Predicate Logic

Translation

PHIL 500

 $\forall x((Px \lor Qx) \to Rx)$

Outline

Four Important Statement Forms

2-Place Predicates

Syntax for PL

Vocabulary

Grammar

Free and Bound Variables

Important Syntactic Features in PL

2.

$$\forall x \, (\mathcal{F}x \to \mathcal{G}x)$$

- (A) All Fs (in the domain) are Ss
- (E) No ℱs (in the domain) are ℱs

$$\forall x \, (\mathscr{F}x \to \mathscr{G}x)$$

$$\forall x \left(\mathbf{F} x \to \neg \mathbf{G} x \right)$$

- (A) All \(\mathcal{F} \)s (in the domain) are \(\mathcal{S} \)s
- (E) No Fs (in the domain) are Ss
- (I) Some Fs (in the domain) are Ss

$$\forall x (\mathcal{F}x \to \mathcal{G}x)$$

$$\forall x \left(\mathscr{F} x \to \neg \mathscr{G} x \right)$$

$$\exists x \, (\mathscr{F}x \wedge \mathscr{G}x)$$

- (A) All \mathcal{F} s (in the domain) are \mathcal{G} s $\forall x (\mathcal{F}x \to \mathcal{G}x)$
- (E) No \mathscr{F} s (in the domain) are \mathscr{G} s $\forall x (\mathscr{F}x \to \neg \mathscr{G}x)$
- (I) Some \mathcal{F} s (in the domain) are \mathcal{G} s $\exists x (\mathcal{F}x \land \mathcal{G}x)$
- (O) Some \mathcal{F} s (in the domain) are not \mathcal{G} s $\exists x (\mathcal{F}x \land \neg \mathcal{G}x)$

Domains

• Remember: any quantified claim in PL ($\forall x \, A_x \text{ or } \exists x \, A_x$) is made relative to a domain.

4

Domains

- Remember: any quantified claim in PL ($\forall x \, A_x \text{ or } \exists x \, A_x$) is made relative to a domain.
- $ightharpoonup ' \forall x \mathcal{A}_x$ ' says Everything in the domain makes \mathcal{A}_x true

Domains

- Remember: any quantified claim in PL $(\forall x \, \mathcal{A}_x \text{ or } \exists x \, \mathcal{A}_x)$ is made relative to a domain.
- $ightharpoonup ' \forall x \mathcal{A}_x$ ' says Everything in the domain makes \mathcal{A}_x true
- ightharpoonup ' $\exists x \mathscr{A}_x$ ' says Something in the domain makes \mathscr{A}_x true

- (A) All \mathcal{F} s (in the domain) are \mathcal{G} s $\forall x (\mathcal{F}x \to \mathcal{G}x)$
- (E) No \mathcal{F} s (in the domain) are \mathcal{G} s $\forall x (\mathcal{F}x \to \neg \mathcal{G}x)$
- (I) Some \mathcal{F} s (in the domain) are \mathcal{G} s $\exists x (\mathcal{F}x \land \mathcal{G}x)$
- (O) Some \mathcal{F} s (in the domain) are not \mathcal{G} s $\exists x (\mathcal{F}x \land \neg \mathcal{G}x)$

Variants of 'All Fs are Ss'

- ► All Fs are Ss
- ▶ Any F is a G
- ▶ Every F is G

Variants of 'No Fs are Ss'

- ▶ No Fs are Ss
- ▶ No F is G
- ▶ No F is a G
- ▶ There are no 🕏 📆s

Variants of 'Some Fs are Ss'

- Some Fs are Ss
- ▶ Some Fs are G
- ▶ Some **F** is **G**
- ▶ Some F is a G
- ▶ There are 🕏 🗲 s

Variants of 'Some F's are not S's'

- ▶ Some Fs are not Ss
- ▶ Some Fs are not G
- ▶ Some F is not S
- ▶ Some F is a non-S
- ▶ There are non- \$\mathcal{F}\$ s

➤ In general: find a statement which means the same thing as the statement you want to translate, but which has one of the four forms:

▶ In general: find a statement which means the same thing as the statement you want to translate, but which has one of the four forms:

- (A) All Fs are Ss
- (E) No Fs are Ss
- (I) Some Fs are Ss
- (O) Some \(\mathcal{F} \)s are not \(\mathcal{G} \)s

- ▶ In general: find a statement which means the same thing as the statement you want to translate, but which has one of the four forms:
- ▶ Then, use the translations:
 - (A) All Fs are Ss
 - (E) No Fs are Ss
 - (I) Some Fs are Ss
 - (O) Some \(\mathcal{F} \)s are not \(\mathcal{G} \)s

- ▶ In general: find a statement which means the same thing as the statement you want to translate, but which has one of the four forms:
- ▶ Then, use the translations:
 - (A) All \mathcal{F} s are \mathcal{G} s $\forall x (\mathcal{F}x \to \mathcal{G}x)$
 - (E) No Fs are Ss
 - (I) Some Fs are Ss
 - (O) Some \(\mathcal{F} \)s are not \(\mathcal{G} \)s

- ▶ In general: find a statement which means the same thing as the statement you want to translate, but which has one of the four forms:
- ▶ Then, use the translations:
 - (A) All \mathcal{F} s are \mathcal{G} s $\forall x (\mathcal{F}x \to \mathcal{G}x)$
 - (E) No \mathcal{F} s are \mathcal{G} s $\forall x (\mathcal{F}x \to \neg \mathcal{G}x)$
 - (I) Some \mathcal{F} s are \mathcal{G} s
 - (O) Some \mathcal{F} s are not \mathcal{G} s

- ▶ In general: find a statement which means the same thing as the statement you want to translate, but which has one of the four forms:
- ▶ Then, use the translations:
 - (A) All \mathcal{F} s are \mathcal{G} s $\forall x (\mathcal{F}x \to \mathcal{G}x)$
 - (E) No \mathfrak{F} s are \mathfrak{G} s $\forall x(\mathfrak{F}x \to \neg \mathfrak{G}x)$
 - (I) Some \mathcal{F} s are \mathcal{G} s $\exists x (\mathcal{F}x \land \mathcal{G}x)$
 - (O) Some \mathcal{F} s are not \mathcal{G} s

- ▶ In general: find a statement which means the same thing as the statement you want to translate, but which has one of the four forms:
- ▶ Then, use the translations:

(A) All
$$\mathcal{F}$$
s are \mathcal{G} s $\forall x (\mathcal{F}x \to \mathcal{G}x)$

(E) No
$$\mathfrak{F}$$
s are \mathfrak{G} s $\forall x(\mathfrak{F}x \to \neg \mathfrak{G}x)$

(I) Some
$$\mathcal{F}$$
s are \mathcal{G} s $\exists x (\mathcal{F}x \land \mathcal{G}x)$

(O) Some
$$\mathcal{F}$$
s are not \mathcal{G} s $\exists x (\mathcal{F}x \land \neg \mathcal{G}x)$

 Some of you may find one or more of these alternative translations more natural—if so, you should feel free to use them instead.

(A) All
$$\mathcal{F}$$
s are \mathcal{G} s $\forall x (\mathcal{F}x \to \mathcal{G}x)$

(E) No
$$\mathcal{F}$$
s are \mathcal{G} s $\forall x (\mathcal{F}x \to \neg \mathcal{G}x)$

(I) Some
$$\mathcal{F}$$
s are \mathcal{G} s $\exists x (\mathcal{F}x \land \mathcal{G}x)$

(O) Some
$$\mathcal{F}$$
s are not \mathcal{G} s $\exists x (\mathcal{F}x \land \neg \mathcal{G}x)$

11

 Some of you may find one or more of these alternative translations more natural—if so, you should feel free to use them instead.

(A) All
$$\mathcal{F}$$
s are \mathcal{G} s $\forall x (\mathcal{F}x \to \mathcal{G}x)$

(E) No
$$\mathcal{F}$$
s are \mathcal{G} s $\forall x (\mathcal{F}x \to \neg \mathcal{G}x)$

(I) Some
$$\mathcal{F}$$
s are \mathcal{G} s $\exists x (\mathcal{F}x \land \mathcal{G}x)$

(O) Some
$$\mathcal{F}$$
s are not \mathcal{G} s $\exists x (\mathcal{F}x \land \neg \mathcal{G}x)$

11

- (A) All \mathcal{F} s are \mathcal{G} s $\neg \exists x (\mathcal{F}x \land \neg \mathcal{G}x)$
- (E) No \mathcal{F} s are \mathcal{G} s $\forall x (\mathcal{F}x \to \neg \mathcal{G}x)$
- (I) Some \mathcal{F} s are \mathcal{G} s $\exists x (\mathcal{F}x \land \mathcal{G}x)$
- (O) Some \mathcal{F} s are not \mathcal{G} s $\exists x (\mathcal{F}x \land \neg \mathcal{G}x)$

- (A) All \mathcal{F} s are \mathcal{G} s $\neg \exists x (\mathcal{F}x \land \neg \mathcal{G}x)$
- (E) No \Im s are \Im s $\neg \exists x (\Im x \land \Im x)$
- (I) Some \mathcal{F} s are \mathcal{G} s $\exists x (\mathcal{F}x \land \mathcal{G}x)$
- (O) Some \mathcal{F} s are not \mathcal{G} s $\exists x (\mathcal{F}x \land \neg \mathcal{G}x)$

- (A) All \mathcal{F} s are \mathcal{G} s $\neg \exists x (\mathcal{F} x \land \neg \mathcal{G} x)$
- (E) No \mathcal{F} s are \mathcal{G} s $\neg \exists x (\mathcal{F}x \land \mathcal{G}x)$
- (I) Some \mathcal{F} s are \mathcal{G} s $\neg \forall x (\mathcal{F}x \rightarrow \neg \mathcal{G}x)$
- (O) Some \mathcal{F} s are not \mathcal{G} s $\exists x (\mathcal{F}x \land \neg \mathcal{G}x)$

- (A) All \mathcal{F} s are \mathcal{G} s $\neg \exists x (\mathcal{F} x \land \neg \mathcal{G} x)$
- (E) No \mathcal{F} s are \mathcal{G} s $\neg \exists x (\mathcal{F}x \land \mathcal{G}x)$
- (I) Some \mathcal{F} s are \mathcal{G} s $\neg \forall x (\mathcal{F}x \rightarrow \neg \mathcal{G}x)$
- (O) Some \mathcal{F} s are not \mathcal{G} s $\neg \forall x (\mathcal{F}x \rightarrow \mathcal{G}x)$

 Some of you may find one or more of these alternative translations more natural—if so, you should feel free to use them instead.

- (A) All \mathcal{F} s are \mathcal{G} s $\neg \exists x (\mathcal{F} x \land \neg \mathcal{G} x)$
- (E) No \mathcal{F} s are \mathcal{G} s $\neg \exists x (\mathcal{F}x \land \mathcal{G}x)$
- (I) Some \mathcal{F} s are \mathcal{G} s $\neg \forall x (\mathcal{F}x \rightarrow \neg \mathcal{G}x)$
- (O) Some \mathcal{F} s are not \mathcal{G} s $\neg \forall x (\mathcal{F}x \to \mathcal{G}x)$
- ▶ If you don't find any of these more natural, don't worry about it—just ignore this slide.

11

```
domain: all people

F__: ___is funny

S__: ___is shy

T__: ___is tall

Q__: ___is quirky
```

Everyone is funny:

```
domain: all people

F__: ___ is funny

S__: ___ is shy

T__: ___ is tall

Q__: ___ is quirky
```

Everyone is funny:

 $\forall x Fx$

```
domain: all people

F__: ___is funny

S__: ___is shy

T__: ___is tall

Q__: ___is quirky
```

Someone is quirky:

```
    domain: all people
    F__: ___ is funny
    S__: ___ is shy
    T__: ___ is tall
    Q__: ___ is quirky
```

Someone is quirky:

 $\exists y \ Qy$

```
domain: all people

F__: ___ is funny

S__: ___ is shy

T__: ___ is tall

Q__: ___ is quirky
```

Everyone tall is shy:

```
domain: all people
```

*F*___: ___is funny

*S*___: ___is shy

*T*___: ___is tall

Q___: ___is quirky

Everyone tall is shy:

$$\forall z \, (\mathfrak{F}z \to \mathfrak{G}z)$$

```
domain: all people

F__: ___ is funny

S__: ___ is shy

T__: ___ is tall

Q : is quirky
```

Everyone tall is shy:

$$\forall z \, (Tz \to Sz)$$

```
domain: all people

F__: ___is funny

S__: ___is shy

T__: ___is tall

Q__: ___is quirky
```

No quirky people are funny:

```
domain: all people

F__: ___ is funny

S__: ___ is shy

T__: ___ is tall

Q__: ___ is quirky
```

No quirky people are funny:

$$\forall z \left(\mathscr{F}z \to \neg \mathscr{G}z \right)$$

```
domain: all people

F__: ___is funny

S__: ___is shy

T__: ___is tall

Q__: ___is quirky
```

No quirky people are funny:

$$\forall z \, (\mathbf{Q}z \to \neg \mathbf{F}z)$$

```
domain: all people

F__: ___is funny

S__: ___is shy

T__: ___is tall

Q__: ___is quirky
```

Any shy quirky person is funny:

domain: all people

*F*___: ___is funny

S___: ___is shy

*T*___: ___is tall

Q___: ___is quirky

Any shy quirky person is funny:

$$\forall x \left[\mathfrak{F}z \to \mathfrak{G}z \right]$$

```
domain: all people

F__: ___ is funny

S__: ___ is shy

T__: ___ is tall

Q__: ___ is quirky
```

Any shy quirky person is funny:

$$\forall x \left[(Sx \land Qx) \to Fx \right]$$

```
domain: all people

F__: ___is funny

S__: ___is shy

T__: ___is tall

Q__: ___is quirky
```

Some tall people are shy:

```
domain: all people

F__: ___ is funny

S__: ___ is shy

T__: ___ is tall

Q : is quirky
```

Some tall people are shy:

$$\exists w (\mathscr{F} w \wedge \mathscr{G} w)$$

```
domain: all people

F__: ___is funny

S__: ___is shy

T__: ___is tall

Q__: ___is quirky
```

Some tall people are shy:

$$\exists w \, (Tw \land Sw)$$

```
domain: all people

F__: ___is funny

S__: ___is shy

T__: ___is tall

Q__: ___is quirky
```

No tall people are either funny or quirky:

No tall people are either funny or quirky:

$$\forall x [\mathscr{F} x \to \neg \mathscr{G} x]$$

```
domain: all people

F___: ___is funny

S___: ___is shy

T___: ___is tall

Q___: ___is quirky
```

No tall people are either funny or quirky:

$$\forall x [Tx \to \neg (Fx \lor Qx)]$$

```
domain: all people

F__: __is funny

S__: __is shy

T__: __is tall

Q__: __is quirky
```

Some tall people are neither funny nor shy:

domain: all people

F___: ___is funny

S___: ___is shy

T___: ___is tall

Q : is quirky

Some tall people are neither funny nor shy:

$$\exists z [\mathscr{F}z \land \mathscr{G}z]$$

```
domain: all people

F__: ___ is funny

S__: ___ is shy

T__: ___ is tall

Q__: ___ is quirky
```

Some tall people are neither funny nor shy:

$$\exists z [Tz \land \neg (Fz \lor Sz)]$$

domain: all animals

P__: __is a person

V__: __is vegetarian

C__: __is carnivorous

D__: __is ferocious

a: Albert

```
domain: all animals

P__: __is a person

V__: __is vegetarian

C__: __is carnivorous

D__: __is ferocious

a: Albert
```

Some people are vegetarian:

domain: all animals

*P*___: ___is a person

*V*___: ___is vegetarian

C___: ___is carnivorous

*D*___: ___is ferocious

a: Albert

Some people are vegetarian:

$$\exists x (\mathscr{F}x \wedge \mathscr{G}x)$$

domain: all animals

*P*___: ___is a person

*V*___: ___is vegetarian

C___: ___is carnivorous

*D*___: ___is ferocious

a: Albert

Some people are vegetarian:

$$\exists x (Px \land Vx)$$

```
domain: all animals

P__: __is a person

V__: __is vegetarian

C__: __is carnivorous

D__: __is ferocious

a: Albert
```

Some animals are vegetarian:

domain: all animals

*P*___: ___is a person

*V*___: ___is vegetarian

*C*___: ___is carnivorous

*D*___: ___is ferocious

a: Albert

Some animals are vegetarian:

$$\exists x (\mathscr{F}x \wedge \mathscr{G}x)$$

domain: all animals

P__: __is a person

V__: __is vegetarian

C__: __is carnivorous

D__: __is ferocious

a: Albert

Some animals are vegetarian:

 $\exists x V x$

```
domain: all animals

P__: __is a person

V__: __is vegetarian

C__: __is carnivorous

D__: __is ferocious

a: Albert
```

Some ferocious animals are not carnivorous:

domain: all animals

*P*___: ___is a person

*V*___: ___is vegetarian

*C*___: ___is carnivorous

*D*___: ___is ferocious

a: Albert

Some ferocious animals are not carnivorous:

$$\exists x (\mathscr{F}x \land \neg \mathscr{G}x)$$

domain: all animals

*P*___: ___is a person

*V*___: ___is vegetarian

C___: ___is carnivorous

*D*___: ___is ferocious

a: Albert

Some ferocious animals are not carnivorous:

$$\exists x (Fx \land \neg Cx)$$

```
domain: all animals

P__: __is a person

V__: __is vegetarian

C__: __is carnivorous

D__: __is ferocious

a: Albert
```

Some people are vegetarians and some are not:

domain: all animals

*P*___: ___is a person

*V*___: ___is vegetarian

C___: ___is carnivorous

D___: ___is ferocious

a: Albert

Some people are vegetarians and some are not :

$$\exists x (\mathcal{F}x \land \mathcal{G}x) \land \exists y (\mathcal{F}y \land \neg \mathcal{G}y)$$

domain: all animals P__: __is a person V__: __is vegetarian C_: __is carnivorous

D: is ferocious

<u>a</u> : Albert

Some people are vegetarians and some are not:

$$\exists x (Px \land Vx) \land \exists y (Py \land \neg Vy)$$

```
domain: all animals

P___: ___is a person

V___: ___is vegetarian

C___: ___is carnivorous

D___: ___is ferocious

a: Albert
```

If Albert is ferocious, then all people are ferocious:

domain: all animals

*P*___: ___is a person

*V*___: ___is vegetarian

C___: ___is carnivorous

*D*___: ___is ferocious

a: Albert

If Albert is ferocious, then all people are ferocious:

$$Fa \rightarrow \forall x (\mathcal{F}x \rightarrow \mathcal{G}x)$$

domain: all animals

*P*___: ___is a person

*V*___: ___is vegetarian

C___: ___is carnivorous

*D*___: ___is ferocious

a: Albert

If Albert is ferocious, then all people are ferocious:

$$Fa \rightarrow \forall x (Px \rightarrow Fx)$$

```
domain: all animals

P__: __is a person

V__: __is vegetarian

C__: __is carnivorous

D__: __is ferocious

a: Albert
```

Albert is ferocious if anyone is:

domain: all animals

*P*___: ___is a person

*V*___: ___is vegetarian

C___: ___is carnivorous

*D*___: ___is ferocious

a: Albert

Albert is ferocious if anyone is:

$$\exists x (\mathcal{F}x \land \mathcal{G}x) \to Fa$$

domain: all animals

P___: __is a personV : is vegetarian

*C*___: ___is carnivorous

*D*___: ___is ferocious

a: Albert

Albert is ferocious if anyone is:

$$\exists x (Px \land Fx) \to Fa$$

```
domain: all animals

P__: __is a person

V__: __is vegetarian

C__: __is carnivorous

D__: __is ferocious

a: Albert
```

If everyone is vegetarian, then no one is carnivorous:

domain: all animals

*P*___: ___is a person

*V*___: ___is vegetarian

*C*___: ___is carnivorous

D___: ___is ferocious

a: Albert

If everyone is vegetarian, then no one is carnivorous:

$$\forall x (\mathcal{F}x \to \mathcal{G}x) \to \forall y (\mathcal{F}y \to \neg \mathcal{G}y)$$

domain: all animals

*P*___: ___is a person

*V*___: ___is vegetarian

*C*___: ___is carnivorous

D___: ___is ferocious

a: Albert

If everyone is vegetarian, then no one is carnivorous:

$$\forall x (Px \to Vx) \to \forall y (Py \to \neg Cy)$$

domain: all animals

P__: __is a person

V__: __is vegetarian

C__: __is carnivorous

D : is ferocious

There are non-vegetarian people if and only if someone is ferocious:

a: Albert

domain: all animals

*P*___: ___is a person

*V*___: ___is vegetarian

*C*___: ___is carnivorous

D___: ___is ferocious

a : Albert

There are non-vegetarian people if and only if someone is ferocious:

$$\exists x (\mathscr{F}x \land \neg \mathscr{G}x) \longleftrightarrow \exists y (\mathscr{F}y \land \mathscr{G}y)$$

domain: all animals

*P*___: ___is a person

*V*___: ___is vegetarian

*C*___: ___is carnivorous

*D*___: ___is ferocious

a: Albert

There are non-vegetarian people if and only if someone is ferocious:

$$\exists x (Px \land \neg Vx) \longleftrightarrow \exists y (Py \land Fy)$$

```
domain: all foods

J___: ___is a jellybean

B___: ___is black

R___: ___is red

D___: ___is delicious
```

```
domain: all foods

____: ___is a jellybean

____: ___is black

____: ___is red

____: ___is delicious
```

$$\forall x [\mathcal{F}x \to \mathcal{G}x] \land \forall y [\mathcal{F}y \to \neg \mathcal{G}y]$$

$$\forall x[(\underline{B}x \wedge Jx) \to \mathcal{G}x] \wedge \forall y[\mathcal{F}y \to \neg \mathcal{G}y]$$

$$\forall x[(\underline{B}x \wedge Jx) \to Dx] \wedge \forall y[\overline{*}y \to \neg \mathscr{G}y]$$

$$\forall x[(Bx \land Jx) \to Dx] \land \forall y[(Ry \land Jy) \to \neg \mathcal{G}y]$$

$$\forall x[(Bx \land Jx) \to Dx] \land \forall y[(Ry \land Jy) \to \neg Dy]$$

```
domain: all foods

J___: ___is a jellybean

B___: ___is black

R___: ___is red

D___: ___is delicious
```

domain: all foods

*J*___: ___is a jellybean

B___: ___is black

*R*___: ___is red

*D*___: ___is delicious

$$\forall x \left[\mathfrak{F} x \to \mathfrak{G} x \right]$$

```
domain: all foods

J___: ___is a jellybean

B___: ___is black

R__: __is red

D___: __is delicious
```

$$\forall x \left[\left(\underline{B}x \wedge \underline{J}x \right) \to \mathcal{G}x \right]$$

```
domain: all foods

J___: ___is a jellybean

B___: ___is black

R___: __is red

D___: __is delicious
```

$$\forall x \left[\left(Bx \wedge Jx \right) \to Dx \right]$$

```
domain: all foods

J___: ___is a jellybean

B___: ___is black

R___: __is red

D___: __is delicious
```

$$\exists x [\mathscr{F}x \land \mathscr{G}x] \to \forall y [\mathscr{F}y \to \mathscr{G}y]$$

domain: all foods

*J*___: ___is a jellybean

*B*___: ___is black

*R*___: ___is red

*D*___: ___is delicious

$$\exists x [(Rx \land Jx) \land \mathscr{G}x] \to \forall y [\mathscr{F}y \to \mathscr{G}y]$$

domain: all foods

*J*___: ___is a jellybean

*B*___: ___is black

*R*___: ___is red

*D*___: ___is delicious

$$\exists x [(Rx \land Jx) \land Dx] \rightarrow \forall y [\mathscr{F}y \rightarrow \mathscr{G}y]$$

domain: all foods

*J*___: ___is a jellybean

*B*___: ___is black

*R*___: ___is red

*D*___: ___is delicious

$$\exists x[(Rx \land Jx) \land Dx] \rightarrow \forall y[(By \land Jy) \rightarrow \mathscr{G}y]$$

domain: all foods

*J*___: ___is a jellybean

*B*___: ___is black

*R*___: ___is red

*D*___: ___is delicious

$$\exists x[(Rx \land Jx) \land Dx] \rightarrow \forall y[(By \land Jy) \rightarrow Dy]$$

2-Place Predicates

• a *predicate* is a *gappy statement*—it's a statement with a name (or names) missing.

Tammy loves Sammy.

• a *predicate* is a *gappy statement*—it's a statement with a name (or names) missing.

Tammy loves Sammy.

• a *predicate* is a *gappy statement*—it's a statement with a name (or names) missing.

Tammy loves Sammy.

• a *predicate* is a *gappy statement*—it's a statement with a name (or names) missing.

____loves Sammy.

• a *predicate* is a *gappy statement*—it's a statement with a name (or names) missing.

loves Sammy.

• a *predicate* is a *gappy statement*—it's a statement with a name (or names) missing.

Tammy loves Sammy

• a *predicate* is a *gappy statement*—it's a statement with a name (or names) missing.

Tammy loves Sammy

• a *predicate* is a *gappy statement*—it's a statement with a name (or names) missing.

Tammy loves _____

• a *predicate* is a *gappy statement*—it's a statement with a name (or names) missing.

Tammy loves _____

• a *predicate* is a *gappy statement*—it's a statement with a name (or names) missing.

Tammy loves Sammy

• a *predicate* is a *gappy statement*—it's a statement with a name (or names) missing.

Tammy loves Sammy

a predicate is a gappy statement—it's a statement with a name (or names) missing.
 loves _____

• a *predicate* is a *gappy statement*—it's a statement with a name (or names) missing.

loves ____

•	a <i>predicate</i> is a <i>gappy statement</i> —it's a statement with a
	name (or names) missing.

loves ____

▶ If a predicate has a single gap, then we'll call it a *1-place* predicate

Predicates

• a *predicate* is a *gappy statement*—it's a statement with a name (or names) missing.

loves	

- ▶ If a predicate has a single gap, then we'll call it a *1-place* predicate
- ➤ If a predicate has two gaps, then we'll call it a 2-place predicate

Predicates

• a *predicate* is a *gappy statement*—it's a statement with a name (or names) missing.

loves	
-------	--

- ▶ If a predicate has a single gap, then we'll call it a *1-place* predicate
- ▶ If a predicate has two gaps, then we'll call it a *2-place* predicate
- ▶ If a predicate has *N* gaps, then we'll call it an *N*-place predicate

domain: all people

L___: loves ___

a: Abelard

h: Heloise

```
domain: all people

L___: loves___

a: Abelard

h: Heloise
```

Abelard loves Heloise:

```
domain: all people

L___: loves___

a: Abelard

h: Heloise
```

Abelard loves Heloise: Heloise loves Abelard:

```
domain: all people

L___: loves___

a: Abelard

h: Heloise
```

Abelard loves Heloise:

Heloise loves Abelard:

```
domain: all people

Lxy: ___x loves ___y

a: Abelard

h: Heloise
```

Abelard loves Heloise:

Heloise loves Abelard:

```
domain: all people

Lxy: ___x loves ___y

a: Abelard

h: Heloise
```

Abelard loves Heloise: Lah

Heloise loves Abelard:

```
domain : all people

Lxy : ___x loves ___y

a : Abelard

h : Heloise
```

Abelard loves Heloise: *Lah* Heloise loves Abelard: *Lha*

```
domain : all people

Lxy : ___x loves ___y
a : Abelard
h : Heloise
```

```
domain: all people

Lxy: __x loves __y
a: Abelard
h: Heloise
```

Everyone loves Abelard:

```
domain: all people

Lxy: __x loves __y
a: Abelard
h: Heloise
```

Everyone loves Abelard:

 $\forall x Lxa$

```
domain: all people

Lxy: ___x loves ___y
a: Abelard
h: Heloise
```

Someone loves Heloise:

```
domain: all people

Lxy: ___x loves ___y

a: Abelard

h: Heloise
```

Someone loves Heloise:

 $\exists z Lzh$

```
domain : all people
  Lxy : ___x loves ___y
  a : Abelard
  h : Heloise
```

Abelard loves Heloise if anyone does :

```
domain : all people
Lxy : ___x loves ___y
a : Abelard
h : Heloise
```

Abelard loves Heloise if anyone does :

 $\exists x \, Lxh \rightarrow Lah$

```
domain: all people

Lxy: __x loves __y

a: Abelard

h: Heloise
```

$$\forall x \, (\mathcal{F}x \to \mathcal{G}x)$$

```
domain: all people

Lxy: __x loves __y
a: Abelard
h: Heloise
```

$$\forall x \, (Lxh \to \mathcal{G}x)$$

```
domain: all people

Lxy: __x loves __y

a: Abelard

h: Heloise
```

$$\forall x (Lxh \rightarrow Lxa)$$

```
domain : all people
  Lxy : ___x loves ___y
  a : Abelard
  h : Heloise
```

Abelard loves himself:

```
domain: all people

Lxy: ___x loves ___y
a: Abelard
h: Heloise
```

Abelard loves himself:

Laa

```
domain: all people

Lxy: __x loves __y
a: Abelard
h: Heloise
```

Everyone loves themselves.

```
domain: all people

Lxy: __x loves __y
a: Abelard
h: Heloise
```

Everyone loves themselves.

 $\forall z Lzz$

```
domain: all people

Mxy: ___y loves ___x
a: Abelard
h: Heloise
```

```
domain: all people

Mxy: ___y loves ___x
a: Abelard
h: Heloise
```

Everyone loves Abelard:

```
domain: all people

Mxy: ___y loves ___x
a: Abelard
h: Heloise
```

Everyone loves Abelard:

 $\forall x Max$

```
domain : all people
  Mxy : ___y loves ___x
  a : Abelard
  h : Heloise
```

Someone loves Heloise:

```
domain: all people

Mxy: ___y loves ___x
a: Abelard
h: Heloise
```

Someone loves Heloise:

 $\exists z Mhz$

```
domain : all people
  Mxy : ___y loves ___x
  a : Abelard
  h : Heloise
```

Abelard loves Heloise if anyone does :

```
domain : all people
  Mxy : ___y loves ___x
  a : Abelard
  h : Heloise
```

Abelard loves Heloise if anyone does :

$$\exists x Mhx \rightarrow Mha$$

```
domain: everything in the office

j: Jim
Lxy: \__x likes \__y
m: Michael
Ex: \__x is easy going
p: Pam
Txy: \__x is taller than <math>\__y
s: Stanley
Px: \__x is a person
```

```
domain: everything in the office

j: \text{Jim}

Lxy: \_\__x \text{ likes} \_\_y

m: \text{Michael}

Ex: \_\__x \text{ is easy going}

p: \text{Pam}

S: \text{Stanley}

S: \text{Stanley}

S: \text{Stanley}

S: \text{Stanley}
```

Everyone is easygoing:

```
domain: everything in the office

Lxy: ___x likes ___y
```

m: Michael Ex: ___x is easy going

p: Pam $Txy: __x is taller than __y$

s: Stanley $Px: \underline{\hspace{1cm}}_x$ is a person

Everyone is easygoing:

i : Jim

$$\forall x (\mathcal{F}x \to \mathcal{G}x)$$

```
domain: everything in the office

j: Jim
Lxy: \__x likes \__y
m: Michael
Ex: \__x is easy going
p: Pam
Txy: \__x is taller than <math>\__y
s: Stanley
Txy: \__x is a person
```

Everyone is easygoing:

$$\forall x (Px \to \mathcal{G}x)$$

```
domain: everything in the office

j: Jim
Lxy: \__x likes \__y
m: Michael
Ex: \__x is easy going
p: Pam
Txy: \__x is taller than <math>\__y
s: Stanley
Txy: \__x is a person
```

Everyone is easygoing:

$$\forall x (Px \rightarrow Ex)$$

```
domain: everything in the office

j: \text{Jim}
Lxy: \__x \text{ likes} \__y

m: \text{Michael}
Ex: \__x \text{ is easy going}

p: \text{Pam}
Txy: \__x \text{ is taller than} \__y

s: \text{Stanley}
Px: \__x \text{ is a person}
```

```
domain: everything in the office

j: Jim
Lxy: \__x likes \__y
m: Michael
Ex: \__x is easy going
p: Pam
Txy: \__x is taller than <math>\__y
s: Stanley
Px: \__x is a person
```

$$\forall x (\mathcal{F}x \to \neg \mathcal{G}x)$$

```
domain: everything in the office

j: Jim
Lxy: \__x likes \__y
m: Michael
Ex: \__x is easy going
p: Pam
Txy: \__x is taller than <math>\__y
s: Stanley
Px: \__x is a person
```

$$\forall x (Px \to \neg \mathscr{G}x)$$

```
domain: everything in the office

j: Jim
Lxy: \__x likes \__y
m: Michael
Ex: \__x is easy going
p: Pam
Txy: \__x is taller than <math>\__y
s: Stanley
Px: \__x is a person
```

$$\forall x (Px \to \neg Lxm)$$

```
domain: everything in the office

j: \text{Jim}
Lxy: \_\__x \text{ likes} \_\_y
m: \text{Michael}
Ex: \_\__x \text{ is easy going}
p: \text{Pam}
Txy: \_\__x \text{ is taller than } \_\_y
s: \text{Stanley}
Px: \_\__x \text{ is a person}
```

Michael likes everyone:

```
domain: everything in the office

j: \text{Jim}
Lxy: \__x \text{ likes} \__y

m: \text{Michael}
Ex: \__x \text{ is easy going}

p: \text{Pam}
Txy: \__x \text{ is taller than } \__y

s: \text{Stanley}
Px: \__x \text{ is a person}
```

```
domain: everything in the office

j: \text{Jim}

Lxy: \_\_x \text{ likes} \_\_y

m: \text{Michael}

Ex: \_\_x \text{ is easy going}

p: \text{Pam}

S: \text{Stanley}

S: \text{Stanley}

S: \text{Stanley}

S: \text{Stanley}
```

$$\forall x (\mathcal{F}x \to \mathcal{G}x)$$

```
domain: everything in the office

j: Jim
Lxy: \__x likes \__y
m: Michael
Ex: \__x is easy going
p: Pam
Txy: \__x is taller than <math>\__y
s: Stanley
Px: \__x is a person
```

$$\forall x (Px \to \mathcal{G}x)$$

```
domain: everything in the office

j: \text{Jim}
Lxy: \_\__x \text{ likes} \_\__y
m: \text{Michael}
Ex: \_\__x \text{ is easy going}
p: \text{Pam}
S: \text{Stanley}
Cxy: \_\__x \text{ is taller than } \_\__y
Cxy: \_\__x \text{ is a person}
```

$$\forall x (Px \to Lmx)$$

```
domain: everything in the office

j: \text{Jim}
Lxy: \__x \text{ likes} \__y

m: \text{Michael}
Ex: \__x \text{ is easy going}

p: \text{Pam}
Txy: \__x \text{ is taller than } \__y

s: \text{Stanley}
Px: \__x \text{ is a person}
```

Stanley doesn't like anyone:

```
domain: everything in the office

j: \text{Jim}
Lxy: \_\_x \text{ likes} \_\_y
m: \text{Michael}
Ex: \_\_x \text{ is easy going}
p: \text{Pam}
Txy: \_\_x \text{ is taller than } \_\_y
s: \text{Stanley}
Px: \_\_x \text{ is a person}
```

```
domain: everything in the office

j: \text{Jim}
Lxy: \_\_x \text{ likes} \_\_y
m: \text{Michael}
Ex: \_\_x \text{ is easy going}
p: \text{Pam}
Txy: \_\_x \text{ is taller than } \_\_y
s: \text{Stanley}
Px: \_\_x \text{ is a person}
```

$$\forall x (\mathcal{F}x \to \neg \mathcal{G}x)$$

```
domain: everything in the office

j: Jim
Lxy: \__x likes \__y
m: Michael
Ex: \__x is easy going
p: Pam
Txy: \__x is taller than <math>\__y
s: Stanley
Px: \__x is a person
```

$$\forall x (Px \to \neg \mathscr{G}x)$$

```
domain: everything in the office

j: \text{Jim}
Lxy: \_\_x \text{ likes} \_\_y
m: \text{Michael}
Ex: \_\_x \text{ is easy going}
p: \text{Pam}
Txy: \_\_x \text{ is taller than } \_\_y
s: \text{Stanley}
Px: \_\_x \text{ is a person}
```

$$\forall x (Px \to \neg Lsx)$$

```
domain: everything in the office

j: \text{Jim}

Lxy: \__x \text{ likes} \__y

m: \text{Michael}

Ex: \__x \text{ is easy going}

p: \text{Pam}

Txy: \__x \text{ is taller than } \__y

s: \text{Stanley}

Px: \__x \text{ is a person}
```

Someone likes Pam:

```
domain: everything in the office

j: Jim
Lxy: \__x likes \__y
m: Michael
Ex: \__x is easy going
p: Pam
Txy: \__x is taller than <math>\__y
s: Stanley
Px: \__x is a person
```

Someone likes Pam:

$$\exists x (\mathscr{F}x \wedge \mathscr{G}x)$$

```
domain: everything in the office

j: Jim
Lxy: \__x likes \__y
m: Michael
Ex: \__x is easy going
p: Pam
Txy: \__x is taller than <math>\__y
s: Stanley
Px: \__x is a person
```

Someone likes Pam:

$$\exists x (Px \land \mathscr{G}x)$$

```
domain: everything in the office
                                  Lxy: \underline{\phantom{a}}_x \text{ likes } \underline{\phantom{a}}_v
           j : Jim
          m: Michael Ex: x is easy going
           p: Pam
                         Txy: \underline{\phantom{a}}_x is taller than \underline{\phantom{a}}_y
           s: Stanley Px: x is a person
Someone likes Pam:
                                \exists x (Px \land Lxp)
```

```
domain: everything in the office

j: \text{Jim}
Lxy: \_\_x \text{ likes} \_\_y
m: \text{Michael}
Ex: \_\_x \text{ is easy going}
p: \text{Pam}
Txy: \_\_x \text{ is taller than } \_\_y
s: \text{Stanley}
Px: \_\_x \text{ is a person}
```

Michael doesn't like anyone taller than him:

```
domain: everything in the office

j: \text{Jim}
Lxy: \_\_x \text{ likes} \_\_y

m: \text{Michael}
Ex: \_\_x \text{ is easy going}

p: \text{Pam}
Txy: \_\_x \text{ is taller than } \_\_y

s: \text{Stanley}
Px: \_\_x \text{ is a person}
```

```
domain: everything in the office

j: \text{Jim}
Lxy: \_\_x \text{ likes} \_\_y
m: \text{Michael}
Ex: \_\_x \text{ is easy going}
p: \text{Pam}
Txy: \_\_x \text{ is taller than } \_\_y
s: \text{Stanley}
Px: \_\_x \text{ is a person}
```

$$\forall x [\mathfrak{F} x \to \neg \mathfrak{G} x]$$

```
domain: everything in the office

j: \text{Jim}

Lxy: \_\__x \text{ likes} \_\__y

m: \text{Michael}

Ex: \_\__x \text{ is easy going}

p: \text{Pam}

Txy: \_\__x \text{ is taller than } \_\__y

S: \text{Stanley}

Px: \_\__x \text{ is a person}
```

$$\forall x [(Px \land Txm) \to \neg \mathscr{G}x]$$

```
domain: everything in the office

j: Jim
Lxy: \__x likes \__y
m: Michael
Ex: \__x is easy going
p: Pam
Txy: \__x is taller than <math>\__y
s: Stanley
Px: \__x is a person
```

$$\forall x[(Px \land Txm) \to \neg Lmx]$$

```
domain: everything in the office

j: \text{Jim}
Lxy: \_\__x \text{ likes} \_\_y
m: \text{Michael}
Ex: \_\__x \text{ is easy going}
p: \text{Pam}
Txy: \_\__x \text{ is taller than } \_\_y
s: \text{Stanley}
Px: \_\__x \text{ is a person}
```

```
domain: everything in the office

j: \text{Jim}

Lxy: \_\_x \text{ likes} \_\_y

m: \text{Michael}

Ex: \_\_x \text{ is easy going}

p: \text{Pam}

Txy: \_\_x \text{ is taller than } \_\_y

s: \text{Stanley}

Px: \_\_x \text{ is a person}
```

$$\forall x [\mathcal{F}x \to \mathcal{G}x]$$

```
domain: everything in the office

j: Jim
Lxy: \__x likes \__y
m: Michael
Ex: \__x is easy going
p: Pam
Txy: \__x is taller than <math>\__y
s: Stanley
Px: \__x is a person
```

$$\forall x [Px \to \mathcal{G}x]$$

```
domain: everything in the office

j: Jim
Lxy: \__x likes \__y
m: Michael
Ex: \__x is easy going
p: Pam
Txy: \__x is taller than <math>\__y
s: Stanley
Px: \__x is a person
```

$$\forall x [Px \to \forall y (\mathcal{F}y \to \mathcal{G}y)]$$

```
domain: everything in the office

j: \text{Jim}

Lxy: \_\_x \text{ likes} \_\_y

m: \text{Michael}

Ex: \_\_x \text{ is easy going}

p: \text{Pam}

S: \text{Stanley}

Cxy: \_\_x \text{ is taller than } \_\_y

Cxy: \_\_x \text{ is a person}
```

$$\forall x [Px \to \forall y (Py \to \mathcal{G}y)]$$

```
domain: everything in the office

j: \text{Jim}

Lxy: \_\_x \text{ likes} \_\_y

m: \text{Michael}

Ex: \_\_x \text{ is easy going}

p: \text{Pam}

S: \text{Stanley}

S: \text{Stanley}

S: \text{Stanley}

S: \text{Stanley}
```

$$\forall x [Px \to \forall y (Py \to Lxy)]$$

```
domain: everything in the office

j: \text{Jim}

Lxy: \_\_x \text{ likes} \_\_y

m: \text{Michael}

Ex: \_\_x \text{ is easy going}

p: \text{Pam}

S: \text{Stanley}

Cxy: \_\_x \text{ is taller than } \_\_y

Cxy: \_\_x \text{ is a person}
```

```
domain: everything in the office

j: Jim
Lxy: \__x likes \__y
m: Michael
Ex: \__x is easy going
p: Pam
Txy: \__x is taller than <math>\__y
s: Stanley
Px: \__x is a person
```

$$\forall x [\mathscr{F}x \to \mathscr{G}x]$$

```
domain: everything in the office

j: Jim
Lxy: \__x likes \__y
m: Michael
Ex: \__x is easy going
p: Pam
Txy: \__x is taller than <math>\__y
s: Stanley
Px: \__x is a person
```

$$\forall x [Px \to \mathcal{G}x]$$

```
domain: everything in the office

j: \text{Jim}

Lxy: \_\_x \text{ likes} \_\_y

m: \text{Michael}

Ex: \_\_x \text{ is easy going}

p: \text{Pam}

S: \text{Stanley}

S: \text{Stanley}

S: \text{Stanley}

S: \text{Stanley}
```

$$\forall x [Px \to \exists y (\mathcal{F}y \land \mathcal{G}y)]$$

```
domain: everything in the office

j: \text{Jim}
Lxy: \_\__x \text{ likes} \_\__y
m: \text{Michael}
Ex: \_\__x \text{ is easy going}
p: \text{Pam}
S: \text{Stanley}
Cxy: \_\__x \text{ is taller than } \_\__y
Cxy: \_\__x \text{ is a person}
```

$$\forall x [Px \to \exists y (Py \land \mathscr{G}y)]$$

```
domain: everything in the office

j: \text{Jim}
Lxy: \_\__x \text{ likes} \_\__y
m: \text{Michael}
Ex: \_\__x \text{ is easy going}
p: \text{Pam}
S: \text{Stanley}
Cxy: \_\__x \text{ is taller than } \_\__y
Cxy: \_\__x \text{ is a person}
```

$$\forall x [Px \to \exists y (Py \land Lxy)]$$

```
domain: everything in the office

j: \text{Jim}
Lxy: \_\_x \text{ likes} \_\_y

m: \text{Michael}
Ex: \_\_x \text{ is easy going}

p: \text{Pam}
Txy: \_\_x \text{ is taller than } \_\_y

s: \text{Stanley}
Px: \_\_x \text{ is a person}
```

Someone likes someone:

```
domain: everything in the office

j: \text{Jim}

Lxy: \_\_x \text{ likes} \_\_y

m: \text{Michael}

Ex: \_\_x \text{ is easy going}

p: \text{Pam}

S: \text{Stanley}

S: \text{Stanley}

S: \text{Stanley}

S: \text{Stanley}
```

$$\exists x [\mathscr{F}x \land \mathscr{G}x]$$

```
domain: everything in the office

j: \text{Jim}

Lxy: \_\_x \text{ likes} \_\_y

m: \text{Michael}

Ex: \_\_x \text{ is easy going}

p: \text{Pam}

S: \text{Stanley}

Cxy: \_\_x \text{ is taller than } \_\_y

Cxy: \_\_x \text{ is a person}
```

$$\exists x [Px \land \mathscr{G}x]$$

```
domain: everything in the office

j: \text{Jim}
Lxy: \_\__x \text{ likes} \_\__y
m: \text{Michael}
Ex: \_\__x \text{ is easy going}
p: \text{Pam}
S: \text{Stanley}
Cxy: \_\__x \text{ is taller than } \_\__y
Cxy: \_\__x \text{ is a person}
```

$$\exists x [Px \land \exists y (\mathscr{F}y \land \mathscr{G}y)]$$

```
domain: everything in the office

j: \text{Jim}
Lxy: \_\__x \text{ likes} \_\__y
m: \text{Michael}
Ex: \_\__x \text{ is easy going}
p: \text{Pam}
S: \text{Stanley}
Cxy: \_\__x \text{ is taller than } \_\__y
Cxy: \_\__x \text{ is a person}
```

$$\exists x [Px \land \exists y (Py \land \mathscr{G}y)]$$

```
domain: everything in the office

j: \text{Jim}
Lxy: \_\__x \text{ likes} \_\__y
m: \text{Michael}
Ex: \_\__x \text{ is easy going}
p: \text{Pam}
S: \text{Stanley}
Cxy: \_\__x \text{ is taller than } \_\__y
Cxy: \_\__x \text{ is a person}
```

$$\exists x [Px \land \exists y (Py \land Lxy)]$$

```
domain: everything in the office

j: \text{Jim}
Lxy: \_\_x \text{ likes} \_\_y

m: \text{Michael}
Ex: \_\_x \text{ is easy going}

p: \text{Pam}
Txy: \_\_x \text{ is taller than } \_\_y

s: \text{Stanley}
Px: \_\_x \text{ is a person}
```

```
domain: everything in the office

j: Jim
Lxy: \__x likes \__y
m: Michael
Ex: \__x is easy going
p: Pam
Txy: \__x is taller than <math>\__y
s: Stanley
Px: \__x is a person
```

$$\exists x [\mathscr{F}x \land \mathscr{G}x]$$

```
domain: everything in the office

j: Jim
Lxy: \__x likes \__y
m: Michael
Ex: \__x is easy going
p: Pam
Txy: \__x is taller than <math>\__y
s: Stanley
Px: \__x is a person
```

$$\exists x [Px \land \mathscr{G}x]$$

```
domain: everything in the office

j: \text{Jim}
Lxy: \_\_x \text{ likes} \_\_y
m: \text{Michael}
Ex: \_\_x \text{ is easy going}
p: \text{Pam}
Txy: \_\_x \text{ is taller than } \_\_y
s: \text{Stanley}
Px: \_\_x \text{ is a person}
```

$$\exists x [Px \land \forall y (\mathcal{F}y \to \mathcal{G}y)]$$

```
domain: everything in the office

j: \text{Jim}
Lxy: \_\_x \text{ likes} \_\_y
m: \text{Michael}
Ex: \_\_x \text{ is easy going}
p: \text{Pam}
Txy: \_\_x \text{ is taller than } \_\_y
s: \text{Stanley}
Px: \_\_x \text{ is a person}
```

$$\exists x [Px \land \forall y (Py \to \mathscr{G}y)]$$

```
domain: everything in the office

j: \text{Jim}
Lxy: \_\_x \text{ likes} \_\_y
m: \text{Michael}
Ex: \_\_x \text{ is easy going}
p: \text{Pam}
Txy: \_\_x \text{ is taller than } \_\_y
s: \text{Stanley}
Px: \_\_x \text{ is a person}
```

$$\exists x [Px \land \forall y (Py \to Lxy)]$$

Syntax for PL

PHIL 500

$$\forall x (Fx \to \exists y Gyx)$$

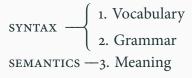
$$| (Fx \to \exists y Gyx)$$

$$Fx \quad \exists y Gyx$$

$$| Gyx$$

Syntax for PL

Languages



Syntax for PL

Vocabulary

The vocabulary of PL includes the following symbols:

1. for each $N \ge 0$, N-place predicates (any capital letter—perhaps with subscripts)

$$A, B, C, D, E, \dots, X, Y, Z$$

 $A_1, B_1, C_1, D_1, E_1, \dots, X_1, Y_1, Z_1$
 $A_2, B_2, C_2, D_2, E_2, \dots, X_2, Y_2, Z_2$
 \vdots

2. *names* (any lowercase letter between a and v—perhaps with subscripts)

$$a, b, c, d, e, \dots, t, u, v$$

 $a_1, b_1, c_1, d_1, e_1, \dots, t_1, u_1, v_1$
 $a_2, b_2, c_2, d_2, e_2, \dots, t_2, u_2, v_2$
 \vdots

2. *names* (any lowercase letter between a and v—perhaps with subscripts)

$$a, b, c, d, e, \dots, t, u, v$$

 $a_1, b_1, c_1, d_1, e_1, \dots, t_1, u_1, v_1$
 $a_2, b_2, c_2, d_2, e_2, \dots, t_2, u_2, v_2$
 \vdots

3. *variables* (lowercase *w*, *x*, *y*, and *z*—perhaps with subscripts)

$$w, x, y, z$$

 w_1, x_1, y_1, z_1
 w_2, x_2, y_2, z_2
 \vdots

4. Logical operators

$$\neg, \lor, \land, \rightarrow, \longleftrightarrow, \exists, \forall$$

4. Logical operators

$$\neg, \lor, \land, \rightarrow, \longleftrightarrow, \exists, \forall$$

4. Logical operators

$$\neg, \lor, \land, \rightarrow, \longleftrightarrow, \exists, \forall$$

5. parenthases

4. Logical operators

$$\neg, \lor, \land, \rightarrow, \longleftrightarrow, \exists, \forall$$

5. parenthases

Nothing else is included in the vocabulary of PL.

• Let's call both names and variables *terms*. That is, both 'a' and 'x' are *terms* of PL.

Syntax for PL

Grammar

Grammar

• Any sequence of the symbols in the vocabulary of PL is an *expression* of PL.

Grammar

- Any sequence of the symbols in the vocabulary of PL is an *expression* of PL.
- All of the following are expressions of PL:

$$Vx\neg((\longrightarrow \to anv))$$

$$PQRST\neg\neg$$

$$(\forall x Fxab \to \neg \exists y Pynst)$$

$$Nxy \lor \lor \neg \neg \exists x Bx$$

Grammar

- Any sequence of the symbols in the vocabulary of PL is an *expression* of PL.
- All of the following are expressions of PL:

$$Vx\neg((\rightarrow \rightarrow anv))$$

$$PQRST\neg\neg$$

$$(\forall x Fxab \rightarrow \neg \exists y Pynst)$$

$$Nxy \lor \lor \neg \neg \exists xBx$$

Grammar: Atomic Sentences

• If \Re is an N-place predicate and t_1, t_2, \ldots, t_N are N terms, then

$$\Re t_1 t_2 \dots t_N$$

is an atomic sentence.

Grammar: Atomic sentences

• Let *A* be a 1-place predicate, *B* a 2-place predicate, *C* a 3-place predicate, and *D* a 4-place predicate

Grammar: Atomic sentences

- Let A be a 1-place predicate, B a 2-place predicate, C a 3-place predicate, and D a 4-place predicate
- Then, all of the following are atomic sentences of PL:

Az

Aa

Bwg

Cxzt

Dcccc

Dxaxa

 ${\mathcal R}$) Every atomic sentence is a sentence

- \mathcal{R}) Every atomic sentence is a sentence
 - \neg) If ' \mathcal{A} ' is a sentence, then ' $\neg \mathcal{A}$ ' is a sentence.

- \Re) Every atomic sentence is a sentence
 - \neg) If ' \varnothing ' is a sentence, then ' $\neg \varnothing$ ' is a sentence.
- \wedge) If 'A' and 'B' are sentences, then '(A \wedge B)' is a sentence.

- \Re) Every atomic sentence is a sentence
 - \neg) If 'A' is a sentence, then ' $\neg A$ ' is a sentence.
- \wedge) If 'A' and 'B' are sentences, then '(A \wedge B)' is a sentence.
- \vee) If 'A' and 'B' are sentences, then '(A \vee B)' is a sentence.

- \Re) Every atomic sentence is a sentence
 - \neg) If ' \varnothing ' is a sentence, then ' $\neg \varnothing$ ' is a sentence.
- \wedge) If 'A' and 'B' are sentences, then '(A \wedge B)' is a sentence.
- \vee) If 'A' and 'B' are sentences, then '(A \vee B)' is a sentence.
- \rightarrow) If 'A' and 'B' are sentences, then '(A \rightarrow B)' is a sentence.

- \Re) Every atomic sentence is a sentence
 - \neg) If ' \varnothing ' is a sentence, then ' $\neg \varnothing$ ' is a sentence.
 - \wedge) If 'A' and 'B' are sentences, then '(A \wedge B)' is a sentence.
 - \vee) If 'A' and 'B' are sentences, then '(A \vee B)' is a sentence.
- \rightarrow) If 'A' and 'B' are sentences, then '(A \rightarrow B)' is a sentence.
- \iff) If 'A' and 'B' are sentences, then '(A \iff B)' is a sentence.

- \Re) Every atomic sentence is a sentence
 - \neg) If ' \varnothing ' is a sentence, then ' $\neg \varnothing$ ' is a sentence.
 - \wedge) If 'A' and 'B' are sentences, then '(A \wedge B)' is a sentence.
- \vee) If 'A' and 'B' are sentences, then '(A \vee B)' is a sentence.
- \rightarrow) If 'A' and 'B' are sentences, then '(A \rightarrow B)' is a sentence.
- \iff) If 'A' and 'B' are sentences, then '(A \iff B)' is a sentence.
 - \forall) If 'A' is a sentence and 'x' is a variable, then ' $\forall x A$ ' is a sentence.

- \Re) Every atomic sentence is a sentence
 - \neg) If 'A' is a sentence, then ' $\neg A$ ' is a sentence.
 - \wedge) If 'A' and 'B' are sentences, then '(A \wedge B)' is a sentence.
- \vee) If 'A' and 'B' are sentences, then '(A \vee B)' is a sentence.
- \rightarrow) If 'A' and 'B' are sentences, then '(A \rightarrow B)' is a sentence.
- \iff) If 'A' and 'B' are sentences, then '(A \iff B)' is a sentence.
 - \forall) If ' \mathcal{A} ' is a sentence and 'x' is a variable, then ' $\forall x \mathcal{A}$ ' is a sentence.
 - \exists) If 'A' is a sentence and 'x' is a variable, then ' $\exists x$ A' is a sentence.

- \Re) Every atomic sentence is a sentence
 - \neg) If 'A' is a sentence, then ' $\neg A$ ' is a sentence.
 - \wedge) If 'A' and 'B' are sentences, then '(A \wedge B)' is a sentence.
- \vee) If 'A' and 'B' are sentences, then '(A \vee B)' is a sentence.
- \rightarrow) If 'A' and 'B' are sentences, then '(A \rightarrow B)' is a sentence.
- \iff) If 'A' and 'B' are sentences, then '(A \iff B)' is a sentence.
 - \forall) If 'A' is a sentence and 'x' is a variable, then ' $\forall x$ A' is a sentence.
 - \exists) If 'A' is a sentence and 'x' is a variable, then ' $\exists x$ A' is a sentence.
 - -) Nothing else is a sentence.

Note: none of ' \mathcal{A} ', ' \mathcal{B} ', 'x', or 't' appear in the vocabulary of PL. They are not *themselves* sentences of PL. Rather, we are using them here as META-VARIABLES ranging over the expressions of PL.

• To show that ' $(\forall y \, Fy \rightarrow \neg \exists x \, \exists z \, Gzx)$ ' is a sentence of PL:

a) 'Fy' is a sentence

[from (\Re)]

- a) 'Fy' is a sentence [from (\Re)]
- b) So, $\forall y \, Fy$ is a sentence [from (a) and (\forall)]

- a) 'Fy' is a sentence [from (\Re)]
- b) So, ' $\forall y \, Fy$ ' is a sentence [from (a) and (\forall)]
- c) 'Gzx' is a sentence [from (\Re)]

- a) 'Fy' is a sentence [from (\Re)]
- b) So, ' $\forall y \, Fy$ ' is a sentence [from (a) and (\forall)]
- c) 'Gzx' is a sentence [from (\Re)]
- d) So, ' $\exists z Gzx$ ' is a sentence [from (c) and (\exists)]

- a) 'Fy' is a sentence [from (\Re)]
- b) So, ' $\forall y \, Fy$ ' is a sentence [from (a) and (\forall)]
- c) 'Gzx' is a sentence [from (\Re)]
- d) So, ' $\exists z Gzx$ ' is a sentence [from (c) and (\exists)]
- e) So, ' $\exists x \exists z Gzx$ ' is a sentence [from (d) and (\exists)]

a) 'Fy' is a sentence	[from (\mathcal{R})]
-----------------------	-------------------------

- b) So, ' $\forall y \, Fy$ ' is a sentence [from (a) and (\forall)]
- c) 'Gzx' is a sentence [from (\Re)]
- d) So, ' $\exists z Gzx$ ' is a sentence [from (c) and (\exists)]
- e) So, ' $\exists x \exists z Gzx$ ' is a sentence [from (d) and (\exists)]
- f) So, ' $\neg \exists x \exists z Gzx$ ' is a sentence [from (e) and (\neg)]

- a) 'Fy' is a sentence [from (\Re)]
- b) So, ' $\forall y \, Fy$ ' is a sentence [from (a) and (\forall)]
- c) 'Gzx' is a sentence [from (\Re)]
- d) So, ' $\exists z Gzx$ ' is a sentence [from (c) and (\exists)]
- e) So, ' $\exists x \exists z Gzx$ ' is a sentence [from (d) and (\exists)]
- f) So, ' $\neg \exists x \exists z Gzx$ ' is a sentence [from (e) and (\neg)]
- g) So, ' $(\forall y Fy \rightarrow \neg \exists x \exists z Gzx)$ ' is a sentence [from (b), (f), and (\rightarrow)]

• Conventions:

- Conventions:
 - Omit the outermost parenthases in a sentence of PL.

- Conventions:
 - Omit the outermost parenthases in a sentence of PL.
 - Allow ourselves to use square brackets '[,]' for readability

- Conventions:
 - Omit the outermost parenthases in a sentence of PL.
 - Allow ourselves to use square brackets '[,]' for readability
- So, rather than

$$(\forall y \, Fy \to \neg \exists x \, \exists z \, Gzx)$$

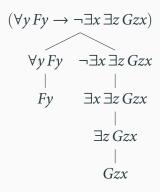
- Conventions:
 - Omit the outermost parenthases in a sentence of PL.
 - Allow ourselves to use square brackets '[,]' for readability
- So, rather than

$$(\forall y \, Fy \to \neg \exists x \, \exists z \, Gzx)$$

• we can write

$$\forall y \, Fy \to \neg \exists x \, \exists z \, Gzx$$

Syntax Trees



Is it a sentence? (*F* is 2-place, *G* is 1-place)

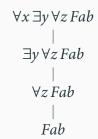
• $\forall x(\exists y(\forall z \, Fab))$

Is it a sentence? (*F* is 2-place, *G* is 1-place)

• $\forall x(\exists y(\forall z \, Fab)) \times$

Is it a sentence? (*F* is 2-place, *G* is 1-place)

• $\forall x(\exists y(\forall z \, Fab)) \times$



- $\forall x(\exists y(\forall z \, Fab)) \times$
- ∀a Gaa

- $\forall x(\exists y(\forall z \, Fab)) \times$
- ∀a Gaa ×

- $\forall x(\exists y(\forall z \, Fab)) \times$
- ∀a Gaa ×
- Fxy

- $\forall x(\exists y(\forall z \, Fab)) \times$
- ∀a Gaa ×
- Fxy √

- $\forall x(\exists y(\forall z \, Fab)) \times$
- ∀a Gaa ×
- *Fxy* ✓
- $\forall w Gx$

- $\forall x(\exists y(\forall z \, Fab)) \times$
- ∀a Gaa ×
- *Fxy* ✓
- ∀*w Gx* ✓

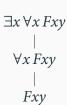
- $\forall x(\exists y(\forall z \, Fab)) \times$
- ∀a Gaa ×
- *Fxy* ✓
- $\forall w Gx \checkmark$

$$\forall w Gx$$
 $|$
 Gx

- $\forall x(\exists y(\forall z \, Fab)) \times$
- ∀a Gaa ×
- Fxy ✓
- ∀*w Gx* ✓
- $\exists x \, \forall x \, Fxy$

- $\forall x(\exists y(\forall z \, Fab)) \times$
- ∀a Gaa ×
- Fxy ✓
- $\forall w Gx \checkmark$
- $\exists x \, \forall x \, Fxy \checkmark$

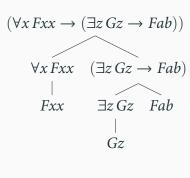
- $\forall x(\exists y(\forall z \, Fab)) \times$
- ∀a Gaa ×
- Fxy √
- ∀*w Gx* ✓
- $\exists x \, \forall x \, Fxy \checkmark$



- $\forall x(\exists y(\forall z \, Fab)) \times$
- ∀a Gaa ×
- Fxy ✓
- $\forall w Gx \checkmark$
- $\exists x \, \forall x \, Fxy \checkmark$
- $\forall x Fxx \rightarrow (\exists z Gz \rightarrow Fab)$

- $\forall x(\exists y(\forall z \, Fab)) \times$
- ∀a Gaa ×
- Fxy ✓
- ∀*w Gx* ✓
- $\exists x \, \forall x \, Fxy \checkmark$
- $\forall x \, Fxx \to (\exists z \, Gz \to Fab)$

- $\forall x(\exists y(\forall z \, Fab)) \times$
- ∀a Gaa ×
- Fxy √
- $\forall w Gx \checkmark$
- $\exists x \, \forall x \, Fxy \checkmark$
- $\forall x \, Fxx \to (\exists z \, Gz \to Fab)$

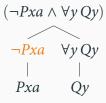


Subsentences

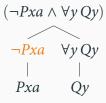
• '\mathbb{R}' is a *subsentence* of '\mathbb{A}' if and only if, in the course of building up '\mathbb{A}' by applying the rules for sentences, '\mathbb{R}' appears on a line before '\mathbb{A}'.

- '\mathbb{R}' is a *subsentence* of '\mathbb{A}' if and only if, in the course of building up '\mathbb{A}' by applying the rules for sentences, '\mathbb{R}' appears on a line before '\mathbb{A}'.
 - ' $\neg Pxa$ ' is a subsentence of ' $\neg Pxa \land \forall y Qy$ '

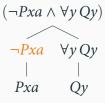
- '\mathbb{B}' is a *subsentence* of '\mathbb{A}' if and only if, in the course of building up '\mathbb{A}' by applying the rules for sentences, '\mathbb{B}' appears on a line before '\mathbb{A}'.
 - '¬Pxa' is a subsentence of '¬ $Pxa \land \forall y Qy$ '



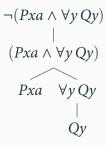
- '\mathbb{B}' is a *subsentence* of '\mathbb{A}' if and only if, in the course of building up '\mathbb{A}' by applying the rules for sentences, '\mathbb{B}' appears on a line before '\mathbb{A}'.
 - '¬Pxa' is a subsentence of '¬ $Pxa \land \forall y Qy$ '



- '\mathbb{B}' is a *subsentence* of '\mathbb{A}' if and only if, in the course of building up '\mathbb{A}' by applying the rules for sentences, '\mathbb{B}' appears on a line before '\mathbb{A}'.
 - '¬Pxa' is a subsentence of '¬ $Pxa \land \forall y Qy$ '
 - '¬Pxa' is *not* a subsentence of '¬ $(Pxa \land \forall y Qy)$ '



- '\mathbb{B}' is a *subsentence* of '\mathbb{A}' if and only if, in the course of building up '\mathbb{A}' by applying the rules for sentences, '\mathbb{B}' appears on a line before '\mathbb{A}'.
 - '¬Pxa' is a subsentence of '¬ $Pxa \land \forall y Qy$ '
 - '¬Pxa' is *not* a subsentence of '¬ $(Pxa \land \forall y Qy)$ '



 The *main operator* in a (non-atomic) sentence is the operator which would be introduced *last*, if we were building the sentence up according to the rules for sentences.

• $Fab \rightarrow \exists y Ay$

main operator:

• $Fab \rightarrow \exists y Ay$

main operator:

$$(Fab \rightarrow \exists y \, Ay)$$

$$Fab \quad \exists y \, Ay$$

$$\mid$$

$$Ay$$

• $Fab \rightarrow \exists y Ay$

main operator:
$$\rightarrow$$

$$(Fab \to \exists y Ay)$$

$$Fab \quad \exists y Ay$$

$$|$$

$$Ay$$

•
$$\exists x [Rx \to (Jx \land Kx)] \lor Fab$$

main operator:

• $\exists x[Rx \to (Jx \land Kx)] \lor Fab$

main operator:

$$(\exists x (Rx \to (Jx \land Kx)) \lor Fab)$$

$$\exists x (Rx \to (Jx \land Kx)) \quad Fab$$

$$(Rx \to (Jx \land Kx))$$

$$Rx \quad (Jx \land Kx)$$

$$Jx \quad Kx$$

• $\exists x[Rx \to (Jx \land Kx)] \lor Fab$

main operator: ∨

$$(\exists x (Rx \to (Jx \land Kx)) \lor Fab)$$

$$\exists x (Rx \to (Jx \land Kx)) \quad Fab$$

$$(Rx \to (Jx \land Kx))$$

$$Rx \quad (Jx \land Kx)$$

$$Jx \quad Kx$$

•
$$\forall x (Fx \rightarrow Gx)$$

main operator:

•
$$\forall x (Fx \to Gx)$$

$$\forall x (Fx \to Gx)$$

$$|$$

$$(Fx \to Gx)$$

$$Fx \quad Gx$$

•
$$\forall x (Fx \to Gx)$$

$$\forall x (Fx \to Gx)$$

$$|$$

$$(Fx \to Gx)$$

$$Fx \quad Gx$$

•
$$\exists w (Fw \longleftrightarrow \forall x Gx)$$

main operator:

• $\exists w (Fw \longleftrightarrow \forall x Gx)$

main operator:

$$\exists w (Fw \longleftrightarrow \forall x Gx)$$

$$|$$

$$(Fw \longleftrightarrow \forall x Gx)$$

$$Fw \quad \forall x Gx$$

$$|$$

$$Gx$$

•
$$\exists w (Fw \longleftrightarrow \forall x Gx)$$

main operator: \exists

$$\exists w (Fw \longleftrightarrow \forall x Gx)$$

$$| (Fw \longleftrightarrow \forall x Gx)$$

$$Fw \forall x Gx$$

$$| Gx$$

• A sentence whose main operator is '¬' is a *negation*

- A sentence whose main operator is '¬' is a *negation*
- A sentence whose main operator is 'A' is a *conjunction*

- A sentence whose main operator is '¬' is a *negation*
- A sentence whose main operator is 'A' is a *conjunction*
- A sentence whose main operator is 'V' is a *disjunction*

- A sentence whose main operator is '¬' is a *negation*
- A sentence whose main operator is 'A' is a *conjunction*
- A sentence whose main operator is 'V' is a *disjunction*
- A sentence whose main operator is '→' is a conditional

- A sentence whose main operator is '¬' is a *negation*
- A sentence whose main operator is 'A' is a conjunction
- A sentence whose main operator is 'V' is a disjunction
- A sentence whose main operator is '→' is a *conditional*
- A sentence whose main operator is '←' is a *biconditional*

- A sentence whose main operator is '¬' is a *negation*
- A sentence whose main operator is 'A' is a *conjunction*
- A sentence whose main operator is 'V' is a *disjunction*
- A sentence whose main operator is '→' is a conditional
- A sentence whose main operator is '←' is a *biconditional*
- A sentence whose main operator is '∀' is a universal sentence

- A sentence whose main operator is '¬' is a *negation*
- A sentence whose main operator is 'A' is a *conjunction*
- A sentence whose main operator is 'V' is a *disjunction*
- A sentence whose main operator is '→' is a conditional
- A sentence whose main operator is '←' is a *biconditional*
- A sentence whose main operator is '∀' is a universal sentence
- A sentence whose main operator is '∃' is an *existential* sentence

• The *scope* of an operator (in a sentence) is the sub-sentence for which that operator is the main operator

$$\forall x \,\exists y \, [\forall w \, Fwx \longleftrightarrow \forall z \, (Gxz \longrightarrow Wzyx)]$$

$$\forall x \exists y \left[\forall w Fwx \longleftrightarrow \forall z \left(Gxz \to Wzyx \right) \right]$$

• Scope of ' $\forall z$ ':

$$\forall x \exists y \left[\forall w Fwx \longleftrightarrow \forall z \left(Gxz \to Wzyx \right) \right]$$

• Scope of ' $\forall z$ ': $\forall z (Gxz \rightarrow Wzyx)$

$$\forall x \exists y \left[\forall w Fwx \longleftrightarrow \forall z \left(Gxz \to Wzyx \right) \right]$$

- Scope of ' $\forall z$ ': $\forall z (Gxz \rightarrow Wzyx)$
- Scope of ' $\forall w$ ':

$$\forall x \exists y \left[\forall w Fwx \longleftrightarrow \forall z \left(Gxz \to Wzyx \right) \right]$$

- Scope of ' $\forall z$ ': $\forall z (Gxz \rightarrow Wzyx)$
- Scope of ' $\forall w$ ': $\forall w Fwx$

$$\forall x \exists y \left[\forall w Fwx \longleftrightarrow \forall z \left(Gxz \to Wzyx \right) \right]$$

- Scope of ' $\forall z$ ': $\forall z (Gxz \rightarrow Wzyx)$
- Scope of ' $\forall w$ ': $\forall w Fwx$
- Scope of ' $\exists y$ ':

$$\forall x \exists y \left[\forall w Fwx \longleftrightarrow \forall z \left(Gxz \to Wzyx \right) \right]$$

- Scope of ' $\forall z$ ': $\forall z (Gxz \rightarrow Wzyx)$
- Scope of ' $\forall w$ ': $\forall w Fwx$
- Scope of ' $\exists y$ ': $\exists y [Fx \longleftrightarrow \forall z (Gaz \to Wzyx)]$

$$\forall x \exists y \left[\forall w Fwx \longleftrightarrow \forall z \left(Gxz \to Wzyx \right) \right]$$

- Scope of ' $\forall z$ ': $\forall z (Gxz \rightarrow Wzyx)$
- Scope of ' $\forall w$ ': $\forall w Fwx$
- Scope of ' $\exists y$ ': $\exists y [Fx \longleftrightarrow \forall z (Gaz \to Wzyx)]$
- Scope of ' $\forall x$ ':

$$\forall x \,\exists y \, [\forall w \, Fwx \longleftrightarrow \forall z \, (Gxz \longrightarrow Wzyx)]$$

- Scope of ' $\forall z$ ': $\forall z (Gxz \rightarrow Wzyx)$
- Scope of ' $\forall w$ ': $\forall w Fwx$
- Scope of ' $\exists y$ ': $\exists y [Fx \longleftrightarrow \forall z (Gaz \to Wzyx)]$
- Scope of ' $\forall x$ ': $\forall x \exists y [Fx \longleftrightarrow \forall z (Gaz \to Wzyx)]$

Syntax for PL

Free and Bound Variables

• 'Fx' and 'Ayc' are sentences.

- 'Fx' and 'Ayc' are sentences.
- However, their variables are FREE.

- 'Fx' and 'Ayc' are sentences.
- However, their variables are FREE.
- The variables appearing in ' $\forall x \forall y Fxy$ ' are BOUND.

- 'Fx' and 'Ayc' are sentences.
- However, their variables are FREE.
- The variables appearing in ' $\forall x \forall y Fxy$ ' are BOUND.
- In ' $\forall x Px \rightarrow Qx$ ', the first x is bound, whereas the second one is free.

A variable x in a sentence of PL is BOUND if and only if it occurs within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

A variable x in a sentence of PL is free if and only if it does not occur within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

A variable x in a sentence of PL is BOUND if and only if it occurs within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

A variable x in a sentence of PL is free if and only if it does not occur within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

$$\forall x \, \forall y \, Fy \to \exists z \, Gzx$$

A variable x in a sentence of PL is BOUND if and only if it occurs within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

A variable x in a sentence of PL is free if and only if it does not occur within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

$$\forall x \, \forall y \, F_y \to \exists z \, Gzx$$

A variable x in a sentence of PL is BOUND if and only if it occurs within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

A variable x in a sentence of PL is free if and only if it does not occur within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

$$\forall x \, \forall y \, Fy \to \exists z \, Gzx$$

A variable x in a sentence of PL is BOUND if and only if it occurs within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

A variable x in a sentence of PL is free if and only if it does not occur within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

$$\forall x \, \forall y \, Fy \to \exists z \, Gz \underline{x}$$

A variable x in a sentence of PL is BOUND if and only if it occurs within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

A variable x in a sentence of PL is free if and only if it does not occur within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

$$\forall x \, (\forall y \, Fy \to \exists z \, Gzx)$$

A variable x in a sentence of PL is BOUND if and only if it occurs within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

A variable x in a sentence of PL is free if and only if it does not occur within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

$$\forall x \, (\forall y \, F_{\mathbf{y}} \to \exists z \, Gzx)$$

A variable x in a sentence of PL is BOUND if and only if it occurs within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

A variable x in a sentence of PL is free if and only if it does not occur within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

$$\forall x \, (\forall y \, Fy \to \exists z \, Gzx)$$

A variable x in a sentence of PL is BOUND if and only if it occurs within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

A variable x in a sentence of PL is free if and only if it does not occur within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

$$\forall x \, (\forall y \, Fy \to \exists z \, Gzx)$$

A variable x in a sentence of PL is BOUND if and only if it occurs within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

A variable x in a sentence of PL is free if and only if it does not occur within the scope of a quantifier, $\forall x$ or $\exists x$, whose associated variable is x.

$$\forall x \, (\forall y \, Fy \to \exists z \, Gzx)$$

$$\forall w (\exists y \, Lwy \to \exists w \, Aw)$$

$$\forall w (\exists y \, Lwy \to \exists w \, Aw)$$

In a sentence of the form $\forall x \mathcal{A}$ or $\exists x \mathcal{A}$, the quantifier binds every *free* occurrence of x in \mathcal{A} . If an occurrence of x in \mathcal{A} is already bound, then the quantifier does not bind it.

In a sentence of the form $\forall x \mathcal{A}$ or $\exists x \mathcal{A}$, the quantifier binds every *free* occurrence of x in \mathcal{A} . If an occurrence of x in \mathcal{A} is already bound, then the quantifier does not bind it.

• E.g., in

 $\exists x \, \forall x \, Fx$

the variable 'x' is bound by the *universal* quantifier ' $\forall x$ '. It is *not* bound by the existential quantifier ' $\exists x$ '.

Open and Closed

• If all variables in $\mathcal A$ are bound, then we'll say that $\mathcal A$ is *closed*

Open and Closed

- If all variables in $\mathcal A$ are bound, then we'll say that $\mathcal A$ is *closed*
- If a variable occurs free in \mathcal{A} , then we'll say that \mathcal{A} is *open*

Open and Closed

- If all variables in $\mathcal A$ are bound, then we'll say that $\mathcal A$ is *closed*
- If a variable occurs free in \mathcal{A} , then we'll say that \mathcal{A} is open
- When translating into PL, we want our translations to be *closed*.

$$\exists x \, Lxy \land \forall y \, Lyx$$

$$\exists x \, Lxy \land \forall y \, Lyx$$

 $\exists x \, Lxy \land \forall y \, Lyx$

$$\exists x \, Lxy \land \forall y \, Lyx$$

$$\exists x \, Lxy \land \forall y \, Lyx$$

$$\forall x (Ax \wedge Bx) \wedge \forall y (Cx \wedge Dy)$$

$$\forall x (A_x \land Bx) \land \forall y (Cx \land Dy)$$

$$\forall x (Ax \wedge Bx) \wedge \forall y (Cx \wedge Dy)$$

$$\forall x (Ax \wedge Bx) \wedge \forall y (Cx \wedge Dy)$$

$$\forall x (Ax \wedge Bx) \wedge \forall y (Cx \wedge Dy)$$

$$\forall x \,\exists y \, [Rxy \to (Jz \land Kx)] \lor Ryx$$

$$\forall x \,\exists y \, [Rxy \to (Jz \land Kx)] \lor Ryx$$

$$\forall x \,\exists y \, [Rxy \to (Jz \land Kx)] \lor Ryx$$

$$\forall x \,\exists y \, [Rxy \to (Jz \wedge Kx)] \vee Ryx$$

$$\forall x \,\exists y \, [Rxy \to (Jz \wedge Kx)] \vee Ryx$$

$$\forall x \,\exists y \, [Rxy \to (Jz \land Kx)] \lor Ryx$$

$$\forall x \,\exists y \, [Rxy \to (Jz \land Kx)] \lor Ryx$$

Syntax for PL

Important Syntactic Features in PL

Parenthases

$$\forall x \,\exists y \, Lxy \to Gx)$$

$$\exists y \, Lxy \to Gx$$

$$\exists y \, Lxy \quad Gx$$

$$\mid Lxy$$

Term Order

$$\forall x \exists y Lyx \\ | \\ \exists y Lyx \\ | \\ Lyx$$

Quantifier Order

$$\exists y \, \forall x \, Lxy \\ \mid \\ \forall x \, Lxy \\ \mid \\ Lxy$$