Predicate Logic

Translation

PHIL 500

Vx((Px V Qx) — Rx)



Four Important Statement Forms
2-Place Predicates

Syntax for PL
Vocabulary
Grammar
Free and Bound Variables

Important Syntactic Features in PL



Four Important Statement Forms



Four Important Statement Forms

(A) All Fs (in the domain) are Gs Vx (Fx — Gx)



Four Important Statement Forms

(A) All Fs (in the domain) are Gs Vx (Fx — Gx)

(E) No Fs (in the domain) are Gs Vx (Fx — —6x)



Four Important Statement Forms

(A) All Fs (in the domain) are Gs Vx (Fx — Gx)
(E) No Fs (in the domain) are Gs Vx (Fx — —6x)

(I) Some Fs (in the domain) are s Ix (Fx A €x)



Four Important Statement Forms

(A) All Fs (in the domain) are Gs Vx (Fx — Gx)
(E) No Fs (in the domain) are Gs Vx (Fx — —6x)
(I) Some Fs (in the domain) are s Ix (Fx A €x)

)

(O) Some Fs (in the domain) are not s Fx (Fx A ~6x



Domains

« Remember: any quantified claim in PL (V& o, or o )
is made relative to a domain.



Domains

« Remember: any quantified claim in PL (V& o, or o )
is made relative to a domain.

> ‘Va o, says Everything in the domain makes o, true



Domains

« Remember: any quantified claim in PL (V& o, or o )
is made relative to a domain.

> ‘Va o, says Everything in the domain makes o, true

> ‘Jx 9, says Something in the domain makes d,, true



Four Important Statement Forms

(A) All Fs (in the domain) are Gs Vx (Fx — Gx)
(E) No Fs (in the domain) are Gs Vx (Fx — —€x)
(I) Some Fs (in the domain) are s Ix (Fx A €x)

)

(O) Some Fs (in the domain) are not s Fx (Fx A =6x



Variants of ‘All Fs are ©s’

> All Fs are Es
> Any F isa ‘€

> Every 7 is €



Variants of ‘No Fs are s’

> No Fs are Es
> No F is €
> NoFisa€

> There are no G Fs



Variants of ‘Some s are ©s’

> Some Fs are Gs
> Some Fsare G

Some F is G

v

> Some F isa @

There are € Fs

v



Variants Some Fs are not

> Some Fs are not Es
> Some Fs are not G

> Some F is not G

> Some F is a non-§

> There are non-€ s



> In general: find a statement which means the same thing as
the statement you want to translate, but which has one of
the four forms:



> In general: find a statement which means the same thing as
the statement you want to translate, but which has one of
the four forms:

(A) All Fsare Gs
(E) No Fsare Gs
(I) Some Fsare Gs

(O) Some Fsare not Gs



> In general: find a statement which means the same thing as

the statement you want to translate, but which has one of

the four forms:

> Then, use the translations:

(A)
(E)
ey
(0)

All Fs are Gs
No Fs are Gs
Some Fs are Gs

Some Fs are not Gs



> In general: find a statement which means the same thing as

the statement you want to translate, but which has one of

the four forms:

> Then, use the translations:

(A)
(E)
ey
(0)

All Fs are Gs Vx(Fx — Gx)
No Fs are Gs
Some Fs are Gs

Some Fs are not Gs



> In general: find a statement which means the same thing as

the statement you want to translate, but which has one of

the four forms:

> Then, use the translations:

(A)
(E)
ey
(0)

All Fs are Gs Vx(Fx — Gx)
No Fs are Gs Vx(Fx — —6x)
Some Fs are Gs

Some Fs are not Gs



> In general: find a statement which means the same thing as

the statement you want to translate, but which has one of

the four forms:

> Then, use the translations:

(A)
(E)
ey
(0)

All Fs are Gs Vx(Fx — Gx)
No Fs are Gs Vx(Fx — —6x)
Some Fs are Gs Fx(Fx A Ex)

Some Fs are not Gs



> In general: find a statement which means the same thing as
the statement you want to translate, but which has one of
the four forms:

> Then, use the translations:

(A) All Fsare Gs Vx(Fx — 6x
(E) No Fsare Gs Vx(Fx — —6x
(I) Some Fsare Gs Fx(Fx A €x
(O) Some FsarenotGs  Ix(Fx A —-6x

)
)
)
)



« Some of you may find one or more of these alternative
translations more natural—if so, you should feel free to use
them instead.

(A) All Fsare Gs Vx(Fx — Gx)
(E) No Fsare Gs Vx(Fx — —6x)
(I) Some Fs are s Fx(Fx A €x)
(O) Some FsarenotEs  x(Fx A -6x)

11



« Some of you may find one or more of these alternative
translations more natural—if so, you should feel free to use
them instead.

(A) All Fsare Gs Vx(Fx — Gx)
(E) No Fsare Gs Vx(Fx — —6x)
(I) Some Fs are s Fx(Fx A €x)
(O) Some FsarenotEs  x(Fx A -6x)

11



« Some of you may find one or more of these alternative
translations more natural—if so, you should feel free to use
them instead.

(A) All Fsare Gs =3x(Fx A =6x)
(E) No Fsare Gs Vx(Fx — —6x)
(I) Some Fs are s Fx(Fx A €x)
(O) Some FsarenotEs  Ix(Fx A —Ex)

11



« Some of you may find one or more of these alternative
translations more natural—if so, you should feel free to use
them instead.

(A) All Fsare Gs =3x(Fx A =6x)
(E) No Fsare Gs —=3x(Fx A Ex)
(I) Some Fs are s Fx(Fx A €x)
(O) Some FsarenotEs  Ix(Fx A —Ex)

11



« Some of you may find one or more of these alternative
translations more natural—if so, you should feel free to use
them instead.

(A) All Fsare Gs =3x(Fx A =6x)
(E) No Fsare Gs —=3x(Fx A Ex)
(I) Some Fs are s —Vx(Fx — —6x)
(O) Some Fs are not Gs Fx(Fx A ~6x)

11



« Some of you may find one or more of these alternative
translations more natural—if so, you should feel free to use
them instead.

(A) All Fsare Gs =3x(Fx A =6x)
(E) No Fsare Gs —=3x(Fx A Ex)
(I) Some Fs are s —Vx(Fx — —6x)
(O) Some FsarenotEs  —Vx(Fx — Ex)

11



« Some of you may find one or more of these alternative
translations more natural—if so, you should feel free to use
them instead.

(A) All Fsare Gs =3x(Fx A =6x)
(E) No Fsare Gs —=3x(Fx A Ex)
(I) Some Fs are s —Vx(Fx — —6x)

(O) Some FsarenotEs  —Vx(Fx — Ex)
> If you don't find any of these more natural, don’t worry
about it—just ignore this slide.

11



domain : all people

F__:  isfunny
S+ isshy
T . istall
Q_ :  isquirky

Everyone is funny :



domain : all people

F__:  isfunny
S+ isshy
T . istall
Q_ :  isquirky

Everyone is funny :
Vx Fx



domain : all people

F__:  isfunny
S+ isshy
T . istall
Q_ :  isquirky

Someone is quirky :



domain : all people

F__:  isfunny
S+ isshy
T . istall
Q_ :  isquirky

Someone is quirky :
Iy Qy



domain : all people

F__:_ isfunny
S . isshy
T ¢ istall
Q__ :__ isquirky

Everyone tall is shy :



domain : all people

F__ .  isfunny
S . isshy
T istall
Q__ :__ isquirky

Everyone tall is shy :

Vz (Fz - 6z)



domain : all people

F__:_ isfunny
S . isshy
T ¢ istall
Q__ :__ isquirky

Everyone tall is shy :

Vz(Tz — Sz)



domain : all people

F__ .  isfunny
S . isshy
T istall
Q__ :__ isquirky

No quirky people are funny :



domain : all people

F__ .  isfunny
S . isshy
T istall
Q__ :__ isquirky

No quirky people are funny :

Vz (Fz - —62)



domain : all people

F__ .  isfunny
S . isshy
T istall
Q__ :__ isquirky

No quirky people are funny :

Vz (Qz — —Fz)



domain : all people

F__ .  isfunny
S . isshy
T istall
Q__ :__ isquirky

Any shy quirky person is funny :



domain : all people

F__ .  isfunny
S . isshy
T istall
Q__ :__ isquirky

Any shy quirky person is funny :

Vx [Fz — GZ]



domain : all people

F__ .  isfunny
S . isshy
T istall
Q__ :__ isquirky

Any shy quirky person is funny :

Vx [(Sx A Qx) — Fx]



domain : all people

F__ .  isfunny
S . isshy
T ¢ istall
Q__ :__ isquirky

Some tall people are shy :



domain : all people

F__ .  isfunny
S . isshy
T ¢ istall
Q__ :__ isquirky

Some tall people are shy :

Iw (Fw A Ew)



domain : all people

F__ .  isfunny
S . isshy
T ¢ istall
Q__ :__ isquirky
Some tall people are shy :

Iw (Tw A Sw)



domain : all people

F__ .  isfunny
S . isshy
T istall
Q__ :__ isquirky

No tall people are either funny or quirky :



domain : all people

F__ .  isfunny
S . isshy
T istall
Q__ :__ isquirky

No tall people are either funny or quirky :

Vx[Fx — —6x]



domain : all people

F__ .  isfunny
S . isshy
T istall
Q__ :__ isquirky

No tall people are either funny or quirky :

Vx[Tx — —(Fx V Qx)]



domain : all people

F__ .  isfunny
S . isshy
T istall
Q__ :__ isquirky

Some tall people are neither funny nor shy :



domain : all people

F__ .  isfunny
S . isshy
T istall
Q__ :__ isquirky

Some tall people are neither funny nor shy :

Jz[Fz A EZ]



domain : all people

F__ .  isfunny
S . isshy
T istall
Q__ :__ isquirky

Some tall people are neither funny nor shy :

F2[Tz A =(Fz V Sz)]



domain : all animals

P+ isaperson
V___:__ isvegetarian
C___ ¢ iscarnivorous
D :  isferocious

a : Albert

13



domain : all animals

P+ isaperson
V___:__ isvegetarian
C___ ¢ iscarnivorous
D :  isferocious

a : Albert

Some people are vegetarian :

13



domain : all animals

P+ isaperson
V___:__ isvegetarian
C___ ¢ iscarnivorous
D :  isferocious

a : Albert

Some people are vegetarian :

Fx(Fx A Ex)

13



domain : all animals

P+ isaperson
V___:__ isvegetarian
C___ ¢ iscarnivorous
D :  isferocious

a : Albert

Some people are vegetarian :

Jx(Px A Vx)

13



Examples

domain : all animals

P+ isaperson
V___:__ isvegetarian
C___ ¢ iscarnivorous
D :  isferocious

a : Albert

Some animals are vegetarian :

13



domain : all animals

P+ isaperson
V___:__ isvegetarian
C___ ¢ iscarnivorous
D :  isferocious

a : Albert

Some animals are vegetarian :

Fx(Fx A Ex)

13



Examples

domain : all animals

P+ isaperson
V___:__ isvegetarian
C___ ¢ iscarnivorous
D :  isferocious

a : Albert

Some animals are vegetarian :

dAxVx

13



Examples

domain : all animals

P+ isaperson
V___:__ isvegetarian
C___ ¢ iscarnivorous
D :  isferocious

a : Albert

Some ferocious animals are not carnivorous

13



Examples

domain : all animals

P+ isaperson
V___:__ isvegetarian
C___ ¢ iscarnivorous
D :  isferocious

a : Albert

Some ferocious animals are not carnivorous :

Fx(Fx A =6x)

13



Examples

domain : all animals

P+ isaperson
V___:__ isvegetarian
C___ ¢ iscarnivorous
D :  isferocious

a : Albert

Some ferocious animals are not carnivorous :

Ix(Fx A =Cx)

13



Examples

domain : all animals

P+ isaperson
V___:__ isvegetarian
C___ ¢ iscarnivorous
D :  isferocious

a : Albert

Some people are vegetarians and some are not :

13



domain : all animals

P+ isaperson
V___:__ isvegetarian
C___ ¢ iscarnivorous
D :  isferocious

a : Albert

Some people are vegetarians and some are not :

Ix(Fx A Ex) ATy(Fy A =6y)

13



domain : all animals

P+ isaperson
V___:__ isvegetarian
C___ ¢ iscarnivorous
D :  isferocious

a : Albert

Some people are vegetarians and some are not :

Jx(Px A Vx) A Ty(Py A =Vy)

13



domain : all animals

P+ isaperson
V___:__ isvegetarian
C___ ¢ iscarnivorous
D :  isferocious

a : Albert

If Albert is ferocious, then all people are ferocious :

13



domain : all animals

P+ isaperson
V___:__ isvegetarian
C___ ¢ iscarnivorous
D :  isferocious

a : Albert

If Albert is ferocious, then all people are ferocious :

Fa — Vx (Fx — €6x)

13



domain : all animals

P+ isaperson
V___:__ isvegetarian
C___ ¢ iscarnivorous
D :  isferocious

a : Albert

If Albert is ferocious, then all people are ferocious :

Fa — Vx (Px — Fx)

13



domain : all animals

P+ isaperson
V___:__ isvegetarian
C___ ¢ iscarnivorous
D :  isferocious

a : Albert

Albert is ferocious if anyone is :

13



domain : all animals

P+ isaperson
V___:__ isvegetarian
C___ ¢ iscarnivorous
D :  isferocious

a : Albert

Albert is ferocious if anyone is :

Ix(Fx A €x) — Fa

13



domain : all animals

P+ isaperson
V___:__ isvegetarian
C___ ¢ iscarnivorous
D :  isferocious

a : Albert

Albert is ferocious if anyone is :

Jx(Px A Fx) — Fa

13



Examples

domain : all animals

P+ isaperson
V___:__ isvegetarian
C___ ¢ iscarnivorous
D :  isferocious

a : Albert

If everyone is vegetarian, then no one is carnivorous

13



domain : all animals

P+ isaperson
V___:__ isvegetarian
C___ ¢ iscarnivorous
D :  isferocious

a : Albert

If everyone is vegetarian, then no one is carnivorous :

Vx(Fx — €x) - YVy(Fy - =6€y)

13



domain : all animals

P+ isaperson
V___:__ isvegetarian
C___ ¢ iscarnivorous
D :  isferocious

a : Albert

If everyone is vegetarian, then no one is carnivorous :

Vx(Px — Vx) — Vy(Py — =Cy)

13



Examples

domain : all animals

P+ isaperson
V___+_ isvegetarian
C___ ¢ iscarnivorous
D .  isferocious

a : Albert

There are non-vegetarian people if and only if someone is

ferocious :

13



domain : all animals

P+ isaperson
V___+_ isvegetarian
C___ ¢ iscarnivorous
D .  isferocious

a : Albert

There are non-vegetarian people if and only if someone is

ferocious :

Fx(Fx A =€x) «— y(Fy A Ey)

13



domain : all animals

P : isaperson
V___:__ isvegetarian
C___:__ iscarnivorous
D .  isferocious

a : Albert

There are non-vegetarian people if and only if someone is

ferocious :
Ix(Px A =Vx) <> 3y(Py A Fy)

13



domain : all foods

J . isajellybean
B :  isblack
R : isred

DI is delicious

14



domain : all foods

J . isajellybean
B :  isblack
R : isred
D . isdelicious

All black jellybeans are delicious, but no red jellybean is :

14



domain : all foods

J . isajellybean
B :  isblack
R : isred
D . isdelicious

All black jellybeans are delicious, but no red jellybean is :

Vx[Fx — €x] AVy[Fy — =6y]

14



domain : all foods

J . isajellybean
B :  isblack
R : isred
D . isdelicious

All black jellybeans are delicious, but no red jellybean is :

Vx[(Bx A Jx) — 6€x] A Vy[Fy — —6y]

14



domain : all foods

J . isajellybean
B :  isblack
R : isred
D . isdelicious

All black jellybeans are delicious, but no red jellybean is :

Vx[(Bx A Jx) — Dx] A Vy[Fy — =€y)]

14



domain : all foods

J . isajellybean
B :  isblack
R : isred
D . isdelicious

All black jellybeans are delicious, but no red jellybean is :

Vx[(Bx A Jx) = Dx] AVy[(Ry A Jy) — =6y

14



domain : all foods

J . isajellybean
B :  isblack
R : isred
D :  isdelicious

All black jellybeans are delicious, but no red jellybean is :

Vx[(Bx A Jx) — Dx] AVy[(Ry A Jy) — =Dy

14



domain : all foods

J . isajellybean
B :  isblack
R : isred
D . isdelicious

Black jellybeans are delicious :

14



domain : all foods

J . isajellybean
B :  isblack
R : isred
D . isdelicious

Black jellybeans are delicious :

Vx [Fx — €x]

14



domain : all foods

J . isajellybean
B :  isblack
R : isred
D . isdelicious

Black jellybeans are delicious :

Vx [(Bx A Jx) — 6x]

14



domain : all foods

J . isajellybean
B :  isblack
R : isred
D . isdelicious

Black jellybeans are delicious :

Vx [(Bx A Jx) — Dx]

14



domain : all foods

J___:__ isajellybean
B :  isblack
R« isred

D .  isdelicious

If some red jellybeans are delicious, then all black jellybeans are

delicious :

14



domain : all foods

J___:__ isajellybean
B :  isblack
R« isred

D .  isdelicious

If some red jellybeans are delicious, then all black jellybeans are

delicious :
Ix[Fx A €x] — Vy[Fy — Gy

14



domain : all foods

J___:__ isajellybean
B : isblack
R : isred
D .  isdelicious

If some red jellybeans are delicious, then all black jellybeans are
delicious :

Ix[(Rx A Jx) A €x] = Vy[Fy — Gy]

14



domain : all foods

J___:__ isajellybean
B : isblack
R : isred
D .  isdelicious

If some red jellybeans are delicious, then all black jellybeans are
delicious :

Ix[(Rx A Jx) A Dx] = Vy[Fy — Gy

14



domain : all foods

J___:__ isajellybean
B : isblack
R : isred
D .  isdelicious

If some red jellybeans are delicious, then all black jellybeans are
delicious :

3x[(Rx A Jx) A Dx] — Vy[(By A Jy) — €y]

14



domain : all foods

J___:__ isajellybean
B : isblack
R : isred
D .  isdelicious

If some red jellybeans are delicious, then all black jellybeans are
delicious :

x[(Rx A Jx) A Dx] — Vy[(By A Jy) — Dy]

14



2-Place Predicates



« a predicate is a gappy statement—it’s a statement with a

name (or names) missing.

Tammy loves Sammy.

15



« a predicate is a gappy statement—it’s a statement with a

name (or names) missing.

Tammy loves Sammy.

15



« a predicate is a gappy statement—it’s a statement with a

name (or names) missing.

Tammy loves Sammy.

15



« a predicate is a gappy statement—it’s a statement with a

name (or names) missing.

loves Sammy.

15



« a predicate is a gappy statement—it’s a statement with a

name (or names) missing.

loves Sammy.

15



« a predicate is a gappy statement—it’s a statement with a

name (or names) missing.

Tammy loves Sammy

15



« a predicate is a gappy statement—it’s a statement with a

name (or names) missing.

Tammy loves Sammy

15



« a predicate is a gappy statement—it’s a statement with a

name (or names) missing.

Tammy loves

15



« a predicate is a gappy statement—it’s a statement with a

name (or names) missing.

Tammy loves

15



« a predicate is a gappy statement—it’s a statement with a

name (or names) missing.

Tammy loves Sammy

15



« a predicate is a gappy statement—it’s a statement with a

name (or names) missing.

Tammy loves Sammy

15



« a predicate is a gappy statement—it’s a statement with a

name (or names) missing.

loves

15



« a predicate is a gappy statement—it’s a statement with a

name (or names) missing.

loves

15



« a predicate is a gappy statement—it’s a statement with a

name (or names) missing.

loves

> If a predicate has a single gap, then we'll call it a 1-place
predicate

15



« a predicate is a gappy statement—it’s a statement with a

name (or names) missing.

loves

> If a predicate has a single gap, then we'll call it a 1-place
predicate

> If a predicate has two gaps, then we'll call it a 2-place
predicate

15



« a predicate is a gappy statement—it’s a statement with a

name (or names) missing.

loves

> If a predicate has a single gap, then we'll call it a 1-place
predicate

> If a predicate has two gaps, then we'll call it a 2-place
predicate

> If a predicate has N gaps, then we'll call it an N-place
predicate

15



2-Place Predicates

domain : all people
L :  loves
a : Abelard
h : Heloise

16



2-Place Predicates

domain : all people
L : loves
a : Abelard
h : Heloise

Abelard loves Heloise :

16



2-Place Predicates

domain : all people

L : loves
a : Abelard
h : Heloise
Abelard loves Heloise :

Heloise loves Abelard :

16



2-Place Predicates

domain : all people

L : loves
a : Abelard
h : Heloise
Abelard loves Heloise :
Heloise loves Abelard :

> We need some way of saying which gap is which

16



2-Place Predicates

domain : all people
Lxy: __ x loves__,
a : Abelard
h : Heloise

Abelard loves Heloise :

Heloise loves Abelard :

> We need some way of saying which gap is which

16



2-Place Predicates

domain : all people

Lxy: __ x loves__,
a : Abelard
h : Heloise

Abelard loves Heloise : Lah
Heloise loves Abelard :

> We need some way of saying which gap is which

16



2-Place Predicates

domain : all people

Lxy: __ x loves__,
a : Abelard
h : Heloise

Abelard loves Heloise : Lah
Heloise loves Abelard : Lha

> We need some way of saying which gap is which

16



2-Place Predicates

domain : all people
Lxy : __ x loves __,
a : Abelard
h : Heloise



2-Place Predicates

domain : all people
Lxy : __ x loves __,
a : Abelard
h : Heloise

Everyone loves Abelard :



2-Place Predicates

domain : all people
Lxy : __ x loves __,
a : Abelard
h : Heloise

Everyone loves Abelard :

Vx Lxa



2-Place Predicates

domain : all people
Lxy : __ x loves __,
a : Abelard
h : Heloise

Someone loves Heloise :



2-Place Predicates

domain : all people
Lxy : __ x loves __,
a : Abelard
h : Heloise

Someone loves Heloise :

Az Lzh



2-Place Predicates

domain : all people
Lxy : __ x loves __,
a : Abelard
h : Heloise

Abelard loves Heloise if anyone does



2-Place Predicates

domain : all people
Lxy : __ x loves __,
a : Abelard
h : Heloise

Abelard loves Heloise if anyone does

dx Lxh — Lah



2-Place Predicates

domain : all people
Lxy : __ x loves __,
a : Abelard
h : Heloise

Everyone who loves Heloise loves Abelard, too. :



2-Place Predicates

domain : all people

Lxy : __ x loves __,
a : Abelard
h : Heloise

Everyone who loves Heloise loves Abelard, too. :

Vx (Fx — €x)



2-Place Predicates

domain : all people
Lxy : __ x loves __,
a : Abelard
h : Heloise

Everyone who loves Heloise loves Abelard, too. :

Vx (Lxh — 6x)



2-Place Predicates

domain : all people
Lxy : __ x loves __,
a : Abelard
h : Heloise

Everyone who loves Heloise loves Abelard, too. :

Vx (Lxh — Lxa)



2-Place Predicates

domain : all people
Lxy : __ x loves __,
a : Abelard
h : Heloise

Abelard loves himself :



2-Place Predicates

domain : all people
Lxy : __ x loves __,
a : Abelard
h : Heloise

Abelard loves himself :
Laa



2-Place Predicates

domain : all people
Lxy : __ x loves __,
a : Abelard
h : Heloise

Everyone loves themselves.



2-Place Predicates

domain : all people
Lxy : __ x loves __,
a : Abelard
h : Heloise

Everyone loves themselves.

Vzlzz



2-Place Predicates

domain : all people
Mxy : __y loves__ 4
a : Abelard
h : Heloise

18



2-Place Predicates

domain : all people
Mxy : __y loves__ 4
a : Abelard
h : Heloise

Everyone loves Abelard :

18



2-Place Predicates

domain : all people
Mxy : __y loves__ 4
a : Abelard
h : Heloise

Everyone loves Abelard :

Vx Max

18



2-Place Predicates

domain : all people
Mxy : __y loves__ 4
a : Abelard
h : Heloise

Someone loves Heloise :

18



2-Place Predicates

domain : all people
Mxy : __y loves__ 4
a : Abelard
h : Heloise

Someone loves Heloise :

dz Mhz

18



2-Place Predicates

domain : all people
Mxy : __y loves__ 4
a : Abelard
h : Heloise

Abelard loves Heloise if anyone does

18



2-Place Predicates

domain : all people
Mxy : __y loves__ 4
a : Abelard
h : Heloise

Abelard loves Heloise if anyone does

dAx Mhx — Mha

18



2-Place Predicates

domain : everything in the office

j :Jim Lxy : __ x likes__,

m : Michael Ex : __, iseasy going

p : Pam Txy : __  istallerthan
s : Stanley Px : . isaperson

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : __ x likes__,

m : Michael Ex : __, iseasy going

p : Pam Txy : __  istallerthan
s : Stanley Px : . isaperson

Everyone is easygoing :

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : __ x likes__,

m : Michael Ex : __, iseasy going

p : Pam Txy : __  istallerthan
s : Stanley Px : . isaperson

Everyone is easygoing :

Vx(Fx — 6x)

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : __ x likes__,

m : Michael Ex : __, iseasy going

p : Pam Txy : __  istallerthan
s : Stanley Px : . isaperson

Everyone is easygoing :

Vx(Px — €x)

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : __ x likes__,

m : Michael Ex : __, iseasy going

p : Pam Txy : __  istallerthan
s : Stanley Px : . isaperson

Everyone is easygoing :

Vx(Px — Ex)

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

No one likes Michael

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,
m : Michael Ex : . iseasy going
p : Pam Txy : __ x istaller than __,
s : Stanley Px : __  isaperson
No one likes Michael

Vx(Fx — —6x)

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,
m : Michael Ex : . iseasy going
p : Pam Txy : __ x istaller than __,
s : Stanley Px : __  isaperson
No one likes Michael

Vx(Px — =6x)

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,
m : Michael Ex : . iseasy going
p : Pam Txy : __ x istaller than __,
s : Stanley Px : __  isaperson
No one likes Michael

Vx(Px — —=Lxm)

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Michael likes everyone :

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Everyone is liked by Michael :

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Everyone is liked by Michael :

Vx(Fx — 6x)

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Everyone is liked by Michael :

Vx(Px — 6x)

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Everyone is liked by Michael :

Vx(Px — Lmx)

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Stanley doesn’t like anyone :

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

No one is liked by Stanley :

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

No one is liked by Stanley :

Vx(Fx — —6x)

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

No one is liked by Stanley :

Vx(Px — =6x)

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

No one is liked by Stanley :

Vx(Px — —Lsx)

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Someone likes Pam

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Someone likes Pam

Ix(Fx A Ex)

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Someone likes Pam

Ix(Px A €x)

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Someone likes Pam

Ix(Px A Lxp)

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Michael doesn't like anyone taller than him

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

No one taller than Michael is liked by Michael :

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

No one taller than Michael is liked by Michael :

Vx[Fx — —6x]

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

No one taller than Michael is liked by Michael :

Vx[(Px A Txm) — —6x]

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

No one taller than Michael is liked by Michael :

Vx[(Px A Txm) — —Lmx]

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Everyone likes everyone :

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Everyone likes everyone :

Vx[Fx — Gx]

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Everyone likes everyone :

Vx[Px — €x]

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Everyone likes everyone :

Vx[Px — Vy(Fy — Gy)]

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Everyone likes everyone :

Vx[Px — Vy(Py — 6Gy)]

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Everyone likes everyone :

Vx[Px — Vy(Py — Lxy)]

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Everyone likes someone :

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Everyone likes someone :

Vx[Fx — Gx]

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Everyone likes someone :

Vx[Px — €x]

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Everyone likes someone :

Vx[Px — Jy(Fy A Gy)]

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Everyone likes someone :

Vx[Px — Jy(Py A €y)]

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Everyone likes someone :

Vx[Px — 3y(Py A Lxy)]

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Someone likes someone :

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Someone likes someone :

Ix[Fx A Ex]

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Someone likes someone :

Ix[Px A Gx]

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Someone likes someone :

Ix[Px A Ty(Fy A Ey)]

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Someone likes someone :

Ix[Px A 3y(Py A €y)]

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Someone likes someone :

Ix[Px A Jy(Py A Lxy)]

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Someone likes everyone :

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Someone likes everyone :

Ix[Fx A Ex]

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Someone likes everyone :

Ix[Px A Gx]

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Someone likes everyone :

Ix[Px AVy(Fy — Gy)]

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Someone likes everyone :

Ix[Px A Vy(Py — €y)]

19



2-Place Predicates

domain : everything in the office

j :Jim Lxy : _  likes __,

m : Michael Ex : . iseasy going

p : Pam Txy : __ x istaller than __,
s : Stanley Px : . isaperson

Someone likes everyone :

Ix[Px A Vy(Py — Lxy)]

19



Syntax for PL

PHIL 500
Vx (Fx — Jy Gyx)
|
(Fx — Jy Gyx)
/\
Fx FyGyx

|
Gyx

20



Syntax for PL




1. Vocabulary
SYNTAX
2. Grammar

SEMANTICS —3. Meaning

21



Syntax for PL

Vocabulary



Vocabulary

The vocabulary of PL includes the following symbols:

1. for each N > 0, N-place predicates (any capital
letter—perhaps with subscripts)

ABCDE ....XY Z
A1,B1,C1,Dy,Eq, ..., X1, Y1, 24
Ag,Bg, Co,Do, Es, ..., X9,Y9, 29

22



Vocabulary

2. names (any lowercase letter between a and v—perhaps with
subscripts)

ab,cde, ... .t,uv
ai, by, c1,dy,er, ...t UL, vy

as, by, co,da, ea, . . ., o, U, V2

23



Vocabulary

2. names (any lowercase letter between a and v—perhaps with
subscripts)

ab,cde, ... .t,uv
ai, by, c1,dy,er, ...t UL, vy

as, by, co,da, ea, . . ., o, U, V2

3. variables (lowercase w, x, y, and z—perhaps with subscripts)
W, X, ¥, Z
w1, X1, Y1, 21
w2, X2, ¥2, 22

23



Vocabulary

24



Vocabulary

4. Logical operators

_|’ v’ /\’ H9 H’ 3’ v

24



Vocabulary

4. Logical operators

) V’ /\, —, <, EI v

24



Vocabulary

4. Logical operators
_|’ v’ /\’ H9 H’ 3’ v

5. parenthases

24



Vocabulary

4. Logical operators
_|’ v’ /\, H9 H’ 3’ v

5. parenthases

()

Nothing else is included in the vocabulary of PL.

24



Vocabulary

o Let’s call both names and variables terms. That is, both ‘a’
and ‘x’ are terms of PL.

25



Syntax for PL

Grammar



Grammar

« Any sequence of the symbols in the vocabulary of PL is an

expression of PL.

26



Grammar

« Any sequence of the symbols in the vocabulary of PL is an
expression of PL.

o All of the following are expressions of PL:

Vx—((—— anv
PQRST——

(Vx Fxab — —3y Pynst)
Nxy V V-—-3dxBx

26



Grammar

« Any sequence of the symbols in the vocabulary of PL is an
expression of PL.

o All of the following are expressions of PL:

Vx—((—— anv
PQRST——

(Vx Fxab — —3y Pynst)
Nxy V V-—-3dxBx

26



Grammar: Atomic Sentences

o If R is an N-place predicate and {1, {9, ..., {iy are N terms,
then
Rt1to ... Ty

is an atomic sentence.

27



Grammar: Atomic sentences

o Let A be a1-place predicate, B a 2-place predicate, C a
3-place predicate, and D a 4-place predicate

28



Grammar: Atomic sentences

o Let A be a1-place predicate, B a 2-place predicate, C a
3-place predicate, and D a 4-place predicate

o Then, all of the following are atomic sentences of PL:

Az
Aa
Bwg
Cxzt
Dcccc

Dxaxa

28



Grammar: Sentences

R ) Every atomic sentence is a sentence

29



Grammar: Sentences

R ) Every atomic sentence is a sentence

—) If ‘of’ is a sentence, then ‘=9’ is a sentence.

29



Grammar: Sentences

R ) Every atomic sentence is a sentence
—) If ‘of’ is a sentence, then ‘=9’ is a sentence.

A) If ‘o’ and ‘A’ are sentences, then ‘(sf A 93) is a sentence.

29



Grammar: Sentences

R) Every atomic sentence is a sentence
—) If ‘of’ is a sentence, then ‘=9’ is a sentence.
A) If ‘o’ and ‘A’ are sentences, then ‘(sf A 93) is a sentence.

V) If ‘e’ and ‘A’ are sentences, then ‘(o1 V 95)’ is a sentence.

29



Grammar: Sentences

R ) Every atomic sentence is a sentence

—) If ‘of’ is a sentence, then ‘=9’ is a sentence.

A) If ‘o’ and ‘A’ are sentences, then ‘(sf A 93) is a sentence.
V) If ‘e’ and ‘A’ are sentences, then ‘(o1 V 95)’ is a sentence.

—) If ‘of” and ‘A’ are sentences, then (¢ — 98)’ is a sentence.

29



Grammar: Sentences

R ) Every atomic sentence is a sentence

—) If ‘of’ is a sentence, then ‘=9’ is a sentence.
A) If ‘o’ and ‘A’ are sentences, then ‘(sf A 93) is a sentence.
V) If ‘e’ and ‘A’ are sentences, then ‘(o1 V 95)’ is a sentence.

(
—) If ‘of” and ‘A’ are sentences, then ‘(s — (/S) is a sentence.
(4

«) If ‘e’ and ‘B’ are sentences, then 9B)’ is a sentence.

29



Grammar: Sentences

R ) Every atomic sentence is a sentence
—) If ‘of’ is a sentence, then ‘=9’ is a sentence.

A) If ‘o’ and ‘A’ are sentences, then ‘(sf A 93) is a sentence.
V) If ‘e’ and ‘A’ are sentences, then ‘(o1 V 95)’ is a sentence.
—) If ‘of” and ‘A’ are sentences, then (¢ — 98)’ is a sentence.
) If ‘s’ and ‘%’ are sentences, then ‘(s/ «— 94)’ is a sentence.

V) If ‘o’ is a sentence and ‘x’ is a variable, then Va o’ is a

sentence.

29



Grammar: Sentences

R ) Every atomic sentence is a sentence
—) If ‘of’ is a sentence, then ‘=9’ is a sentence.

A) If ‘o’ and ‘A’ are sentences, then ‘(sf A 93) is a sentence.
V) If ‘e’ and ‘A’ are sentences, then ‘(o1 V 95)’ is a sentence.
—) If ‘of” and ‘A’ are sentences, then (¢ — 98)’ is a sentence.
) If ‘s’ and ‘%’ are sentences, then ‘(s/ «— 94)’ is a sentence.
V) If ‘o’ is a sentence and ‘x’ is a variable, then Va o’ is a

sentence.

3) If ‘o’ is a sentence and ‘x’ is a variable, then ‘T o’ is a
sentence.

29



Grammar: Sentences

R ) Every atomic sentence is a sentence
—) If ‘of’ is a sentence, then ‘=9’ is a sentence.

A) If ‘o’ and ‘A’ are sentences, then ‘(sf A 93) is a sentence.
V) If ‘e’ and ‘A’ are sentences, then ‘(o1 V 95)’ is a sentence.
—) If ‘of” and ‘A’ are sentences, then (¢ — 98)’ is a sentence.
) If ‘s’ and ‘%’ are sentences, then ‘(s/ «— 94)’ is a sentence.
V) If ‘o’ is a sentence and ‘x’ is a variable, then Va o’ is a

sentence.

3) If ‘o’ is a sentence and ‘x’ is a variable, then ‘T o’ is a

sentence.

—) Nothing else is a sentence.

29



Grammar

Note: none of ‘dl’, ‘B, “ax’, or ‘" appear in the vocabulary of PL.
They are not themselves sentences of PL. Rather, we are using

them here as META-VARIABLES ranging over the expressions of
PL.

30



Grammar

o To show that (Vy Fy — —=3x 3z Gzx)’ is a sentence of PL:

31



Grammar

o To show that (Vy Fy — —=3x 3z Gzx)’ is a sentence of PL:

a) ‘Fy’ is a sentence [from (R)]

31



Grammar

o To show that (Vy Fy — —=3x 3z Gzx)’ is a sentence of PL:

a) ‘Fy’ is a sentence [from (R)]
b) So, Vy Fy’ is a sentence [from (a) and (V)]

31



Grammar

o To show that (Vy Fy — —=3x 3z Gzx)’ is a sentence of PL:

a) ‘Fy’ is a sentence [from (R)]
b) So, ‘Vy Fy’ is a sentence [from (a) and (V)]

¢) ‘Gzx’ is a sentence [from (R)]

31



Grammar

o To show that (Vy Fy — —=3x 3z Gzx)’ is a sentence of PL:

a) ‘Fy’ is a sentence [from (R)]
b) So, ‘Vy Fy’ is a sentence [from (a) and (V)]
¢) ‘Gzx’ is a sentence [from (R)]
d) So, ‘Iz Gzx’ is a sentence [from (c) and (3)]

31



Grammar

o To show that (Vy Fy — —=3x 3z Gzx)’ is a sentence of PL:

a) ‘Fy’ is a sentence [from (R)]
b) So, ‘Vy Fy’ is a sentence [from (a) and (V)]
¢) ‘Gzx’ is a sentence [from (R)]
d) So, ‘Iz Gzx’ is a sentence [from (c) and (3)]
e) So, ‘Ix 3z Gzx’ is a sentence [from (d) and (3)]

31



Grammar

o To show that (Vy Fy — —=3x 3z Gzx)’ is a sentence of PL:

a) ‘Fy’ is a sentence [from (R)]
b) So, ‘Vy Fy’ is a sentence [from (a) and (V)]
¢) ‘Gzx’ is a sentence [from (R)]
d) So, ‘3z Gzx’ is a sentence [from (c) and (3)]
e) So, ‘Ix 3z Gzx’ is a sentence [from (d) and (3)]

]

f) So, ‘—dx 3z Gzx’ is a sentence [from (e) and (—)

31



Grammar

o To show that (Vy Fy — —=3x 3z Gzx)’ is a sentence of PL:

a) ‘Fy’ is a sentence [from (R)]
b) So, Vy Fy’ is a sentence [from (a) and (V)]
¢) ‘Gzx’ is a sentence [from (R)]
d) So, ‘3z Gzx’ is a sentence [from (c) and (3)]
e) So, ‘Ax Iz Gzx’ is a sentence [from (d) and (3)]
f) So, ‘—dx 3z Gzx’ is a sentence [from (e) and (—)]

g) So, (VyFy — —3x 3z Gzx)’ is a sentence [from (b), (f), and
(—)]

31



Grammar

o Conventions:

32



Grammar

o Conventions:

« Omit the outermost parenthases in a sentence of PL.

32



Grammar

o Conventions:

« Omit the outermost parenthases in a sentence of PL.

o Allow ourselves to use square brackets ‘|, |’ for readability

32



Grammar

o Conventions:

« Omit the outermost parenthases in a sentence of PL.

o Allow ourselves to use square brackets ‘|, |’ for readability

e So, rather than

(Vy Fy — —=3x 3z Gzx)

32



Grammar

o Conventions:

« Omit the outermost parenthases in a sentence of PL.

o Allow ourselves to use square brackets ‘|, |’ for readability

e So, rather than
(Vy Fy — —=3x 3z Gzx)

e We can write
VyFy — —3dxdz Gzx

32



(Vy Fy — —3x 3z Gzx)
/\
VyFy —3dx3dzGzx

| |
Fy dx 3z Gzx

|
dz Gzx

Gzx

33



Syntactic Structure

Is it a sentence? (Fis 2-place, G is 1-place)

o Vx(3y(VzFab))

34



Syntactic Structure

Is it a sentence? (Fis 2-place, G is 1-place)

o Vx(3y(Vz Fab)) x

34



Syntactic Structure

Is it a sentence? (Fis 2-place, G is 1-place)

o Vx(3y(Vz Fab)) x
S4 ) Vx3yVzFab

|
JyVzFab

|
Vz Fab

|
Fab

34



Syntactic Structure

Is it a sentence? (Fis 2-place, G is 1-place)

o Vx(3y(Vz Fab)) x
e YaGaa

34



Syntactic Structure

Is it a sentence? (Fis 2-place, G is 1-place)

o Vx(3y(Vz Fab)) x

o YaGaa X

34



Syntactic Structure

Is it a sentence? (Fis 2-place, G is 1-place)

o Vx(3y(Vz Fab)) x
o YaGaa X

o Fxy

34



Syntactic Structure

Is it a sentence? (Fis 2-place, G is 1-place)

o Vx(3y(Vz Fab)) x
o YaGaa X
o Fxyv

34



Syntactic Structure

Is it a sentence? (Fis 2-place, G is 1-place)

o Vx(3y(Vz Fab)) x
o YaGaa X

o Fxyv

o VwGx

34



Syntactic Structure

Is it a sentence? (Fis 2-place, G is 1-place)

o Vx(3y(Vz Fab)) x
o YaGaa X

o Fxyv

o VWGx Vv

34



Syntactic Structure

Is it a sentence? (Fis 2-place, G is 1-place)

o Vx(3y(Vz Fab)) x

o YaGaa X

o Fxyv Vw Gx
o VWGx Vv |

34



Syntactic Structure

Is it a sentence? (Fis 2-place, G is 1-place)

o Vx(3y(Vz Fab)) x
Va Gaa X

Fxy v

VwGx v

dx Vx Fxy

34



Syntactic Structure

Is it a sentence? (Fis 2-place, G is 1-place)

o Vx(3y(Vz Fab)) x
Va Gaa X

Fxy v

VwGx v

IxVx Fxy v

34



Syntactic Structure

Is it a sentence? (Fis 2-place, G is 1-place)

o Vx(3y(Vz Fab)) x

* VaGaa x dx Vx Fxy
o« FxyVv |
e YWGx V Vx Fxy

|
IxVx Fxy v Fxy

34



Syntactic Structure

Is it a sentence? (Fis 2-place, G is 1-place)

o Vx(3y(Vz Fab)) x

Va Gaa X

Fxy v

VwGx v

IxVx Fxy v

Vx Fxx — (3z Gz — Fab)

34



Syntactic Structure

Is it a sentence? (Fis 2-place, G is 1-place)

o Vx(3y(Vz Fab)) x
Va Gaa X

Fxy v

VwGx v

IxVx Fxy v

Vx Fxx — (3z Gz — Fab)
v

34



Syntactic Structure

Is it a sentence? (Fis 2-place, G is 1-place)

o Vx(3y(Vz Fab)) x (Vx Fxx — (3zGz — Fab))

Va Gaa X /\

o Fxy v/ VxFxx (3zGz — Fab)

o VWGx Vv | TN
Fxx 3z Gz Fab

o IxVxFxyV |

o VxFxx — (3zGz — Fab) Gz

v

34



Subsentences

o ‘B’ isasubsentence of ‘d’ if and only if, in the course of
building up ‘dI’ by applying the rules for sentences, ‘4’
appears on a line before ‘"

35



Subsentences

o ‘R’ is a subsentence of ‘d’ if and only if, in the course of
building up ‘dI’ by applying the rules for sentences, ‘4’
appears on a line before ‘"

» ‘=Pxa’ is a subsentence of ‘—Pxa A Vy Qy’

35



Subsentences

o ‘R’ is a subsentence of ‘d’ if and only if, in the course of
building up ‘dI’ by applying the rules for sentences, ‘4’
appears on a line before ‘"

» ‘=Pxa’ is a subsentence of ‘—Pxa A Vy Qy’

(=Pxa A Yy Qy)
N
—Pxa VyQy
| |
Pxa Qy

35



Subsentences

o ‘R’ is a subsentence of ‘d’ if and only if, in the course of
building up ‘dI’ by applying the rules for sentences, ‘4’
appears on a line before ‘"

» ‘=Pxa’ is a subsentence of ‘—Pxa A Vy Qy’

(=Pxa A Yy Qy)
N
—Pxa VyQy
| |
Pxa Qy

35



Subsentences

o ‘R’ is a subsentence of ‘d’ if and only if, in the course of
building up ‘dI’ by applying the rules for sentences, ‘4’
appears on a line before ‘"

» ‘=Pxa’ is a subsentence of ‘—Pxa A Vy Qy’
o ‘—Pxa’ is not a subsentence of ‘=(Pxa A Vy Qy)’

(=Pxa A Yy Qy)
N
—Pxa VyQy
| |
Pxa Qy

35



Subsentences

o ‘R’ is a subsentence of ‘dl’ if and only if, in the course of
building up ‘dI’ by applying the rules for sentences, ‘4’
appears on a line before ‘"’

« ‘=Pxa’ is a subsentence of ‘—Pxa A Vy Qy’
 ‘=Pxa’ is not a subsentence of ‘—(Pxa A Vy Qy)’

=(Pxa A Yy Qy)
|
(Pxa AVyQy)
N
Pxa VyQy
|
Qy

35



Main Operators

o The main operator in a (non-atomic) sentence is the
operator which would be introduced last, if we were
building the sentence up according to the rules for
sentences.

36



Main Operators

o Fab — Ty Ay main operator:

37



Main Operators

o Fab — Ty Ay main operator:

(Fab — 3y Ay)

/\
Fab 3JyAy

|
Ay

37



Main Operators

o Fab — Ty Ay main operator: —

(Fab — 3y Ay)

/\
Fab 3JyAy

|
Ay

37



Main Operators

o Ix[Rx — (Jx A Kx)| V Fab main operator:

38



Main Operators

o Ix[Rx — (Jx A Kx)| V Fab main operator:

(Ix(Rx — (Jx A Kx)) V Fab)

RS

Jx(Rx — (Jx A Kx)) Fab

|
(Rx — (Jx A Kx))

N
Rx (Jx A Kx)

P
Jx Kx

38



Main Operators

e Ix[Rx — (Jx A Kx)| V Fab main operator: V

(Ix(Rx — (Jx A Kx)) V Fab)

RS

Ix(Rx — (Jx AKx)) Fab

|
(Rx — (Jx A Kx))

N
Rx (Jx A Kx)

P
Jx Kx

38



Main Operators

o Vx(Fx — Gx) main operator:

39



Main Operators

o Vx(Fx — Gx) main operator:

Vx (Fx — Gx)

|
(Fx — Gx)

N
Fx Gx

39



Main Operators

o Vx(Fx — Gx) main operator: V

Vx (Fx — Gx)

|
(Fx — Gx)

N
Fx Gx

39



Main Operators

o Jw(Fw < VxGx) main operator:

40



Main Operators

o dw (Fw < VxGx) main operator:

Iw (Fw < Vx Gx)

|
(Fw «— Vx Gx)

/\
Fw VxGx

|
Gx

40



Main Operators

o dw (Fw < VxGx) main operator: 3

Iw (Fw < Vx Gx)

|
(Fw «— Vx Gx)

/\
Fw VxGx

|
Gx

40



Main Operators

« A sentence whose main operator is ‘=’ is a negation

41



Main Operators

« A sentence whose main operator is ‘=’ is a negation

« A sentence whose main operator is ‘A’ is a conjunction

41



Main Operators

« A sentence whose main operator is ‘=’ is a negation
« A sentence whose main operator is ‘A’ is a conjunction

« A sentence whose main operator is “V’ is a disjunction

41



Main Operators

« A sentence whose main operator is ‘=’ is a negation
« A sentence whose main operator is ‘A’ is a conjunction
« A sentence whose main operator is “V’ is a disjunction

o A sentence whose main operator is ‘—’ is a conditional

41



Main Operators

« A sentence whose main operator is ‘=’ is a negation

« A sentence whose main operator is ‘A’ is a conjunction
« A sentence whose main operator is “V’ is a disjunction
o A sentence whose main operator is ‘—’ is a conditional

« A sentence whose main operator is ‘=’ is a biconditional

41



Main Operators

« A sentence whose main operator is ‘=’ is a negation

« A sentence whose main operator is ‘A’ is a conjunction

« A sentence whose main operator is “V’ is a disjunction

o A sentence whose main operator is ‘—’ is a conditional

« A sentence whose main operator is ‘=’ is a biconditional

« A sentence whose main operator is VY’ is a universal
sentence

41



Main Operators

« A sentence whose main operator is ‘=’ is a negation

« A sentence whose main operator is ‘A’ is a conjunction

« A sentence whose main operator is “V’ is a disjunction

o A sentence whose main operator is ‘—’ is a conditional

« A sentence whose main operator is ‘=’ is a biconditional

« A sentence whose main operator is VY’ is a universal
sentence

« A sentence whose main operator is ‘3 is an existential

sentence

41



o The scope of an operator (in a sentence) is the sub-sentence
for which that operator is the main operator

42



Vx 3y [Vw Fwx < Vz (Gxz — Wzyx)]

43



Vx 3y [Vw Fwx < Vz (Gxz — Wzyx)]

o Scope of Vz:

43



Vx 3y [Vw Fwx « Yz (Gxz — Wzyx)]

o Scope of VZ:  Vz(Gxz — Wzyx)

43



Vx 3y [Vw Fwx < Vz (Gxz — Wzyx)]

o Scope of VZ:  Vz(Gxz — Wzyx)
 Scope of ‘Vw’:

43



Vx 3y [Vw Fwx < Vz (Gxz — Wzyx)]

o Scope of VZ:  Vz(Gxz — Wzyx)

o Scope of ‘Vw’: VwFwx

43



Vx 3y [Vw Fwx < Vz (Gxz — Wzyx)]

o Scope of VZ:  Vz(Gxz — Wzyx)
o Scope of ‘Vw’: VwFwx

o Scope of ‘Iy”:

43



Vx 3y [Vw Fwx «— Vz (Gxz — Wzyx)]

o Scope of VZ:  Vz(Gxz — Wzyx)
o Scope of ‘Vw’: VwFwx

o Scopeof ‘Jy: Ty |[Fx <> Vz(Gaz —» Wzyx)]

43



Vx 3y [Vw Fwx < Vz (Gxz — Wzyx)]

o Scope of VZ:  Vz(Gxz — Wzyx)

Scope of ‘Vw":  Vw Fwx

Scope of ‘Fy: Ty [Fx «— Yz (Gaz — Wzyx)]

Scope of Vx’:

43



Vx 3y [Vw Fwx < Vz (Gxz — Wzyx)]

o Scope of VZ:  Vz(Gxz — Wzyx)

Scope of ‘Vw":  Vw Fwx

Scope of ‘Fy: Ty [Fx «— Yz (Gaz — Wzyx)]

Scope of Vx:  Vx3y[Fx <> Vz(Gaz — Wzyx)]

43



Syntax for PL

Free and Bound Variables



Free and Bound Variables

« ‘Fx’ and ‘Ayc’ are sentences.

44



Free and Bound Variables

« ‘Fx’ and ‘Ayc’ are sentences.

o However, their variables are FREE.

44



Free and Bound Variables

« ‘Fx’ and ‘Ayc’ are sentences.
« However, their variables are FREE.

o The variables appearing in ‘Vx Vy Fxy’ are BOUND.

44



Free and Bound Variables

« ‘Fx’ and ‘Ayc’ are sentences.
« However, their variables are FREE.
o The variables appearing in ‘Vx Vy Fxy’ are BOUND.

o In Vx Px — Qx, the first x is bound, whereas the second
one is free.

44



Free and Bound Variables

A variable « in a sentence of PL is BOUND if and only if it occurs

within the scope of a quantifier, Vo or Jx, whose associated

variable is .

A variable « in a sentence of PL is FREE if and only if it does
not occur within the scope of a quantifier, Va or Ja, whose

associated variable is «.

45



Free and Bound Variables

A variable « in a sentence of PL is BOUND if and only if it occurs

within the scope of a quantifier, Vo or Jx, whose associated

variable is .

A variable « in a sentence of PL is FREE if and only if it does
not occur within the scope of a quantifier, Va or Ja, whose

associated variable is «.

VxVyFy — 3z Gzx

45



Free and Bound Variables

A variable « in a sentence of PL is BOUND if and only if it occurs

within the scope of a quantifier, Vo or Jx, whose associated

variable is .

A variable « in a sentence of PL is FREE if and only if it does
not occur within the scope of a quantifier, Va or Ja, whose

associated variable is «.

VxVyFy — 3z Gzx

45



Free and Bound Variables

A variable « in a sentence of PL is BOUND if and only if it occurs

within the scope of a quantifier, Vo or Jx, whose associated

variable is .

A variable « in a sentence of PL is FREE if and only if it does
not occur within the scope of a quantifier, Va or Ja, whose

associated variable is «.

VxVyFy — 3z Gzx

45



Free and Bound Variables

A variable « in a sentence of PL is BOUND if and only if it occurs

within the scope of a quantifier, Vo or Jx, whose associated

variable is .

A variable « in a sentence of PL is FREE if and only if it does
not occur within the scope of a quantifier, Va or Ja, whose

associated variable is «.

VxVyFy — 3z Gzx

45



Free and Bound Variables

A variable « in a sentence of PL is BOUND if and only if it occurs

within the scope of a quantifier, Vo or Jx, whose associated

variable is .

A variable « in a sentence of PL is FREE if and only if it does
not occur within the scope of a quantifier, Va or Ja, whose

associated variable is «.

Vx (Vy Fy — 3z Gzx)

45



Free and Bound Variables

A variable « in a sentence of PL is BOUND if and only if it occurs

within the scope of a quantifier, Vo or Jx, whose associated

variable is .

A variable « in a sentence of PL is FREE if and only if it does
not occur within the scope of a quantifier, Va or Ja, whose

associated variable is «.

Vx (Vy Fy — 3z Gzx)

45



Free and Bound Variables

A variable « in a sentence of PL is BOUND if and only if it occurs

within the scope of a quantifier, Vo or Jx, whose associated

variable is .

A variable « in a sentence of PL is FREE if and only if it does
not occur within the scope of a quantifier, Va or Ja, whose

associated variable is «.

Vx (Vy Fy — 3z Gzx)

45



Free and Bound Variables

A variable « in a sentence of PL is BOUND if and only if it occurs

within the scope of a quantifier, Vo or Jx, whose associated

variable is .

A variable « in a sentence of PL is FREE if and only if it does
not occur within the scope of a quantifier, Va or Ja, whose

associated variable is «.

Vx (Vy Fy — 3z Gzx)

45



Free and Bound Variables

A variable « in a sentence of PL is BOUND if and only if it occurs

within the scope of a quantifier, Vo or Jx, whose associated

variable is .

A variable « in a sentence of PL is FREE if and only if it does
not occur within the scope of a quantifier, Va or Ja, whose

associated variable is «.

Vx (Vy Fy — 3z Gzx)

45



Free and Bound Variables

Yw(3y Lwy — TIw Aw)

46



Free and Bound Variables

Vw(3y Lwy — Iw Aw)

46



Free and Bound Variables

In a sentence of the form Vadl or Jx <, the quantifier binds

every free occurrence of « in 9. If an occurrence of @ in o is
already bound, then the quantifier does not bind it.

47



Free and Bound Variables

In a sentence of the form Vadl or Jx <, the quantifier binds

every free occurrence of « in 9. If an occurrence of @ in o is
already bound, then the quantifier does not bind it.

« E.g.,in

dx Vx Fx

the variable ‘x’ is bound by the universal quantifier ‘Vx. It is
not bound by the existential quantifier ‘3x’

47



Open and Closed

o Ifall variables in o/ are bound, then we'll say that < is closed

48



Open and Closed

o Ifall variables in o/ are bound, then we'll say that < is closed

o If avariable occurs free in 9, then we'll say that < is open

48



Open and Closed

o Ifall variables in o/ are bound, then we'll say that < is closed
o If avariable occurs free in 9, then we'll say that < is open

« When translating into PL, we want our translations to be
closed.

48



Free and Bound Variables

dxLxy A VyLyx

49



Free and Bound Variables

dxLxy AVyLyx

49



Free and Bound Variables

dxLxy AVyLyx

49



Free and Bound Variables

dxLxy AVyLyx

49



Free and Bound Variables

dx Lxy A VyLyx

49



Free and Bound Variables

VxAx A Bx

49



Free and Bound Variables

VxAx A Bx

49



Free and Bound Variables

VxAx A Bx

49



Free and Bound Variables

Vx(Ax A Bx) A Yy(Cx A Dy)

49



Free and Bound Variables

Vx(Ax A Bx) A Yy(Cx A Dy)

49



Free and Bound Variables

Vx(Ax A Bx) A Yy(Cx A Dy)

49



Free and Bound Variables

Vx(Ax A Bx) A Yy(Cx A Dy)

49



Free and Bound Variables

Vx(Ax A Bx) A Yy(Cx A Dy)

49



Free and Bound Variables

Vx3y[Rxy — (Jz A Kx)] V Ryx

49



Free and Bound Variables

Vx 3y [Rxy — (Jz A Kx)] V Ryx

49



Free and Bound Variables

Vx3y[Rxy — (Jz A Kx)] V Ryx

49



Free and Bound Variables

Vx3y[Rxy — (Jz A Kx)] V Ryx

49



Free and Bound Variables

Vx3y[Rxy — (Jz A Kx)] V Ryx

49



Free and Bound Variables

Vx3y[Rxy — (Jz A Kx)] V Ryx

49



Free and Bound Variables

Vx 3y [Rxy — (Jz A Kx)] V Ryx

49



Syntax for PL

Important Syntactic Features in PL



Vx 3y Lxy — Gx) Vx3yLxy — Gx
| S
dyLxy — Gx Vx3dyLxy Gx
/\ ‘
dyLxy Gx dy Lxy

| |
Lxy Lxy

50



Vxdy Lxy Vx 3y Lyx
dy Lxy dy Lyx

Lxy Lyx

51



Quantifier Order

dy Vx Lxy Vx 3y Lxy
Vx Lxy dy Lxy

Lxy Lxy

52



	Four Important Statement Forms
	2-Place Predicates
	Syntax for PL
	Vocabulary
	Grammar 
	Free and Bound Variables 
	Important Syntactic Features in PL


