loved by someone:

domain: all people

 $Lxy : \underline{\hspace{1cm}}_x \text{ loves } \underline{\hspace{1cm}}_y$

a: Abelard

Abelard is loved by someone:

 $\exists y L y a$

Everyone is loved by someone:

 $\forall x \exists y Lyx$

domain: all people

 $Lxy : \underline{\hspace{1cm}}_x \text{ loves } \underline{\hspace{1cm}}_y$

a: Abelard

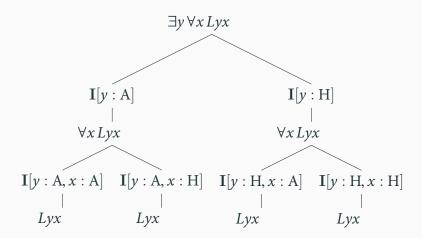
Someone loves everyone

 $\exists y \ \forall x \ Lyx$

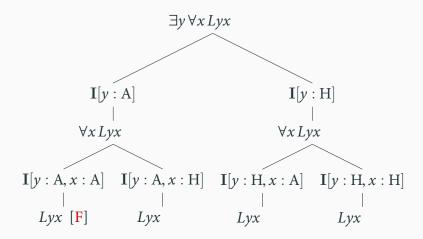
Everyone is loved by someone

 $\forall x \exists y Lyx$

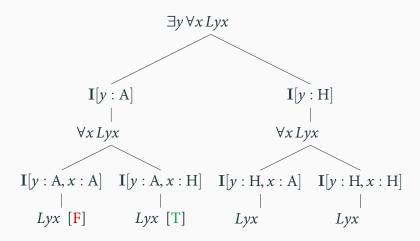
Domain: Abelard and Heloise



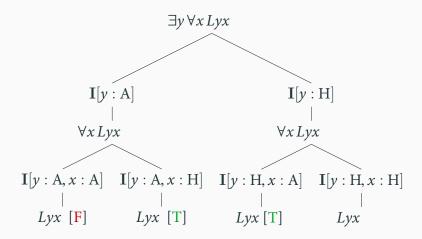
Domain: Abelard and Heloise



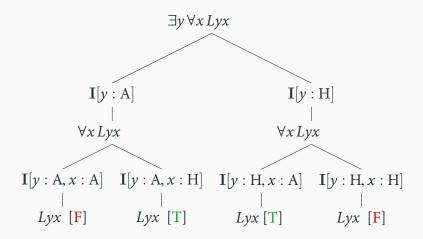
Domain: Abelard and Heloise



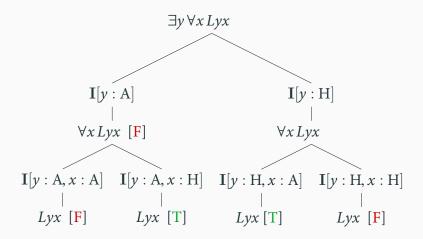
Domain: Abelard and Heloise



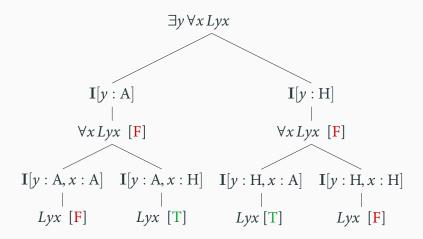
Domain: Abelard and Heloise



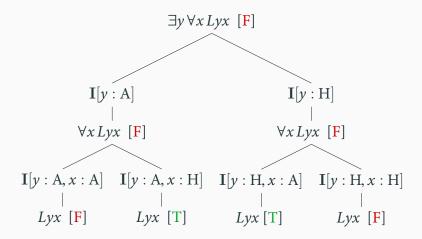
Domain: Abelard and Heloise



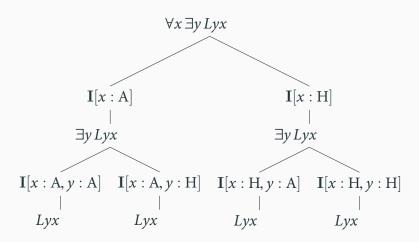
Domain: Abelard and Heloise



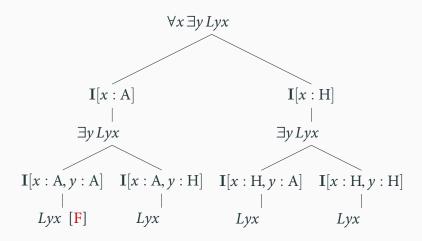
Domain : Abelard and Heloise $L: \langle \text{ Heloise, Abelard} \rangle, \langle \text{ Abelard, Heloise} \rangle$



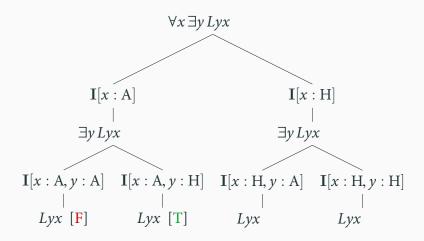
Domain: Abelard and Heloise



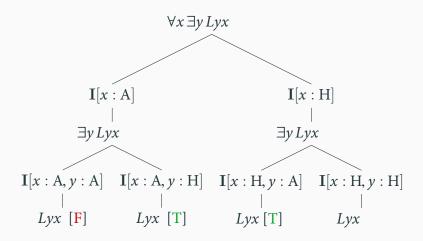
Domain: Abelard and Heloise



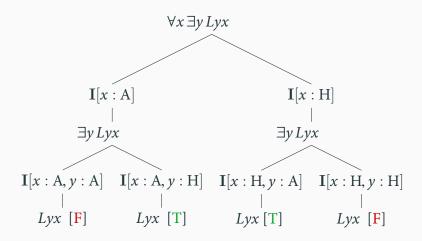
Domain: Abelard and Heloise



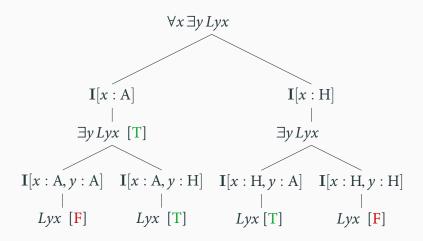
Domain: Abelard and Heloise



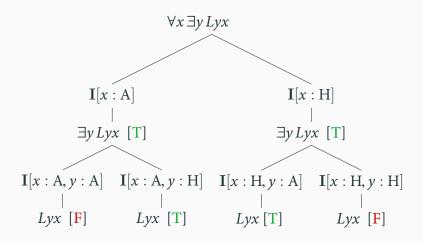
Domain: Abelard and Heloise



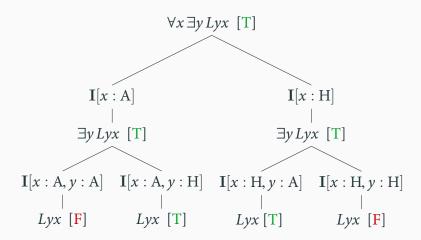
Domain: Abelard and Heloise



Domain: Abelard and Heloise



Domain: Abelard and Heloise



```
domain: all people
Lxy: \underline{\quad \quad }_x \text{ loves } \underline{\quad \quad }_y
a: Abelard
```

Everyone loves someone Someone is loved by everyone Someone loves everyone Everyone is loved by someone

```
domain: all people
Lxy: \underline{\hspace{1cm}}_x \text{ loves } \underline{\hspace{1cm}}_y
a: Abelard
```

Everyone loves someone $\forall x \exists y Lxy$ Someone is loved by everyone Someone loves everyone Everyone is loved by someone

```
domain : all people
Lxy : \underline{\hspace{1cm}}_x \text{ loves } \underline{\hspace{1cm}}_y
a : Abelard
```

Everyone loves someone $\forall x \exists y Lxy$ Someone is loved by everyone $\exists y \forall x Lxy$ Someone loves everyone Everyone is loved by someone

```
domain: all people
Lxy: \underline{\hspace{1cm}}_x \text{ loves } \underline{\hspace{1cm}}_y
a: Abelard
```

Everyone loves someone $\forall x \exists y Lxy$ Someone is loved by everyone $\exists y \forall x Lxy$ Someone loves everyone $\exists y \forall x Lyx$ Everyone is loved by someone

```
domain: all people
Lxy: \underline{\hspace{1cm}}_x \text{ loves } \underline{\hspace{1cm}}_y
a: Abelard
```

Everyone loves someone $\forall x \exists y Lxy$ Someone is loved by everyone $\exists y \forall x Lxy$ Someone loves everyone $\exists y \forall x Lyx$ Everyone is loved by someone $\forall x \exists y Lxy$

```
domain: all people
Lxy: \underline{\qquad}_x \text{ loves } \underline{\qquad}_y
a: Abelard
```

```
\exists y \forall x Lyx\exists y \forall x Lxy\forall x \exists y Lyx\forall x \exists y Lxy
```

```
domain: all people
Lxy: \underline{\qquad} x \text{ loves } \underline{\qquad} y
a: Abelard
```

```
\exists y \ \forall x \ Lyx Someone loves everyone \exists y \ \forall x \ Lxy \forall x \ \exists y \ Lyx \forall x \ \exists y \ Lxy
```

```
domain: all people
Lxy: \underline{\qquad}_x \text{ loves } \underline{\qquad}_y
a: \text{Abelard}
```

```
\exists y \ \forall x \ Lyx Someone loves everyone \exists y \ \forall x \ Lxy Someone is loved by everyone \forall x \ \exists y \ Lyx \forall x \ \exists y \ Lxy
```

```
domain: all people
Lxy: \underline{\hspace{1cm}}_x \text{ loves } \underline{\hspace{1cm}}_y
a: \text{Abelard}
```

```
\exists y \ \forall x \ Lyx Someone loves everyone \exists y \ \forall x \ Lxy Someone is loved by everyone \forall x \ \exists y \ Lyx Everyone is loved by someone \forall x \ \exists y \ Lxy
```

```
domain : all people
Lxy : \underline{\hspace{1cm}}_x \text{ loves } \underline{\hspace{1cm}}_y
a : Abelard
```

 $\exists y \ \forall x \ Lyx$ Someone loves everyone $\exists y \ \forall x \ Lxy$ Someone is loved by everyone $\forall x \ \exists y \ Lyx$ Everyone is loved by someone $\forall x \ \exists y \ Lxy$ Everyone loves someone

Challenge: construct an interpretation on which:

$$\exists y \, \forall x \, Lyx$$
 T
 $\forall x \, \exists y \, Lxy$ F

Challenge: construct an interpretation on which:

$$\exists y \ \forall x \ Lxy$$
 T
 $\forall x \ \exists y \ Lyx$ F