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Variants of ‘Some s are ©s’

> Some Fs are Gs
> Some Fsare G

Some F is G

v
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There are € Fs
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Variants Some Fs are not

> Some Fs are not Es
> Some Fs are not G

> Some F is not G

> Some F is a non-§

> There are non-€ s
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« Some of you may find one or more of these alternative
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« Some of you may find one or more of these alternative
translations more natural—if so, you should feel free to use
them instead.
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2-Place Predicates

domain : everything in the office

j :Jim Lxy : __ x likes__,

m : Michael Ex : __, iseasy going

p : Pam Txy : __  istallerthan
s : Stanley Px : . isaperson
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Syntax for PL

PHIL 500
Vx (Fx — Jy Gyx)
|
(Fx — Jy Gyx)
/\
Fx FyGyx

|
Gyx
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1. Vocabulary
SYNTAX
2. Grammar

SEMANTICS —3. Meaning
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Syntax for PL

Vocabulary



Vocabulary

The vocabulary of PL includes the following symbols:

1. for each N > 0, N-place predicates (any capital
letter—perhaps with subscripts)

ABCDE ....XY Z
A1,B1,C1,Dy,Eq, ..., X1, Y1, 24
Ag,Bg, Co,Do, Es, ..., X9,Y9, 29

22



Vocabulary

2. names (any lowercase letter between a and v—perhaps with
subscripts)

ab,cde, ... .t,uv
ai, by, c1,dy,er, ...t UL, vy

as, by, co,da, ea, . . ., o, U, V2

23



Vocabulary

2. names (any lowercase letter between a and v—perhaps with
subscripts)

ab,cde, ... .t,uv
ai, by, c1,dy,er, ...t UL, vy

as, by, co,da, ea, . . ., o, U, V2

3. variables (lowercase w, x, y, and z—perhaps with subscripts)
W, X, ¥, Z
w1, X1, Y1, 21
w2, X2, ¥2, 22
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Vocabulary

24



Vocabulary

4. Logical operators

_|’ v’ /\’ H9 H’ 3’ v
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Vocabulary

4. Logical operators

) V’ /\, —, <, EI v
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Vocabulary

4. Logical operators
_|’ v’ /\’ H9 H’ 3’ v

5. parenthases
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Vocabulary

4. Logical operators
_|’ v’ /\, H9 H’ 3’ v

5. parenthases

()

Nothing else is included in the vocabulary of PL.
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Vocabulary

o Let’s call both names and variables terms. That is, both ‘a’
and ‘x’ are terms of PL.
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Syntax for PL

Grammar



Grammar

« Any sequence of the symbols in the vocabulary of PL is an

expression of PL.
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Grammar

« Any sequence of the symbols in the vocabulary of PL is an
expression of PL.

o All of the following are expressions of PL:

Vx—((—— anv
PQRST——

(Vx Fxab — —3y Pynst)
Nxy V V-—-3dxBx
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Grammar

« Any sequence of the symbols in the vocabulary of PL is an
expression of PL.

o All of the following are expressions of PL:

Vx—((—— anv
PQRST——

(Vx Fxab — —3y Pynst)
Nxy V V-—-3dxBx
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Grammar: Atomic Sentences

o If R is an N-place predicate and {1, {9, ..., {iy are N terms,
then
Rt1to ... Ty

is an atomic sentence.
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Grammar: Atomic sentences

o Let A be a1-place predicate, B a 2-place predicate, C a
3-place predicate, and D a 4-place predicate
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Grammar: Atomic sentences

o Let A be a1-place predicate, B a 2-place predicate, C a
3-place predicate, and D a 4-place predicate

o Then, all of the following are atomic sentences of PL:

Az
Aa
Bwg
Cxzt
Dcccc

Dxaxa

28



Grammar: Sentences

R ) Every atomic sentence is a sentence
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Grammar: Sentences

R ) Every atomic sentence is a sentence

—) If ‘of’ is a sentence, then ‘=9’ is a sentence.
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A) If ‘o’ and ‘A’ are sentences, then ‘(sf A 93) is a sentence.
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Grammar: Sentences

R ) Every atomic sentence is a sentence

—) If ‘of’ is a sentence, then ‘=9’ is a sentence.
A) If ‘o’ and ‘A’ are sentences, then ‘(sf A 93) is a sentence.
V) If ‘e’ and ‘A’ are sentences, then ‘(o1 V 95)’ is a sentence.

(
—) If ‘of” and ‘A’ are sentences, then ‘(s — (/S) is a sentence.
(4

«) If ‘e’ and ‘B’ are sentences, then 9B)’ is a sentence.
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Grammar: Sentences

R ) Every atomic sentence is a sentence
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sentence.
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Grammar: Sentences

R ) Every atomic sentence is a sentence
—) If ‘of’ is a sentence, then ‘=9’ is a sentence.

A) If ‘o’ and ‘A’ are sentences, then ‘(sf A 93) is a sentence.
V) If ‘e’ and ‘A’ are sentences, then ‘(o1 V 95)’ is a sentence.
—) If ‘of” and ‘A’ are sentences, then (¢ — 98)’ is a sentence.
) If ‘s’ and ‘%’ are sentences, then ‘(s/ «— 94)’ is a sentence.
V) If ‘o’ is a sentence and ‘x’ is a variable, then Va o’ is a

sentence.

3) If ‘o’ is a sentence and ‘x’ is a variable, then ‘T o’ is a
sentence.
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Grammar: Sentences

R ) Every atomic sentence is a sentence
—) If ‘of’ is a sentence, then ‘=9’ is a sentence.

A) If ‘o’ and ‘A’ are sentences, then ‘(sf A 93) is a sentence.
V) If ‘e’ and ‘A’ are sentences, then ‘(o1 V 95)’ is a sentence.
—) If ‘of” and ‘A’ are sentences, then (¢ — 98)’ is a sentence.
) If ‘s’ and ‘%’ are sentences, then ‘(s/ «— 94)’ is a sentence.
V) If ‘o’ is a sentence and ‘x’ is a variable, then Va o’ is a

sentence.

3) If ‘o’ is a sentence and ‘x’ is a variable, then ‘T o’ is a

sentence.

—) Nothing else is a sentence.
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Grammar

Note: none of ‘dl’, ‘B, “ax’, or ‘" appear in the vocabulary of PL.
They are not themselves sentences of PL. Rather, we are using

them here as META-VARIABLES ranging over the expressions of
PL.
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Grammar

o To show that (Vy Fy — —=3x 3z Gzx)’ is a sentence of PL:
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Grammar

o To show that (Vy Fy — —=3x 3z Gzx)’ is a sentence of PL:

a) ‘Fy’ is a sentence [from (R)]
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Grammar
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b) So, Vy Fy’ is a sentence [from (a) and (V)]
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Grammar
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¢) ‘Gzx’ is a sentence [from (R)]
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Grammar

o To show that (Vy Fy — —=3x 3z Gzx)’ is a sentence of PL:

a) ‘Fy’ is a sentence [from (R)]
b) So, ‘Vy Fy’ is a sentence [from (a) and (V)]
¢) ‘Gzx’ is a sentence [from (R)]
d) So, ‘3z Gzx’ is a sentence [from (c) and (3)]
e) So, ‘Ix 3z Gzx’ is a sentence [from (d) and (3)]

]

f) So, ‘—dx 3z Gzx’ is a sentence [from (e) and (—)
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Grammar

o To show that (Vy Fy — —=3x 3z Gzx)’ is a sentence of PL:

a) ‘Fy’ is a sentence [from (R)]
b) So, Vy Fy’ is a sentence [from (a) and (V)]
¢) ‘Gzx’ is a sentence [from (R)]
d) So, ‘3z Gzx’ is a sentence [from (c) and (3)]
e) So, ‘Ax Iz Gzx’ is a sentence [from (d) and (3)]
f) So, ‘—dx 3z Gzx’ is a sentence [from (e) and (—)]

g) So, (VyFy — —3x 3z Gzx)’ is a sentence [from (b), (f), and
(—)]
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Grammar

o Conventions:
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Grammar

o Conventions:

« Omit the outermost parenthases in a sentence of PL.
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Grammar

o Conventions:

« Omit the outermost parenthases in a sentence of PL.

o Allow ourselves to use square brackets ‘|, |’ for readability

e So, rather than
(Vy Fy — —=3x 3z Gzx)

e We can write
VyFy — —3dxdz Gzx

32



(Vy Fy — —3x 3z Gzx)
/\
VyFy —3dx3dzGzx

| |
Fy dx 3z Gzx

|
dz Gzx

Gzx
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Syntactic Structure

Is it a sentence? (Fis 2-place, G is 1-place)

o Vx(3y(VzFab))
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JyVzFab

|
Vz Fab

|
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Is it a sentence? (Fis 2-place, G is 1-place)

o Vx(3y(Vz Fab)) x

* VaGaa x dx Vx Fxy
o« FxyVv |
e YWGx V Vx Fxy

|
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Syntactic Structure

Is it a sentence? (Fis 2-place, G is 1-place)

o Vx(3y(Vz Fab)) x

Va Gaa X

Fxy v

VwGx v

IxVx Fxy v

Vx Fxx — (3z Gz — Fab)

34



Syntactic Structure

Is it a sentence? (Fis 2-place, G is 1-place)

o Vx(3y(Vz Fab)) x
Va Gaa X

Fxy v

VwGx v

IxVx Fxy v
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v
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Syntactic Structure

Is it a sentence? (Fis 2-place, G is 1-place)

o Vx(3y(Vz Fab)) x (Vx Fxx — (3zGz — Fab))

Va Gaa X /\

o Fxy v/ VxFxx (3zGz — Fab)

o VWGx Vv | TN
Fxx 3z Gz Fab

o IxVxFxyV |

o VxFxx — (3zGz — Fab) Gz

v
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Subsentences

o ‘B’ isasubsentence of ‘d’ if and only if, in the course of
building up ‘dI’ by applying the rules for sentences, ‘4’
appears on a line before ‘"
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Subsentences

o ‘R’ is a subsentence of ‘dl’ if and only if, in the course of
building up ‘dI’ by applying the rules for sentences, ‘4’
appears on a line before ‘"’

« ‘=Pxa’ is a subsentence of ‘—Pxa A Vy Qy’
 ‘=Pxa’ is not a subsentence of ‘—(Pxa A Vy Qy)’

=(Pxa A Yy Qy)
|
(Pxa AVyQy)
N
Pxa VyQy
|
Qy
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Main Operators

o The main operator in a (non-atomic) sentence is the
operator which would be introduced last, if we were
building the sentence up according to the rules for
sentences.
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Main Operators

o Fab — Ty Ay main operator:
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(Fab — 3y Ay)

/\
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|
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Main Operators

o Ix[Rx — (Jx A Kx)| V Fab main operator:
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Main Operators

o Ix[Rx — (Jx A Kx)| V Fab main operator:

(Ix(Rx — (Jx A Kx)) V Fab)

RS

Jx(Rx — (Jx A Kx)) Fab

|
(Rx — (Jx A Kx))

N
Rx (Jx A Kx)

P
Jx Kx
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Main Operators

e Ix[Rx — (Jx A Kx)| V Fab main operator: V

(Ix(Rx — (Jx A Kx)) V Fab)

RS

Ix(Rx — (Jx AKx)) Fab

|
(Rx — (Jx A Kx))

N
Rx (Jx A Kx)

P
Jx Kx

38



Main Operators

o Vx(Fx — Gx) main operator:
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Vx (Fx — Gx)

|
(Fx — Gx)

N
Fx Gx
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N
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Main Operators

o Jw(Fw < VxGx) main operator:
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Main Operators

o dw (Fw < VxGx) main operator:

Iw (Fw < Vx Gx)

|
(Fw «— Vx Gx)

/\
Fw VxGx

|
Gx
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Main Operators

o dw (Fw < VxGx) main operator: 3

Iw (Fw < Vx Gx)

|
(Fw «— Vx Gx)

/\
Fw VxGx

|
Gx
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« A sentence whose main operator is ‘=’ is a negation
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Main Operators

« A sentence whose main operator is ‘=’ is a negation

« A sentence whose main operator is ‘A’ is a conjunction

« A sentence whose main operator is “V’ is a disjunction

o A sentence whose main operator is ‘—’ is a conditional

« A sentence whose main operator is ‘=’ is a biconditional

« A sentence whose main operator is VY’ is a universal
sentence

« A sentence whose main operator is ‘3 is an existential

sentence

41



o The scope of an operator (in a sentence) is the sub-sentence
for which that operator is the main operator
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Vx 3y [Vw Fwx < Vz (Gxz — Wzyx)]
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Vx 3y [Vw Fwx < Vz (Gxz — Wzyx)]

o Scope of VZ:  Vz(Gxz — Wzyx)

Scope of ‘Vw":  Vw Fwx

Scope of ‘Fy: Ty [Fx «— Yz (Gaz — Wzyx)]

Scope of Vx:  Vx3y[Fx <> Vz(Gaz — Wzyx)]
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Free and Bound Variables

« ‘Fx’ and ‘Ayc’ are sentences.
« However, their variables are FREE.
o The variables appearing in ‘Vx Vy Fxy’ are BOUND.

o In Vx Px — Qx, the first x is bound, whereas the second
one is free.
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Free and Bound Variables

Yw(3y Lwy — TIw Aw)

46



Free and Bound Variables

Vw(3y Lwy — Iw Aw)
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In a sentence of the form Vadl or Jx <, the quantifier binds

every free occurrence of « in 9. If an occurrence of @ in o is
already bound, then the quantifier does not bind it.
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Free and Bound Variables

In a sentence of the form Vadl or Jx <, the quantifier binds

every free occurrence of « in 9. If an occurrence of @ in o is
already bound, then the quantifier does not bind it.

« E.g.,in

dx Vx Fx

the variable ‘x’ is bound by the universal quantifier ‘Vx. It is
not bound by the existential quantifier ‘3x’
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Open and Closed

o Ifall variables in o/ are bound, then we'll say that < is closed
o If avariable occurs free in 9, then we'll say that < is open

« When translating into PL, we want our translations to be
closed.
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Vx 3y Lxy — Gx) Vx3yLxy — Gx
| S
dyLxy — Gx Vx3dyLxy Gx
/\ ‘
dyLxy Gx dy Lxy

| |
Lxy Lxy
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Vxdy Lxy Vx 3y Lyx
dy Lxy dy Lyx

Lxy Lyx
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Quantifier Order

dy Vx Lxy Vx 3y Lxy
Vx Lxy dy Lxy

Lxy Lxy

52
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