
Predicate Logic
Translation

phil 500
∀x((Px ∨ Qx)→ Rx)

1

Outline

Four Important Statement Forms

2-Place Predicates

Syntax for PL

Vocabulary

Grammar

Free and Bound Variables

Important Syntactic Features in PL

2

Four Important Statement Forms

Four Important Statement Forms

(A) All Fs (in the domain) are Gs ∀x (Fx→ Gx)

(E) No Fs (in the domain) are Gs ∀x (Fx→ ¬Gx)
(I) Some Fs (in the domain) are Gs ∃x (Fx ∧ Gx)

(O) Some Fs (in the domain) are not Gs ∃x (Fx ∧ ¬Gx)

3

Four Important Statement Forms

(A) All Fs (in the domain) are Gs ∀x (Fx→ Gx)
(E) No Fs (in the domain) are Gs ∀x (Fx→ ¬Gx)

(I) Some Fs (in the domain) are Gs ∃x (Fx ∧ Gx)
(O) Some Fs (in the domain) are not Gs ∃x (Fx ∧ ¬Gx)

3

Four Important Statement Forms

(A) All Fs (in the domain) are Gs ∀x (Fx→ Gx)
(E) No Fs (in the domain) are Gs ∀x (Fx→ ¬Gx)
(I) Some Fs (in the domain) are Gs ∃x (Fx ∧ Gx)

(O) Some Fs (in the domain) are not Gs ∃x (Fx ∧ ¬Gx)

3

Four Important Statement Forms

(A) All Fs (in the domain) are Gs ∀x (Fx→ Gx)
(E) No Fs (in the domain) are Gs ∀x (Fx→ ¬Gx)
(I) Some Fs (in the domain) are Gs ∃x (Fx ∧ Gx)

(O) Some Fs (in the domain) are not Gs ∃x (Fx ∧ ¬Gx)

3

Domains

• Remember: any quantified claim in PL (∀xAx or ∃xAx)
is made relative to a domain.

◃ ‘∀xAx’ says Everything in the domain makes Ax true
◃ ‘∃xAx’ says Something in the domain makes Ax true

4

Domains

• Remember: any quantified claim in PL (∀xAx or ∃xAx)
is made relative to a domain.
◃ ‘∀xAx’ says Everything in the domain makes Ax true

◃ ‘∃xAx’ says Something in the domain makes Ax true

4

Domains

• Remember: any quantified claim in PL (∀xAx or ∃xAx)
is made relative to a domain.
◃ ‘∀xAx’ says Everything in the domain makes Ax true
◃ ‘∃xAx’ says Something in the domain makes Ax true

4

Four Important Statement Forms

(A) All Fs (in the domain) are Gs ∀x (Fx→ Gx)
(E) No Fs (in the domain) are Gs ∀x (Fx→ ¬Gx)
(I) Some Fs (in the domain) are Gs ∃x (Fx ∧ Gx)

(O) Some Fs (in the domain) are not Gs ∃x (Fx ∧ ¬Gx)

5

Variants of ‘All Fs are Gs’

◃ All Fs are Gs
◃ Any Fis a G

◃ Every Fis G

6

Variants of ‘No Fs are Gs’

◃ No Fs are Gs
◃ No Fis G
◃ No Fis a G

◃ There are no GFs

7

Variants of ‘Some Fs are Gs’

◃ Some Fs are Gs
◃ Some Fs are G

◃ Some Fis G
◃ Some Fis a G

◃ There are GFs

8

Variants of ‘Some Fs are not Gs’

◃ Some Fs are not Gs
◃ Some Fs are not G
◃ Some Fis not G
◃ Some Fis a non-G
◃ There are non-GFs

9

Translation

◃ In general: find a statement which means the same thing as
the statement you want to translate, but which has one of
the four forms:

◃ Then, use the translations:

(A) All Fs are Gs

∀x(Fx→ Gx)

(E) No Fs are Gs

∀x(Fx→ ¬Gx)

(I) Some Fs are Gs

∃x(Fx ∧ Gx)

(O) Some Fs are not Gs

∃x(Fx ∧ ¬Gx)

10

Translation

◃ In general: find a statement which means the same thing as
the statement you want to translate, but which has one of
the four forms:

◃ Then, use the translations:

(A) All Fs are Gs

∀x(Fx→ Gx)

(E) No Fs are Gs

∀x(Fx→ ¬Gx)

(I) Some Fs are Gs

∃x(Fx ∧ Gx)

(O) Some Fs are not Gs

∃x(Fx ∧ ¬Gx)

10

Translation

◃ In general: find a statement which means the same thing as
the statement you want to translate, but which has one of
the four forms:
◃ Then, use the translations:

(A) All Fs are Gs

∀x(Fx→ Gx)

(E) No Fs are Gs

∀x(Fx→ ¬Gx)

(I) Some Fs are Gs

∃x(Fx ∧ Gx)

(O) Some Fs are not Gs

∃x(Fx ∧ ¬Gx)

10

Translation

◃ In general: find a statement which means the same thing as
the statement you want to translate, but which has one of
the four forms:
◃ Then, use the translations:

(A) All Fs are Gs ∀x(Fx→ Gx)
(E) No Fs are Gs

∀x(Fx→ ¬Gx)

(I) Some Fs are Gs

∃x(Fx ∧ Gx)

(O) Some Fs are not Gs

∃x(Fx ∧ ¬Gx)

10

Translation

◃ In general: find a statement which means the same thing as
the statement you want to translate, but which has one of
the four forms:
◃ Then, use the translations:

(A) All Fs are Gs ∀x(Fx→ Gx)
(E) No Fs are Gs ∀x(Fx→ ¬Gx)
(I) Some Fs are Gs

∃x(Fx ∧ Gx)

(O) Some Fs are not Gs

∃x(Fx ∧ ¬Gx)

10

Translation

◃ In general: find a statement which means the same thing as
the statement you want to translate, but which has one of
the four forms:
◃ Then, use the translations:

(A) All Fs are Gs ∀x(Fx→ Gx)
(E) No Fs are Gs ∀x(Fx→ ¬Gx)
(I) Some Fs are Gs ∃x(Fx ∧ Gx)
(O) Some Fs are not Gs

∃x(Fx ∧ ¬Gx)

10

Translation

◃ In general: find a statement which means the same thing as
the statement you want to translate, but which has one of
the four forms:
◃ Then, use the translations:

(A) All Fs are Gs ∀x(Fx→ Gx)
(E) No Fs are Gs ∀x(Fx→ ¬Gx)
(I) Some Fs are Gs ∃x(Fx ∧ Gx)
(O) Some Fs are not Gs ∃x(Fx ∧ ¬Gx)

10

An Aside

• Some of you may find one or more of these alternative
translations more natural—if so, you should feel free to use
them instead.

(A) All Fs are Gs ∀x(Fx→ Gx)
(E) No Fs are Gs ∀x(Fx→ ¬Gx)
(I) Some Fs are Gs ∃x(Fx ∧ Gx)
(O) Some Fs are not Gs ∃x(Fx ∧ ¬Gx)

◃ If you don’t find any of these more natural, don’t worry
about it—just ignore this slide.

11

An Aside

• Some of you may find one or more of these alternative
translations more natural—if so, you should feel free to use
them instead.

(A) All Fs are Gs ∀x(Fx→ Gx)
(E) No Fs are Gs ∀x(Fx→ ¬Gx)
(I) Some Fs are Gs ∃x(Fx ∧ Gx)
(O) Some Fs are not Gs ∃x(Fx ∧ ¬Gx)

◃ If you don’t find any of these more natural, don’t worry
about it—just ignore this slide.

11

An Aside

• Some of you may find one or more of these alternative
translations more natural—if so, you should feel free to use
them instead.

(A) All Fs are Gs ¬∃x(Fx ∧ ¬Gx)
(E) No Fs are Gs ∀x(Fx→ ¬Gx)
(I) Some Fs are Gs ∃x(Fx ∧ Gx)
(O) Some Fs are not Gs ∃x(Fx ∧ ¬Gx)

◃ If you don’t find any of these more natural, don’t worry
about it—just ignore this slide.

11

An Aside

• Some of you may find one or more of these alternative
translations more natural—if so, you should feel free to use
them instead.

(A) All Fs are Gs ¬∃x(Fx ∧ ¬Gx)
(E) No Fs are Gs ¬∃x(Fx ∧ Gx)
(I) Some Fs are Gs ∃x(Fx ∧ Gx)
(O) Some Fs are not Gs ∃x(Fx ∧ ¬Gx)

◃ If you don’t find any of these more natural, don’t worry
about it—just ignore this slide.

11

An Aside

• Some of you may find one or more of these alternative
translations more natural—if so, you should feel free to use
them instead.

(A) All Fs are Gs ¬∃x(Fx ∧ ¬Gx)
(E) No Fs are Gs ¬∃x(Fx ∧ Gx)
(I) Some Fs are Gs ¬∀x(Fx→ ¬Gx)
(O) Some Fs are not Gs ∃x(Fx ∧ ¬Gx)

◃ If you don’t find any of these more natural, don’t worry
about it—just ignore this slide.

11

An Aside

• Some of you may find one or more of these alternative
translations more natural—if so, you should feel free to use
them instead.

(A) All Fs are Gs ¬∃x(Fx ∧ ¬Gx)
(E) No Fs are Gs ¬∃x(Fx ∧ Gx)
(I) Some Fs are Gs ¬∀x(Fx→ ¬Gx)
(O) Some Fs are not Gs ¬∀x(Fx→ Gx)

◃ If you don’t find any of these more natural, don’t worry
about it—just ignore this slide.

11

An Aside

• Some of you may find one or more of these alternative
translations more natural—if so, you should feel free to use
them instead.

(A) All Fs are Gs ¬∃x(Fx ∧ ¬Gx)
(E) No Fs are Gs ¬∃x(Fx ∧ Gx)
(I) Some Fs are Gs ¬∀x(Fx→ ¬Gx)
(O) Some Fs are not Gs ¬∀x(Fx→ Gx)

◃ If you don’t find any of these more natural, don’t worry
about it—just ignore this slide.

11

Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

Everyone is funny :

∀x Fx

12

Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

Everyone is funny :
∀x Fx

12

Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

Someone is quirky :

∃yQy

12

Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

Someone is quirky :
∃yQy

12

Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

Everyone tall is shy :

∀z (Fz→ Gz)

12

Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

Everyone tall is shy :

∀z (Fz→ Gz)

12

Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

Everyone tall is shy :

∀z (Tz→ Sz)

12

Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

No quirky people are funny :

∀z (Fz→ ¬Gz)

12

Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

No quirky people are funny :

∀z (Fz→ ¬Gz)

12

Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

No quirky people are funny :

∀z (Qz→ ¬Fz)

12

Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

Any shy quirky person is funny :

∀x [Fz→ Gz]

12

Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

Any shy quirky person is funny :

∀x [Fz→ Gz]

12

Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

Any shy quirky person is funny :

∀x [(Sx ∧ Qx)→ Fx]

12

Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

Some tall people are shy :

∃w (Fw ∧ Gw)

12

Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

Some tall people are shy :

∃w (Fw ∧ Gw)

12

Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

Some tall people are shy :

∃w (Tw ∧ Sw)

12

Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

No tall people are either funny or quirky :

∀x[Fx→ ¬Gx]

12

Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

No tall people are either funny or quirky :

∀x[Fx→ ¬Gx]

12

Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

No tall people are either funny or quirky :

∀x[Tx→ ¬(Fx ∨ Qx)]

12

Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

Some tall people are neither funny nor shy :

∃z[Fz ∧ Gz]

12

Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

Some tall people are neither funny nor shy :

∃z[Fz ∧ Gz]

12

Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

Some tall people are neither funny nor shy :

∃z[Tz ∧ ¬(Fz ∨ Sz)]

12

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

Some people are vegetarian :

∃x(Fx ∧ Gx)

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

Some people are vegetarian :

∃x(Fx ∧ Gx)

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

Some people are vegetarian :

∃x(Fx ∧ Gx)

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

Some people are vegetarian :

∃x(Px ∧ Vx)

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

Some animals are vegetarian :

∃x(Fx ∧ Gx)

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

Some animals are vegetarian :

∃x(Fx ∧ Gx)

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

Some animals are vegetarian :

∃xVx

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

Some ferocious animals are not carnivorous :

∃x(Fx ∧ ¬Gx)

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

Some ferocious animals are not carnivorous :

∃x(Fx ∧ ¬Gx)

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

Some ferocious animals are not carnivorous :

∃x(Fx ∧ ¬Cx)

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

Some people are vegetarians and some are not :

∃x(Fx ∧ Gx) ∧ ∃y(Fy ∧ ¬Gy)

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

Some people are vegetarians and some are not :

∃x(Fx ∧ Gx) ∧ ∃y(Fy ∧ ¬Gy)

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

Some people are vegetarians and some are not :

∃x(Px ∧ Vx) ∧ ∃y(Py ∧ ¬Vy)

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

If Albert is ferocious, then all people are ferocious :

Fa→ ∀x (Fx→ Gx)

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

If Albert is ferocious, then all people are ferocious :

Fa→ ∀x (Fx→ Gx)

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

If Albert is ferocious, then all people are ferocious :

Fa→ ∀x (Px→ Fx)

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

Albert is ferocious if anyone is :

∃x(Fx ∧ Gx)→ Fa

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

Albert is ferocious if anyone is :

∃x(Fx ∧ Gx)→ Fa

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

Albert is ferocious if anyone is :

∃x(Px ∧ Fx)→ Fa

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

If everyone is vegetarian, then no one is carnivorous :

∀x(Fx→ Gx)→ ∀y(Fy→ ¬Gy)

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

If everyone is vegetarian, then no one is carnivorous :

∀x(Fx→ Gx)→ ∀y(Fy→ ¬Gy)

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

If everyone is vegetarian, then no one is carnivorous :

∀x(Px→ Vx)→ ∀y(Py→ ¬Cy)

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

There are non-vegetarian people if and only if someone is
ferocious :

∃x(Fx ∧ ¬Gx)←→ ∃y(Fy ∧ Gy)

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

There are non-vegetarian people if and only if someone is
ferocious :

∃x(Fx ∧ ¬Gx)←→ ∃y(Fy ∧ Gy)

13

Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

There are non-vegetarian people if and only if someone is
ferocious :

∃x(Px ∧ ¬Vx)←→ ∃y(Py ∧ Fy)

13

Examples

domain : all foods
J : is a jellybean
B : is black
R : is red
D : is delicious

All black jellybeans are delicious, but no red jellybean is :

∀x[Fx→ Gx] ∧ ∀y[Fy→ ¬Gy]

14

Examples

domain : all foods
J : is a jellybean
B : is black
R : is red
D : is delicious

All black jellybeans are delicious, but no red jellybean is :

∀x[Fx→ Gx] ∧ ∀y[Fy→ ¬Gy]

14

Examples

domain : all foods
J : is a jellybean
B : is black
R : is red
D : is delicious

All black jellybeans are delicious, but no red jellybean is :

∀x[Fx→ Gx] ∧ ∀y[Fy→ ¬Gy]

14

Examples

domain : all foods
J : is a jellybean
B : is black
R : is red
D : is delicious

All black jellybeans are delicious, but no red jellybean is :

∀x[(Bx ∧ Jx)→ Gx] ∧ ∀y[Fy→ ¬Gy]

14

Examples

domain : all foods
J : is a jellybean
B : is black
R : is red
D : is delicious

All black jellybeans are delicious, but no red jellybean is :

∀x[(Bx ∧ Jx)→ Dx] ∧ ∀y[Fy→ ¬Gy]

14

Examples

domain : all foods
J : is a jellybean
B : is black
R : is red
D : is delicious

All black jellybeans are delicious, but no red jellybean is :

∀x[(Bx ∧ Jx)→ Dx] ∧ ∀y[(Ry ∧ Jy)→ ¬Gy]

14

Examples

domain : all foods
J : is a jellybean
B : is black
R : is red
D : is delicious

All black jellybeans are delicious, but no red jellybean is :

∀x[(Bx ∧ Jx)→ Dx] ∧ ∀y[(Ry ∧ Jy)→ ¬Dy]

14

Examples

domain : all foods
J : is a jellybean
B : is black
R : is red
D : is delicious

Black jellybeans are delicious :

∀x [Fx→ Gx]

14

Examples

domain : all foods
J : is a jellybean
B : is black
R : is red
D : is delicious

Black jellybeans are delicious :

∀x [Fx→ Gx]

14

Examples

domain : all foods
J : is a jellybean
B : is black
R : is red
D : is delicious

Black jellybeans are delicious :

∀x [(Bx ∧ Jx)→ Gx]

14

Examples

domain : all foods
J : is a jellybean
B : is black
R : is red
D : is delicious

Black jellybeans are delicious :

∀x [(Bx ∧ Jx)→ Dx]

14

Examples

domain : all foods
J : is a jellybean
B : is black
R : is red
D : is delicious

If some red jellybeans are delicious, then all black jellybeans are
delicious :

∃x[Fx ∧ Gx]→ ∀y[Fy→ Gy]

14

Examples

domain : all foods
J : is a jellybean
B : is black
R : is red
D : is delicious

If some red jellybeans are delicious, then all black jellybeans are
delicious :

∃x[Fx ∧ Gx]→ ∀y[Fy→ Gy]

14

Examples

domain : all foods
J : is a jellybean
B : is black
R : is red
D : is delicious

If some red jellybeans are delicious, then all black jellybeans are
delicious :

∃x[(Rx ∧ Jx) ∧ Gx]→ ∀y[Fy→ Gy]

14

Examples

domain : all foods
J : is a jellybean
B : is black
R : is red
D : is delicious

If some red jellybeans are delicious, then all black jellybeans are
delicious :

∃x[(Rx ∧ Jx) ∧ Dx]→ ∀y[Fy→ Gy]

14

Examples

domain : all foods
J : is a jellybean
B : is black
R : is red
D : is delicious

If some red jellybeans are delicious, then all black jellybeans are
delicious :

∃x[(Rx ∧ Jx) ∧ Dx]→ ∀y[(By ∧ Jy)→ Gy]

14

Examples

domain : all foods
J : is a jellybean
B : is black
R : is red
D : is delicious

If some red jellybeans are delicious, then all black jellybeans are
delicious :

∃x[(Rx ∧ Jx) ∧ Dx]→ ∀y[(By ∧ Jy)→ Dy]

14

2-Place Predicates

Predicates

• a predicate is a gappy statement—it’s a statement with a
name (or names) missing.

Tammy loves Sammy.

◃ If a predicate has a single gap, then we’ll call it a 1-place
predicate
◃ If a predicate has two gaps, then we’ll call it a 2-place

predicate
◃ If a predicate has N gaps, then we’ll call it an N-place

predicate

15

Predicates

• a predicate is a gappy statement—it’s a statement with a
name (or names) missing.

Tammy loves Sammy.

◃ If a predicate has a single gap, then we’ll call it a 1-place
predicate
◃ If a predicate has two gaps, then we’ll call it a 2-place

predicate
◃ If a predicate has N gaps, then we’ll call it an N-place

predicate

15

Predicates

• a predicate is a gappy statement—it’s a statement with a
name (or names) missing.

Tammy loves Sammy.

◃ If a predicate has a single gap, then we’ll call it a 1-place
predicate
◃ If a predicate has two gaps, then we’ll call it a 2-place

predicate
◃ If a predicate has N gaps, then we’ll call it an N-place

predicate

15

Predicates

• a predicate is a gappy statement—it’s a statement with a
name (or names) missing.

loves Sammy.

◃ If a predicate has a single gap, then we’ll call it a 1-place
predicate
◃ If a predicate has two gaps, then we’ll call it a 2-place

predicate
◃ If a predicate has N gaps, then we’ll call it an N-place

predicate

15

Predicates

• a predicate is a gappy statement—it’s a statement with a
name (or names) missing.

loves Sammy.

◃ If a predicate has a single gap, then we’ll call it a 1-place
predicate
◃ If a predicate has two gaps, then we’ll call it a 2-place

predicate
◃ If a predicate has N gaps, then we’ll call it an N-place

predicate

15

Predicates

• a predicate is a gappy statement—it’s a statement with a
name (or names) missing.

Tammy loves Sammy

◃ If a predicate has a single gap, then we’ll call it a 1-place
predicate
◃ If a predicate has two gaps, then we’ll call it a 2-place

predicate
◃ If a predicate has N gaps, then we’ll call it an N-place

predicate

15

Predicates

• a predicate is a gappy statement—it’s a statement with a
name (or names) missing.

Tammy loves Sammy

◃ If a predicate has a single gap, then we’ll call it a 1-place
predicate
◃ If a predicate has two gaps, then we’ll call it a 2-place

predicate
◃ If a predicate has N gaps, then we’ll call it an N-place

predicate

15

Predicates

• a predicate is a gappy statement—it’s a statement with a
name (or names) missing.

Tammy loves

◃ If a predicate has a single gap, then we’ll call it a 1-place
predicate
◃ If a predicate has two gaps, then we’ll call it a 2-place

predicate
◃ If a predicate has N gaps, then we’ll call it an N-place

predicate

15

Predicates

• a predicate is a gappy statement—it’s a statement with a
name (or names) missing.

Tammy loves

◃ If a predicate has a single gap, then we’ll call it a 1-place
predicate
◃ If a predicate has two gaps, then we’ll call it a 2-place

predicate
◃ If a predicate has N gaps, then we’ll call it an N-place

predicate

15

Predicates

• a predicate is a gappy statement—it’s a statement with a
name (or names) missing.

Tammy loves Sammy

◃ If a predicate has a single gap, then we’ll call it a 1-place
predicate
◃ If a predicate has two gaps, then we’ll call it a 2-place

predicate
◃ If a predicate has N gaps, then we’ll call it an N-place

predicate

15

Predicates

• a predicate is a gappy statement—it’s a statement with a
name (or names) missing.

Tammy loves Sammy

◃ If a predicate has a single gap, then we’ll call it a 1-place
predicate
◃ If a predicate has two gaps, then we’ll call it a 2-place

predicate
◃ If a predicate has N gaps, then we’ll call it an N-place

predicate

15

Predicates

• a predicate is a gappy statement—it’s a statement with a
name (or names) missing.

loves

◃ If a predicate has a single gap, then we’ll call it a 1-place
predicate
◃ If a predicate has two gaps, then we’ll call it a 2-place

predicate
◃ If a predicate has N gaps, then we’ll call it an N-place

predicate

15

Predicates

• a predicate is a gappy statement—it’s a statement with a
name (or names) missing.

loves

◃ If a predicate has a single gap, then we’ll call it a 1-place
predicate
◃ If a predicate has two gaps, then we’ll call it a 2-place

predicate
◃ If a predicate has N gaps, then we’ll call it an N-place

predicate

15

Predicates

• a predicate is a gappy statement—it’s a statement with a
name (or names) missing.

loves
◃ If a predicate has a single gap, then we’ll call it a 1-place

predicate

◃ If a predicate has two gaps, then we’ll call it a 2-place
predicate
◃ If a predicate has N gaps, then we’ll call it an N-place

predicate

15

Predicates

• a predicate is a gappy statement—it’s a statement with a
name (or names) missing.

loves
◃ If a predicate has a single gap, then we’ll call it a 1-place

predicate
◃ If a predicate has two gaps, then we’ll call it a 2-place

predicate

◃ If a predicate has N gaps, then we’ll call it an N-place
predicate

15

Predicates

• a predicate is a gappy statement—it’s a statement with a
name (or names) missing.

loves
◃ If a predicate has a single gap, then we’ll call it a 1-place

predicate
◃ If a predicate has two gaps, then we’ll call it a 2-place

predicate
◃ If a predicate has N gaps, then we’ll call it an N-place

predicate

15

2-Place Predicates

domain : all people
L : loves

a : Abelard
h : Heloise

Abelard loves Heloise :

Lah

Heloise loves Abelard :

Lha

◃ We need some way of saying which gap is which

16

2-Place Predicates

domain : all people
L : loves

a : Abelard
h : Heloise

Abelard loves Heloise :

Lah
Heloise loves Abelard :

Lha

◃ We need some way of saying which gap is which

16

2-Place Predicates

domain : all people
L : loves

a : Abelard
h : Heloise

Abelard loves Heloise :

Lah

Heloise loves Abelard :

Lha
◃ We need some way of saying which gap is which

16

2-Place Predicates

domain : all people
L : loves

a : Abelard
h : Heloise

Abelard loves Heloise :

Lah

Heloise loves Abelard :

Lha

◃ We need some way of saying which gap is which

16

2-Place Predicates

domain : all people
Lxy : x loves y
a : Abelard
h : Heloise

Abelard loves Heloise :

Lah

Heloise loves Abelard :

Lha

◃ We need some way of saying which gap is which

16

2-Place Predicates

domain : all people
Lxy : x loves y
a : Abelard
h : Heloise

Abelard loves Heloise : Lah
Heloise loves Abelard :

Lha

◃ We need some way of saying which gap is which

16

2-Place Predicates

domain : all people
Lxy : x loves y
a : Abelard
h : Heloise

Abelard loves Heloise : Lah
Heloise loves Abelard : Lha
◃ We need some way of saying which gap is which

16

2-Place Predicates

domain : all people
Lxy : x loves y
a : Abelard
h : Heloise

Everyone loves Abelard :

∀x Lxa

17

2-Place Predicates

domain : all people
Lxy : x loves y
a : Abelard
h : Heloise

Everyone loves Abelard :

∀x Lxa

17

2-Place Predicates

domain : all people
Lxy : x loves y
a : Abelard
h : Heloise

Everyone loves Abelard :

∀x Lxa

17

2-Place Predicates

domain : all people
Lxy : x loves y
a : Abelard
h : Heloise

Someone loves Heloise :

∃z Lzh

17

2-Place Predicates

domain : all people
Lxy : x loves y
a : Abelard
h : Heloise

Someone loves Heloise :

∃z Lzh

17

2-Place Predicates

domain : all people
Lxy : x loves y
a : Abelard
h : Heloise

Abelard loves Heloise if anyone does :

∃x Lxh→ Lah

17

2-Place Predicates

domain : all people
Lxy : x loves y
a : Abelard
h : Heloise

Abelard loves Heloise if anyone does :

∃x Lxh→ Lah

17

2-Place Predicates

domain : all people
Lxy : x loves y
a : Abelard
h : Heloise

Everyone who loves Heloise loves Abelard, too. :

∀x (Fx→ Gx)

17

2-Place Predicates

domain : all people
Lxy : x loves y
a : Abelard
h : Heloise

Everyone who loves Heloise loves Abelard, too. :

∀x (Fx→ Gx)

17

2-Place Predicates

domain : all people
Lxy : x loves y
a : Abelard
h : Heloise

Everyone who loves Heloise loves Abelard, too. :

∀x (Lxh→ Gx)

17

2-Place Predicates

domain : all people
Lxy : x loves y
a : Abelard
h : Heloise

Everyone who loves Heloise loves Abelard, too. :

∀x (Lxh→ Lxa)

17

2-Place Predicates

domain : all people
Lxy : x loves y
a : Abelard
h : Heloise

Abelard loves himself :

Laa

17

2-Place Predicates

domain : all people
Lxy : x loves y
a : Abelard
h : Heloise

Abelard loves himself :
Laa

17

2-Place Predicates

domain : all people
Lxy : x loves y
a : Abelard
h : Heloise

Everyone loves themselves.

∀z Lzz

17

2-Place Predicates

domain : all people
Lxy : x loves y
a : Abelard
h : Heloise

Everyone loves themselves.

∀z Lzz

17

2-Place Predicates

domain : all people
Mxy : y loves x

a : Abelard
h : Heloise

Everyone loves Abelard :

∀xMax

18

2-Place Predicates

domain : all people
Mxy : y loves x

a : Abelard
h : Heloise

Everyone loves Abelard :

∀xMax

18

2-Place Predicates

domain : all people
Mxy : y loves x

a : Abelard
h : Heloise

Everyone loves Abelard :

∀xMax

18

2-Place Predicates

domain : all people
Mxy : y loves x

a : Abelard
h : Heloise

Someone loves Heloise :

∃zMhz

18

2-Place Predicates

domain : all people
Mxy : y loves x

a : Abelard
h : Heloise

Someone loves Heloise :

∃zMhz

18

2-Place Predicates

domain : all people
Mxy : y loves x

a : Abelard
h : Heloise

Abelard loves Heloise if anyone does :

∃xMhx→ Mha

18

2-Place Predicates

domain : all people
Mxy : y loves x

a : Abelard
h : Heloise

Abelard loves Heloise if anyone does :

∃xMhx→ Mha

18

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Everyone is easygoing :

∀x(Fx→ Gx)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Everyone is easygoing :

∀x(Fx→ Gx)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Everyone is easygoing :

∀x(Fx→ Gx)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Everyone is easygoing :

∀x(Px→ Gx)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Everyone is easygoing :

∀x(Px→ Ex)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

No one likes Michael :

∀x(Fx→ ¬Gx)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

No one likes Michael :

∀x(Fx→ ¬Gx)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

No one likes Michael :

∀x(Px→ ¬Gx)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

No one likes Michael :

∀x(Px→ ¬Lxm)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Michael likes everyone :

∀x(Fx→ Gx)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Everyone is liked by Michael :

∀x(Fx→ Gx)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Everyone is liked by Michael :

∀x(Fx→ Gx)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Everyone is liked by Michael :

∀x(Px→ Gx)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Everyone is liked by Michael :

∀x(Px→ Lmx)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Stanley doesn’t like anyone :

∀x(Fx→ ¬Gx)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

No one is liked by Stanley :

∀x(Fx→ ¬Gx)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

No one is liked by Stanley :

∀x(Fx→ ¬Gx)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

No one is liked by Stanley :

∀x(Px→ ¬Gx)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

No one is liked by Stanley :

∀x(Px→ ¬Lsx)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Someone likes Pam :

∃x(Fx ∧ Gx)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Someone likes Pam :

∃x(Fx ∧ Gx)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Someone likes Pam :

∃x(Px ∧ Gx)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Someone likes Pam :

∃x(Px ∧ Lxp)

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Michael doesn’t like anyone taller than him :

∀x[Fx→ ¬Gx]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

No one taller than Michael is liked by Michael :

∀x[Fx→ ¬Gx]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

No one taller than Michael is liked by Michael :

∀x[Fx→ ¬Gx]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

No one taller than Michael is liked by Michael :

∀x[(Px ∧ Txm)→ ¬Gx]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

No one taller than Michael is liked by Michael :

∀x[(Px ∧ Txm)→ ¬Lmx]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Everyone likes everyone :

∀x[Fx→ Gx]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Everyone likes everyone :

∀x[Fx→ Gx]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Everyone likes everyone :

∀x[Px→ Gx]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Everyone likes everyone :

∀x[Px→ ∀y(Fy→ Gy)]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Everyone likes everyone :

∀x[Px→ ∀y(Py→ Gy)]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Everyone likes everyone :

∀x[Px→ ∀y(Py→ Lxy)]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Everyone likes someone :

∀x[Fx→ Gx]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Everyone likes someone :

∀x[Fx→ Gx]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Everyone likes someone :

∀x[Px→ Gx]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Everyone likes someone :

∀x[Px→ ∃y(Fy ∧ Gy)]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Everyone likes someone :

∀x[Px→ ∃y(Py ∧ Gy)]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Everyone likes someone :

∀x[Px→ ∃y(Py ∧ Lxy)]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Someone likes someone :

∃x[Fx ∧ Gx]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Someone likes someone :

∃x[Fx ∧ Gx]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Someone likes someone :

∃x[Px ∧ Gx]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Someone likes someone :

∃x[Px ∧ ∃y(Fy ∧ Gy)]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Someone likes someone :

∃x[Px ∧ ∃y(Py ∧ Gy)]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Someone likes someone :

∃x[Px ∧ ∃y(Py ∧ Lxy)]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Someone likes everyone :

∃x[Fx ∧ Gx]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Someone likes everyone :

∃x[Fx ∧ Gx]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Someone likes everyone :

∃x[Px ∧ Gx]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Someone likes everyone :

∃x[Px ∧ ∀y(Fy→ Gy)]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Someone likes everyone :

∃x[Px ∧ ∀y(Py→ Gy)]

19

2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Someone likes everyone :

∃x[Px ∧ ∀y(Py→ Lxy)]

19

Syntax for PL

phil 500
∀x (Fx→ ∃yGyx)

(Fx→ ∃yGyx)

Fx ∃yGyx

Gyx

20

Syntax for PL

Languages

syntax −−−
{

1. Vocabulary
2. Grammar

semantics −−3. Meaning

21

Syntax for PL

Vocabulary

Vocabulary

The vocabulary of PL includes the following symbols:

1. for each N ≥ 0, N-place predicates (any capital
letter—perhaps with subscripts)

A,B,C,D,E, . . . ,X,Y,Z
A1,B1,C1,D1,E1, . . . ,X1,Y1,Z1
A2,B2,C2,D2,E2, . . . ,X2,Y2,Z2
...

22

Vocabulary

2. names (any lowercase letter between a and v—perhaps with
subscripts)

a, b, c, d, e, . . . , t, u, v
a1, b1, c1, d1, e1, . . . , t1, u1, v1
a2, b2, c2, d2, e2, . . . , t2, u2, v2
...

3. variables (lowercase w, x, y, and z—perhaps with subscripts)

w, x, y, z
w1, x1, y1, z1
w2, x2, y2, z2
...

23

Vocabulary

2. names (any lowercase letter between a and v—perhaps with
subscripts)

a, b, c, d, e, . . . , t, u, v
a1, b1, c1, d1, e1, . . . , t1, u1, v1
a2, b2, c2, d2, e2, . . . , t2, u2, v2
...

3. variables (lowercase w, x, y, and z—perhaps with subscripts)

w, x, y, z
w1, x1, y1, z1
w2, x2, y2, z2
... 23

Vocabulary

4. Logical operators

¬,∨,∧,→,←→,∃,∀

5. parenthases
(,)

Nothing else is included in the vocabulary of PL.

24

Vocabulary

4. Logical operators

¬,∨,∧,→,←→,∃,∀

5. parenthases
(,)

Nothing else is included in the vocabulary of PL.

24

Vocabulary

4. Logical operators

¬,∨,∧,→,←→,∃,∀

5. parenthases
(,)

Nothing else is included in the vocabulary of PL.

24

Vocabulary

4. Logical operators

¬,∨,∧,→,←→,∃,∀

5. parenthases
(,)

Nothing else is included in the vocabulary of PL.

24

Vocabulary

4. Logical operators

¬,∨,∧,→,←→,∃,∀

5. parenthases
(,)

Nothing else is included in the vocabulary of PL.

24

Vocabulary

• Let’s call both names and variables terms. That is, both ‘a’
and ‘x’ are terms of PL.

25

Syntax for PL

Grammar

Grammar

• Any sequence of the symbols in the vocabulary of PL is an
expression of PL.

• All of the following are expressions of PL:

Vx¬((→→ anv
PQRST¬¬
(∀x Fxab→ ¬∃y Pynst)
Nxy ∨ ∨¬¬∃xBx

26

Grammar

• Any sequence of the symbols in the vocabulary of PL is an
expression of PL.

• All of the following are expressions of PL:

Vx¬((→→ anv
PQRST¬¬
(∀x Fxab→ ¬∃y Pynst)
Nxy ∨ ∨¬¬∃xBx

26

Grammar

• Any sequence of the symbols in the vocabulary of PL is an
expression of PL.

• All of the following are expressions of PL:

Vx¬((→→ anv
PQRST¬¬
(∀x Fxab→ ¬∃y Pynst)
Nxy ∨ ∨¬¬∃xBx

26

Grammar: Atomic Sentences

• If R is an N-place predicate and t1, t2, . . . , tN are N terms,
then

Rt1t2 . . . tN

is an atomic sentence.

27

Grammar: Atomic sentences

• Let A be a 1-place predicate, B a 2-place predicate, C a
3-place predicate, and D a 4-place predicate

• Then, all of the following are atomic sentences of PL:

Az
Aa
Bwg
Cxzt
Dcccc
Dxaxa

28

Grammar: Atomic sentences

• Let A be a 1-place predicate, B a 2-place predicate, C a
3-place predicate, and D a 4-place predicate

• Then, all of the following are atomic sentences of PL:

Az
Aa
Bwg
Cxzt
Dcccc
Dxaxa

28

Grammar: Sentences

R) Every atomic sentence is a sentence

¬) If ‘A’ is a sentence, then ‘¬A’ is a sentence.
∧) If ‘A’ and ‘B’ are sentences, then ‘(A∧B)’ is a sentence.
∨) If ‘A’ and ‘B’ are sentences, then ‘(A∨B)’ is a sentence.
→) If ‘A’ and ‘B’ are sentences, then ‘(A→ B)’ is a sentence.
←→) If ‘A’ and ‘B’ are sentences, then ‘(A←→ B)’ is a sentence.
∀) If ‘A’ is a sentence and ‘x’ is a variable, then ‘∀xA’ is a

sentence.
∃) If ‘A’ is a sentence and ‘x’ is a variable, then ‘∃xA’ is a

sentence.
−) Nothing else is a sentence.

29

Grammar: Sentences

R) Every atomic sentence is a sentence
¬) If ‘A’ is a sentence, then ‘¬A’ is a sentence.

∧) If ‘A’ and ‘B’ are sentences, then ‘(A∧B)’ is a sentence.
∨) If ‘A’ and ‘B’ are sentences, then ‘(A∨B)’ is a sentence.
→) If ‘A’ and ‘B’ are sentences, then ‘(A→ B)’ is a sentence.
←→) If ‘A’ and ‘B’ are sentences, then ‘(A←→ B)’ is a sentence.
∀) If ‘A’ is a sentence and ‘x’ is a variable, then ‘∀xA’ is a

sentence.
∃) If ‘A’ is a sentence and ‘x’ is a variable, then ‘∃xA’ is a

sentence.
−) Nothing else is a sentence.

29

Grammar: Sentences

R) Every atomic sentence is a sentence
¬) If ‘A’ is a sentence, then ‘¬A’ is a sentence.
∧) If ‘A’ and ‘B’ are sentences, then ‘(A∧B)’ is a sentence.

∨) If ‘A’ and ‘B’ are sentences, then ‘(A∨B)’ is a sentence.
→) If ‘A’ and ‘B’ are sentences, then ‘(A→ B)’ is a sentence.
←→) If ‘A’ and ‘B’ are sentences, then ‘(A←→ B)’ is a sentence.
∀) If ‘A’ is a sentence and ‘x’ is a variable, then ‘∀xA’ is a

sentence.
∃) If ‘A’ is a sentence and ‘x’ is a variable, then ‘∃xA’ is a

sentence.
−) Nothing else is a sentence.

29

Grammar: Sentences

R) Every atomic sentence is a sentence
¬) If ‘A’ is a sentence, then ‘¬A’ is a sentence.
∧) If ‘A’ and ‘B’ are sentences, then ‘(A∧B)’ is a sentence.
∨) If ‘A’ and ‘B’ are sentences, then ‘(A∨B)’ is a sentence.

→) If ‘A’ and ‘B’ are sentences, then ‘(A→ B)’ is a sentence.
←→) If ‘A’ and ‘B’ are sentences, then ‘(A←→ B)’ is a sentence.
∀) If ‘A’ is a sentence and ‘x’ is a variable, then ‘∀xA’ is a

sentence.
∃) If ‘A’ is a sentence and ‘x’ is a variable, then ‘∃xA’ is a

sentence.
−) Nothing else is a sentence.

29

Grammar: Sentences

R) Every atomic sentence is a sentence
¬) If ‘A’ is a sentence, then ‘¬A’ is a sentence.
∧) If ‘A’ and ‘B’ are sentences, then ‘(A∧B)’ is a sentence.
∨) If ‘A’ and ‘B’ are sentences, then ‘(A∨B)’ is a sentence.
→) If ‘A’ and ‘B’ are sentences, then ‘(A→ B)’ is a sentence.

←→) If ‘A’ and ‘B’ are sentences, then ‘(A←→ B)’ is a sentence.
∀) If ‘A’ is a sentence and ‘x’ is a variable, then ‘∀xA’ is a

sentence.
∃) If ‘A’ is a sentence and ‘x’ is a variable, then ‘∃xA’ is a

sentence.
−) Nothing else is a sentence.

29

Grammar: Sentences

R) Every atomic sentence is a sentence
¬) If ‘A’ is a sentence, then ‘¬A’ is a sentence.
∧) If ‘A’ and ‘B’ are sentences, then ‘(A∧B)’ is a sentence.
∨) If ‘A’ and ‘B’ are sentences, then ‘(A∨B)’ is a sentence.
→) If ‘A’ and ‘B’ are sentences, then ‘(A→ B)’ is a sentence.
←→) If ‘A’ and ‘B’ are sentences, then ‘(A←→ B)’ is a sentence.

∀) If ‘A’ is a sentence and ‘x’ is a variable, then ‘∀xA’ is a
sentence.

∃) If ‘A’ is a sentence and ‘x’ is a variable, then ‘∃xA’ is a
sentence.

−) Nothing else is a sentence.

29

Grammar: Sentences

R) Every atomic sentence is a sentence
¬) If ‘A’ is a sentence, then ‘¬A’ is a sentence.
∧) If ‘A’ and ‘B’ are sentences, then ‘(A∧B)’ is a sentence.
∨) If ‘A’ and ‘B’ are sentences, then ‘(A∨B)’ is a sentence.
→) If ‘A’ and ‘B’ are sentences, then ‘(A→ B)’ is a sentence.
←→) If ‘A’ and ‘B’ are sentences, then ‘(A←→ B)’ is a sentence.
∀) If ‘A’ is a sentence and ‘x’ is a variable, then ‘∀xA’ is a

sentence.

∃) If ‘A’ is a sentence and ‘x’ is a variable, then ‘∃xA’ is a
sentence.

−) Nothing else is a sentence.

29

Grammar: Sentences

R) Every atomic sentence is a sentence
¬) If ‘A’ is a sentence, then ‘¬A’ is a sentence.
∧) If ‘A’ and ‘B’ are sentences, then ‘(A∧B)’ is a sentence.
∨) If ‘A’ and ‘B’ are sentences, then ‘(A∨B)’ is a sentence.
→) If ‘A’ and ‘B’ are sentences, then ‘(A→ B)’ is a sentence.
←→) If ‘A’ and ‘B’ are sentences, then ‘(A←→ B)’ is a sentence.
∀) If ‘A’ is a sentence and ‘x’ is a variable, then ‘∀xA’ is a

sentence.
∃) If ‘A’ is a sentence and ‘x’ is a variable, then ‘∃xA’ is a

sentence.

−) Nothing else is a sentence.

29

Grammar: Sentences

R) Every atomic sentence is a sentence
¬) If ‘A’ is a sentence, then ‘¬A’ is a sentence.
∧) If ‘A’ and ‘B’ are sentences, then ‘(A∧B)’ is a sentence.
∨) If ‘A’ and ‘B’ are sentences, then ‘(A∨B)’ is a sentence.
→) If ‘A’ and ‘B’ are sentences, then ‘(A→ B)’ is a sentence.
←→) If ‘A’ and ‘B’ are sentences, then ‘(A←→ B)’ is a sentence.
∀) If ‘A’ is a sentence and ‘x’ is a variable, then ‘∀xA’ is a

sentence.
∃) If ‘A’ is a sentence and ‘x’ is a variable, then ‘∃xA’ is a

sentence.
−) Nothing else is a sentence.

29

Grammar

Note: none of ‘A’, ‘B’, ‘x’, or ‘t’ appear in the vocabulary of PL.
They are not themselves sentences of PL. Rather, we are using
them here as meta-variables ranging over the expressions of
PL.

30

Grammar

• To show that ‘(∀y Fy→ ¬∃x∃z Gzx)’ is a sentence of PL:

a) ‘Fy’ is a sentence [from (R)]
b) So, ‘∀y Fy’ is a sentence [from (a) and (∀)]
c) ‘Gzx’ is a sentence [from (R)]
d) So, ‘∃z Gzx’ is a sentence [from (c) and (∃)]
e) So, ‘∃x∃z Gzx’ is a sentence [from (d) and (∃)]
f) So, ‘¬∃x∃z Gzx’ is a sentence [from (e) and (¬)]
g) So, ‘(∀y Fy→ ¬∃x∃z Gzx)’ is a sentence [from (b), (f), and

(→)]

31

Grammar

• To show that ‘(∀y Fy→ ¬∃x∃z Gzx)’ is a sentence of PL:

a) ‘Fy’ is a sentence [from (R)]

b) So, ‘∀y Fy’ is a sentence [from (a) and (∀)]
c) ‘Gzx’ is a sentence [from (R)]
d) So, ‘∃z Gzx’ is a sentence [from (c) and (∃)]
e) So, ‘∃x∃z Gzx’ is a sentence [from (d) and (∃)]
f) So, ‘¬∃x∃z Gzx’ is a sentence [from (e) and (¬)]
g) So, ‘(∀y Fy→ ¬∃x∃z Gzx)’ is a sentence [from (b), (f), and

(→)]

31

Grammar

• To show that ‘(∀y Fy→ ¬∃x∃z Gzx)’ is a sentence of PL:

a) ‘Fy’ is a sentence [from (R)]
b) So, ‘∀y Fy’ is a sentence [from (a) and (∀)]

c) ‘Gzx’ is a sentence [from (R)]
d) So, ‘∃z Gzx’ is a sentence [from (c) and (∃)]
e) So, ‘∃x∃z Gzx’ is a sentence [from (d) and (∃)]
f) So, ‘¬∃x∃z Gzx’ is a sentence [from (e) and (¬)]
g) So, ‘(∀y Fy→ ¬∃x∃z Gzx)’ is a sentence [from (b), (f), and

(→)]

31

Grammar

• To show that ‘(∀y Fy→ ¬∃x∃z Gzx)’ is a sentence of PL:

a) ‘Fy’ is a sentence [from (R)]
b) So, ‘∀y Fy’ is a sentence [from (a) and (∀)]
c) ‘Gzx’ is a sentence [from (R)]

d) So, ‘∃z Gzx’ is a sentence [from (c) and (∃)]
e) So, ‘∃x∃z Gzx’ is a sentence [from (d) and (∃)]
f) So, ‘¬∃x∃z Gzx’ is a sentence [from (e) and (¬)]
g) So, ‘(∀y Fy→ ¬∃x∃z Gzx)’ is a sentence [from (b), (f), and

(→)]

31

Grammar

• To show that ‘(∀y Fy→ ¬∃x∃z Gzx)’ is a sentence of PL:

a) ‘Fy’ is a sentence [from (R)]
b) So, ‘∀y Fy’ is a sentence [from (a) and (∀)]
c) ‘Gzx’ is a sentence [from (R)]
d) So, ‘∃z Gzx’ is a sentence [from (c) and (∃)]

e) So, ‘∃x∃z Gzx’ is a sentence [from (d) and (∃)]
f) So, ‘¬∃x∃z Gzx’ is a sentence [from (e) and (¬)]
g) So, ‘(∀y Fy→ ¬∃x∃z Gzx)’ is a sentence [from (b), (f), and

(→)]

31

Grammar

• To show that ‘(∀y Fy→ ¬∃x∃z Gzx)’ is a sentence of PL:

a) ‘Fy’ is a sentence [from (R)]
b) So, ‘∀y Fy’ is a sentence [from (a) and (∀)]
c) ‘Gzx’ is a sentence [from (R)]
d) So, ‘∃z Gzx’ is a sentence [from (c) and (∃)]
e) So, ‘∃x∃z Gzx’ is a sentence [from (d) and (∃)]

f) So, ‘¬∃x∃z Gzx’ is a sentence [from (e) and (¬)]
g) So, ‘(∀y Fy→ ¬∃x∃z Gzx)’ is a sentence [from (b), (f), and

(→)]

31

Grammar

• To show that ‘(∀y Fy→ ¬∃x∃z Gzx)’ is a sentence of PL:

a) ‘Fy’ is a sentence [from (R)]
b) So, ‘∀y Fy’ is a sentence [from (a) and (∀)]
c) ‘Gzx’ is a sentence [from (R)]
d) So, ‘∃z Gzx’ is a sentence [from (c) and (∃)]
e) So, ‘∃x∃z Gzx’ is a sentence [from (d) and (∃)]
f) So, ‘¬∃x∃z Gzx’ is a sentence [from (e) and (¬)]

g) So, ‘(∀y Fy→ ¬∃x∃z Gzx)’ is a sentence [from (b), (f), and
(→)]

31

Grammar

• To show that ‘(∀y Fy→ ¬∃x∃z Gzx)’ is a sentence of PL:

a) ‘Fy’ is a sentence [from (R)]
b) So, ‘∀y Fy’ is a sentence [from (a) and (∀)]
c) ‘Gzx’ is a sentence [from (R)]
d) So, ‘∃z Gzx’ is a sentence [from (c) and (∃)]
e) So, ‘∃x∃z Gzx’ is a sentence [from (d) and (∃)]
f) So, ‘¬∃x∃z Gzx’ is a sentence [from (e) and (¬)]
g) So, ‘(∀y Fy→ ¬∃x∃z Gzx)’ is a sentence [from (b), (f), and

(→)]

31

Grammar

• Conventions:

• Omit the outermost parenthases in a sentence of PL.
• Allow ourselves to use square brackets ‘[,]’ for readability

• So, rather than

(∀y Fy→ ¬∃x∃z Gzx)

• we can write
∀y Fy→ ¬∃x∃z Gzx

32

Grammar

• Conventions:
• Omit the outermost parenthases in a sentence of PL.

• Allow ourselves to use square brackets ‘[,]’ for readability

• So, rather than

(∀y Fy→ ¬∃x∃z Gzx)

• we can write
∀y Fy→ ¬∃x∃z Gzx

32

Grammar

• Conventions:
• Omit the outermost parenthases in a sentence of PL.
• Allow ourselves to use square brackets ‘[,]’ for readability

• So, rather than

(∀y Fy→ ¬∃x∃z Gzx)

• we can write
∀y Fy→ ¬∃x∃z Gzx

32

Grammar

• Conventions:
• Omit the outermost parenthases in a sentence of PL.
• Allow ourselves to use square brackets ‘[,]’ for readability

• So, rather than

(∀y Fy→ ¬∃x∃z Gzx)

• we can write
∀y Fy→ ¬∃x∃z Gzx

32

Grammar

• Conventions:
• Omit the outermost parenthases in a sentence of PL.
• Allow ourselves to use square brackets ‘[,]’ for readability

• So, rather than

(∀y Fy→ ¬∃x∃z Gzx)

• we can write
∀y Fy→ ¬∃x∃z Gzx

32

Syntax Trees

(∀y Fy→ ¬∃x∃z Gzx)

∀y Fy

Fy

¬∃x∃z Gzx

∃x∃z Gzx

∃z Gzx

Gzx

33

Syntactic Structure

Is it a sentence? (F is 2-place, G is 1-place)

• ∀x(∃y(∀z Fab))

×
• ∀aGaa

×

• Fxy

X

• ∀wGx

X

• ∃x∀x Fxy

X

• ∀x Fxx→ (∃z Gz→ Fab)

X

∀x∃y∀z Fab

∃y∀z Fab

∀z Fab

Fab

34

Syntactic Structure

Is it a sentence? (F is 2-place, G is 1-place)

• ∀x(∃y(∀z Fab)) ×

• ∀aGaa

×

• Fxy

X

• ∀wGx

X

• ∃x∀x Fxy

X

• ∀x Fxx→ (∃z Gz→ Fab)

X

∀x∃y∀z Fab

∃y∀z Fab

∀z Fab

Fab

34

Syntactic Structure

Is it a sentence? (F is 2-place, G is 1-place)

• ∀x(∃y(∀z Fab)) ×

• ∀aGaa

×

• Fxy

X

• ∀wGx

X

• ∃x∀x Fxy

X

• ∀x Fxx→ (∃z Gz→ Fab)

X

∀x∃y∀z Fab

∃y∀z Fab

∀z Fab

Fab

34

Syntactic Structure

Is it a sentence? (F is 2-place, G is 1-place)

• ∀x(∃y(∀z Fab)) ×
• ∀aGaa

×
• Fxy

X

• ∀wGx

X

• ∃x∀x Fxy

X

• ∀x Fxx→ (∃z Gz→ Fab)

X

∀x∃y∀z Fab

∃y∀z Fab

∀z Fab

Fab

34

Syntactic Structure

Is it a sentence? (F is 2-place, G is 1-place)

• ∀x(∃y(∀z Fab)) ×
• ∀aGaa ×

• Fxy

X

• ∀wGx

X

• ∃x∀x Fxy

X

• ∀x Fxx→ (∃z Gz→ Fab)

X

∀x∃y∀z Fab

∃y∀z Fab

∀z Fab

Fab

34

Syntactic Structure

Is it a sentence? (F is 2-place, G is 1-place)

• ∀x(∃y(∀z Fab)) ×
• ∀aGaa ×
• Fxy

X

• ∀wGx

X

• ∃x∀x Fxy

X

• ∀x Fxx→ (∃z Gz→ Fab)

X

∀x∃y∀z Fab

∃y∀z Fab

∀z Fab

Fab

34

Syntactic Structure

Is it a sentence? (F is 2-place, G is 1-place)

• ∀x(∃y(∀z Fab)) ×
• ∀aGaa ×
• Fxy X

• ∀wGx

X

• ∃x∀x Fxy

X

• ∀x Fxx→ (∃z Gz→ Fab)

X

∀x∃y∀z Fab

∃y∀z Fab

∀z Fab

Fab

34

Syntactic Structure

Is it a sentence? (F is 2-place, G is 1-place)

• ∀x(∃y(∀z Fab)) ×
• ∀aGaa ×
• Fxy X
• ∀wGx

X

• ∃x∀x Fxy

X

• ∀x Fxx→ (∃z Gz→ Fab)

X

∀x∃y∀z Fab

∃y∀z Fab

∀z Fab

Fab

34

Syntactic Structure

Is it a sentence? (F is 2-place, G is 1-place)

• ∀x(∃y(∀z Fab)) ×
• ∀aGaa ×
• Fxy X
• ∀wGx X

• ∃x∀x Fxy

X

• ∀x Fxx→ (∃z Gz→ Fab)

X

∀x∃y∀z Fab

∃y∀z Fab

∀z Fab

Fab

34

Syntactic Structure

Is it a sentence? (F is 2-place, G is 1-place)

• ∀x(∃y(∀z Fab)) ×
• ∀aGaa ×
• Fxy X
• ∀wGx X

• ∃x∀x Fxy

X

• ∀x Fxx→ (∃z Gz→ Fab)

X

∀wGx

Gx

34

Syntactic Structure

Is it a sentence? (F is 2-place, G is 1-place)

• ∀x(∃y(∀z Fab)) ×
• ∀aGaa ×
• Fxy X
• ∀wGx X
• ∃x∀x Fxy

X

• ∀x Fxx→ (∃z Gz→ Fab)

X

∀wGx

Gx

34

Syntactic Structure

Is it a sentence? (F is 2-place, G is 1-place)

• ∀x(∃y(∀z Fab)) ×
• ∀aGaa ×
• Fxy X
• ∀wGx X
• ∃x∀x Fxy X

• ∀x Fxx→ (∃z Gz→ Fab)

X

∀wGx

Gx

34

Syntactic Structure

Is it a sentence? (F is 2-place, G is 1-place)

• ∀x(∃y(∀z Fab)) ×
• ∀aGaa ×
• Fxy X
• ∀wGx X
• ∃x∀x Fxy X

• ∀x Fxx→ (∃z Gz→ Fab)

X

∃x∀x Fxy

∀x Fxy

Fxy

34

Syntactic Structure

Is it a sentence? (F is 2-place, G is 1-place)

• ∀x(∃y(∀z Fab)) ×
• ∀aGaa ×
• Fxy X
• ∀wGx X
• ∃x∀x Fxy X
• ∀x Fxx→ (∃z Gz→ Fab)

X

∃x∀x Fxy

∀x Fxy

Fxy

34

Syntactic Structure

Is it a sentence? (F is 2-place, G is 1-place)

• ∀x(∃y(∀z Fab)) ×
• ∀aGaa ×
• Fxy X
• ∀wGx X
• ∃x∀x Fxy X
• ∀x Fxx→ (∃z Gz→ Fab)
X

∃x∀x Fxy

∀x Fxy

Fxy

34

Syntactic Structure

Is it a sentence? (F is 2-place, G is 1-place)

• ∀x(∃y(∀z Fab)) ×
• ∀aGaa ×
• Fxy X
• ∀wGx X
• ∃x∀x Fxy X
• ∀x Fxx→ (∃z Gz→ Fab)
X

(∀x Fxx→ (∃z Gz→ Fab))

∀x Fxx

Fxx

(∃z Gz→ Fab)

∃z Gz

Gz

Fab

34

Subsentences

• ‘B’ is a subsentence of ‘A’ if and only if, in the course of
building up ‘A’ by applying the rules for sentences, ‘B’
appears on a line before ‘A’.

• ‘¬Pxa’ is a subsentence of ‘¬Pxa ∧ ∀yQy’
• ‘¬Pxa’ is not a subsentence of ‘¬(Pxa ∧ ∀yQy)’

(¬Pxa ∧ ∀yQy)

¬Pxa

Pxa

∀yQy

Qy

35

Subsentences

• ‘B’ is a subsentence of ‘A’ if and only if, in the course of
building up ‘A’ by applying the rules for sentences, ‘B’
appears on a line before ‘A’.

• ‘¬Pxa’ is a subsentence of ‘¬Pxa ∧ ∀yQy’

• ‘¬Pxa’ is not a subsentence of ‘¬(Pxa ∧ ∀yQy)’

(¬Pxa ∧ ∀yQy)

¬Pxa

Pxa

∀yQy

Qy

35

Subsentences

• ‘B’ is a subsentence of ‘A’ if and only if, in the course of
building up ‘A’ by applying the rules for sentences, ‘B’
appears on a line before ‘A’.

• ‘¬Pxa’ is a subsentence of ‘¬Pxa ∧ ∀yQy’

• ‘¬Pxa’ is not a subsentence of ‘¬(Pxa ∧ ∀yQy)’

(¬Pxa ∧ ∀yQy)

¬Pxa

Pxa

∀yQy

Qy

35

Subsentences

• ‘B’ is a subsentence of ‘A’ if and only if, in the course of
building up ‘A’ by applying the rules for sentences, ‘B’
appears on a line before ‘A’.

• ‘¬Pxa’ is a subsentence of ‘¬Pxa ∧ ∀yQy’

• ‘¬Pxa’ is not a subsentence of ‘¬(Pxa ∧ ∀yQy)’

(¬Pxa ∧ ∀yQy)

¬Pxa

Pxa

∀yQy

Qy

35

Subsentences

• ‘B’ is a subsentence of ‘A’ if and only if, in the course of
building up ‘A’ by applying the rules for sentences, ‘B’
appears on a line before ‘A’.

• ‘¬Pxa’ is a subsentence of ‘¬Pxa ∧ ∀yQy’
• ‘¬Pxa’ is not a subsentence of ‘¬(Pxa ∧ ∀yQy)’

(¬Pxa ∧ ∀yQy)

¬Pxa

Pxa

∀yQy

Qy

35

Subsentences

• ‘B’ is a subsentence of ‘A’ if and only if, in the course of
building up ‘A’ by applying the rules for sentences, ‘B’
appears on a line before ‘A’.

• ‘¬Pxa’ is a subsentence of ‘¬Pxa ∧ ∀yQy’
• ‘¬Pxa’ is not a subsentence of ‘¬(Pxa ∧ ∀yQy)’

¬(Pxa ∧ ∀yQy)

(Pxa ∧ ∀yQy)

Pxa ∀yQy

Qy

35

Main Operators

• The main operator in a (non-atomic) sentence is the
operator which would be introduced last, if we were
building the sentence up according to the rules for
sentences.

36

Main Operators

• Fab→ ∃y Ay main operator:

→

(Fab→ ∃y Ay)

Fab ∃y Ay

Ay

37

Main Operators

• Fab→ ∃y Ay main operator:

→

(Fab→ ∃y Ay)

Fab ∃y Ay

Ay

37

Main Operators

• Fab→ ∃y Ay main operator:→

(Fab→ ∃y Ay)

Fab ∃y Ay

Ay

37

Main Operators

• ∃x[Rx→ (Jx ∧ Kx)] ∨ Fab main operator:

∨

(∃x(Rx→ (Jx ∧ Kx)) ∨ Fab)

∃x(Rx→ (Jx ∧ Kx))

(Rx→ (Jx ∧ Kx))

Rx (Jx ∧ Kx)

Jx Kx

Fab

38

Main Operators

• ∃x[Rx→ (Jx ∧ Kx)] ∨ Fab main operator:

∨

(∃x(Rx→ (Jx ∧ Kx)) ∨ Fab)

∃x(Rx→ (Jx ∧ Kx))

(Rx→ (Jx ∧ Kx))

Rx (Jx ∧ Kx)

Jx Kx

Fab

38

Main Operators

• ∃x[Rx→ (Jx ∧ Kx)] ∨ Fab main operator: ∨

(∃x(Rx→ (Jx ∧ Kx)) ∨ Fab)

∃x(Rx→ (Jx ∧ Kx))

(Rx→ (Jx ∧ Kx))

Rx (Jx ∧ Kx)

Jx Kx

Fab

38

Main Operators

• ∀x (Fx→ Gx) main operator:

∀

∀x (Fx→ Gx)

(Fx→ Gx)

Fx Gx

39

Main Operators

• ∀x (Fx→ Gx) main operator:

∀

∀x (Fx→ Gx)

(Fx→ Gx)

Fx Gx

39

Main Operators

• ∀x (Fx→ Gx) main operator: ∀

∀x (Fx→ Gx)

(Fx→ Gx)

Fx Gx

39

Main Operators

• ∃w (Fw←→ ∀xGx) main operator:

∃

∃w (Fw←→ ∀xGx)

(Fw←→ ∀xGx)

Fw ∀xGx

Gx

40

Main Operators

• ∃w (Fw←→ ∀xGx) main operator:

∃

∃w (Fw←→ ∀xGx)

(Fw←→ ∀xGx)

Fw ∀xGx

Gx

40

Main Operators

• ∃w (Fw←→ ∀xGx) main operator: ∃

∃w (Fw←→ ∀xGx)

(Fw←→ ∀xGx)

Fw ∀xGx

Gx

40

Main Operators

• A sentence whose main operator is ‘¬’ is a negation

• A sentence whose main operator is ‘∧’ is a conjunction
• A sentence whose main operator is ‘∨’ is a disjunction
• A sentence whose main operator is ‘→’ is a conditional
• A sentence whose main operator is ‘←→’ is a biconditional
• A sentence whose main operator is ‘∀’ is a universal

sentence
• A sentence whose main operator is ‘∃’ is an existential

sentence

41

Main Operators

• A sentence whose main operator is ‘¬’ is a negation
• A sentence whose main operator is ‘∧’ is a conjunction

• A sentence whose main operator is ‘∨’ is a disjunction
• A sentence whose main operator is ‘→’ is a conditional
• A sentence whose main operator is ‘←→’ is a biconditional
• A sentence whose main operator is ‘∀’ is a universal

sentence
• A sentence whose main operator is ‘∃’ is an existential

sentence

41

Main Operators

• A sentence whose main operator is ‘¬’ is a negation
• A sentence whose main operator is ‘∧’ is a conjunction
• A sentence whose main operator is ‘∨’ is a disjunction

• A sentence whose main operator is ‘→’ is a conditional
• A sentence whose main operator is ‘←→’ is a biconditional
• A sentence whose main operator is ‘∀’ is a universal

sentence
• A sentence whose main operator is ‘∃’ is an existential

sentence

41

Main Operators

• A sentence whose main operator is ‘¬’ is a negation
• A sentence whose main operator is ‘∧’ is a conjunction
• A sentence whose main operator is ‘∨’ is a disjunction
• A sentence whose main operator is ‘→’ is a conditional

• A sentence whose main operator is ‘←→’ is a biconditional
• A sentence whose main operator is ‘∀’ is a universal

sentence
• A sentence whose main operator is ‘∃’ is an existential

sentence

41

Main Operators

• A sentence whose main operator is ‘¬’ is a negation
• A sentence whose main operator is ‘∧’ is a conjunction
• A sentence whose main operator is ‘∨’ is a disjunction
• A sentence whose main operator is ‘→’ is a conditional
• A sentence whose main operator is ‘←→’ is a biconditional

• A sentence whose main operator is ‘∀’ is a universal
sentence

• A sentence whose main operator is ‘∃’ is an existential
sentence

41

Main Operators

• A sentence whose main operator is ‘¬’ is a negation
• A sentence whose main operator is ‘∧’ is a conjunction
• A sentence whose main operator is ‘∨’ is a disjunction
• A sentence whose main operator is ‘→’ is a conditional
• A sentence whose main operator is ‘←→’ is a biconditional
• A sentence whose main operator is ‘∀’ is a universal

sentence

• A sentence whose main operator is ‘∃’ is an existential
sentence

41

Main Operators

• A sentence whose main operator is ‘¬’ is a negation
• A sentence whose main operator is ‘∧’ is a conjunction
• A sentence whose main operator is ‘∨’ is a disjunction
• A sentence whose main operator is ‘→’ is a conditional
• A sentence whose main operator is ‘←→’ is a biconditional
• A sentence whose main operator is ‘∀’ is a universal

sentence
• A sentence whose main operator is ‘∃’ is an existential

sentence

41

Scope

• The scope of an operator (in a sentence) is the sub-sentence
for which that operator is the main operator

42

Scope

∀x∃y [∀wFwx←→ ∀z (Gxz→Wzyx)]

• Scope of ‘∀z’:

∀z (Gxz→Wzyx)

• Scope of ‘∀w’:

∀wFwx

• Scope of ‘∃y’:

∃y [Fx←→ ∀z (Gaz→Wzyx)]

• Scope of ‘∀x’:

∀x∃y [Fx←→ ∀z (Gaz→Wzyx)]

43

Scope

∀x∃y [∀wFwx←→ ∀z (Gxz→Wzyx)]

• Scope of ‘∀z’:

∀z (Gxz→Wzyx)
• Scope of ‘∀w’:

∀wFwx

• Scope of ‘∃y’:

∃y [Fx←→ ∀z (Gaz→Wzyx)]

• Scope of ‘∀x’:

∀x∃y [Fx←→ ∀z (Gaz→Wzyx)]

43

Scope

∀x∃y [∀wFwx←→ ∀z (Gxz→Wzyx)]

• Scope of ‘∀z’: ∀z (Gxz→Wzyx)

• Scope of ‘∀w’:

∀wFwx

• Scope of ‘∃y’:

∃y [Fx←→ ∀z (Gaz→Wzyx)]

• Scope of ‘∀x’:

∀x∃y [Fx←→ ∀z (Gaz→Wzyx)]

43

Scope

∀x∃y [∀wFwx←→ ∀z (Gxz→Wzyx)]

• Scope of ‘∀z’: ∀z (Gxz→Wzyx)
• Scope of ‘∀w’:

∀wFwx
• Scope of ‘∃y’:

∃y [Fx←→ ∀z (Gaz→Wzyx)]

• Scope of ‘∀x’:

∀x∃y [Fx←→ ∀z (Gaz→Wzyx)]

43

Scope

∀x∃y [∀wFwx←→ ∀z (Gxz→Wzyx)]

• Scope of ‘∀z’: ∀z (Gxz→Wzyx)
• Scope of ‘∀w’: ∀wFwx

• Scope of ‘∃y’:

∃y [Fx←→ ∀z (Gaz→Wzyx)]

• Scope of ‘∀x’:

∀x∃y [Fx←→ ∀z (Gaz→Wzyx)]

43

Scope

∀x∃y [∀wFwx←→ ∀z (Gxz→Wzyx)]

• Scope of ‘∀z’: ∀z (Gxz→Wzyx)
• Scope of ‘∀w’: ∀wFwx
• Scope of ‘∃y’:

∃y [Fx←→ ∀z (Gaz→Wzyx)]
• Scope of ‘∀x’:

∀x∃y [Fx←→ ∀z (Gaz→Wzyx)]

43

Scope

∀x∃y [∀wFwx←→ ∀z (Gxz→Wzyx)]

• Scope of ‘∀z’: ∀z (Gxz→Wzyx)
• Scope of ‘∀w’: ∀wFwx
• Scope of ‘∃y’: ∃y [Fx←→ ∀z (Gaz→Wzyx)]

• Scope of ‘∀x’:

∀x∃y [Fx←→ ∀z (Gaz→Wzyx)]

43

Scope

∀x∃y [∀wFwx←→ ∀z (Gxz→Wzyx)]

• Scope of ‘∀z’: ∀z (Gxz→Wzyx)
• Scope of ‘∀w’: ∀wFwx
• Scope of ‘∃y’: ∃y [Fx←→ ∀z (Gaz→Wzyx)]
• Scope of ‘∀x’:

∀x∃y [Fx←→ ∀z (Gaz→Wzyx)]

43

Scope

∀x∃y [∀wFwx←→ ∀z (Gxz→Wzyx)]

• Scope of ‘∀z’: ∀z (Gxz→Wzyx)
• Scope of ‘∀w’: ∀wFwx
• Scope of ‘∃y’: ∃y [Fx←→ ∀z (Gaz→Wzyx)]
• Scope of ‘∀x’: ∀x∃y [Fx←→ ∀z (Gaz→Wzyx)]

43

Syntax for PL

Free and Bound Variables

Free and Bound Variables

• ‘Fx’ and ‘Ayc’ are sentences.

• However, their variables are free.
• The variables appearing in ‘∀x∀y Fxy’ are bound.
• In ‘∀x Px→ Qx’, the first x is bound, whereas the second

one is free.

44

Free and Bound Variables

• ‘Fx’ and ‘Ayc’ are sentences.
• However, their variables are free.

• The variables appearing in ‘∀x∀y Fxy’ are bound.
• In ‘∀x Px→ Qx’, the first x is bound, whereas the second

one is free.

44

Free and Bound Variables

• ‘Fx’ and ‘Ayc’ are sentences.
• However, their variables are free.
• The variables appearing in ‘∀x∀y Fxy’ are bound.

• In ‘∀x Px→ Qx’, the first x is bound, whereas the second
one is free.

44

Free and Bound Variables

• ‘Fx’ and ‘Ayc’ are sentences.
• However, their variables are free.
• The variables appearing in ‘∀x∀y Fxy’ are bound.
• In ‘∀x Px→ Qx’, the first x is bound, whereas the second

one is free.

44

Free and Bound Variables

A variablex in a sentence of PL is bound if and only if it occurs
within the scope of a quantifier, ∀x or ∃x, whose associated
variable is x.

A variable x in a sentence of PL is free if and only if it does
not occur within the scope of a quantifier, ∀x or ∃x, whose
associated variable is x.

• E.g.,
∀x∀y Fy→ ∃z Gzx

45

Free and Bound Variables

A variablex in a sentence of PL is bound if and only if it occurs
within the scope of a quantifier, ∀x or ∃x, whose associated
variable is x.

A variable x in a sentence of PL is free if and only if it does
not occur within the scope of a quantifier, ∀x or ∃x, whose
associated variable is x.

• E.g.,
∀x∀y Fy→ ∃z Gzx

45

Free and Bound Variables

A variablex in a sentence of PL is bound if and only if it occurs
within the scope of a quantifier, ∀x or ∃x, whose associated
variable is x.

A variable x in a sentence of PL is free if and only if it does
not occur within the scope of a quantifier, ∀x or ∃x, whose
associated variable is x.

• E.g.,
∀x∀y Fy→ ∃z Gzx

45

Free and Bound Variables

A variablex in a sentence of PL is bound if and only if it occurs
within the scope of a quantifier, ∀x or ∃x, whose associated
variable is x.

A variable x in a sentence of PL is free if and only if it does
not occur within the scope of a quantifier, ∀x or ∃x, whose
associated variable is x.

• E.g.,
∀x∀y Fy→ ∃z Gzx

45

Free and Bound Variables

A variablex in a sentence of PL is bound if and only if it occurs
within the scope of a quantifier, ∀x or ∃x, whose associated
variable is x.

A variable x in a sentence of PL is free if and only if it does
not occur within the scope of a quantifier, ∀x or ∃x, whose
associated variable is x.

• E.g.,
∀x∀y Fy→ ∃z Gzx

45

Free and Bound Variables

A variablex in a sentence of PL is bound if and only if it occurs
within the scope of a quantifier, ∀x or ∃x, whose associated
variable is x.

A variable x in a sentence of PL is free if and only if it does
not occur within the scope of a quantifier, ∀x or ∃x, whose
associated variable is x.

• E.g.,
∀x (∀y Fy→ ∃z Gzx)

45

Free and Bound Variables

A variablex in a sentence of PL is bound if and only if it occurs
within the scope of a quantifier, ∀x or ∃x, whose associated
variable is x.

A variable x in a sentence of PL is free if and only if it does
not occur within the scope of a quantifier, ∀x or ∃x, whose
associated variable is x.

• E.g.,
∀x (∀y Fy→ ∃z Gzx)

45

Free and Bound Variables

A variablex in a sentence of PL is bound if and only if it occurs
within the scope of a quantifier, ∀x or ∃x, whose associated
variable is x.

A variable x in a sentence of PL is free if and only if it does
not occur within the scope of a quantifier, ∀x or ∃x, whose
associated variable is x.

• E.g.,
∀x (∀y Fy→ ∃z Gzx)

45

Free and Bound Variables

A variablex in a sentence of PL is bound if and only if it occurs
within the scope of a quantifier, ∀x or ∃x, whose associated
variable is x.

A variable x in a sentence of PL is free if and only if it does
not occur within the scope of a quantifier, ∀x or ∃x, whose
associated variable is x.

• E.g.,
∀x (∀y Fy→ ∃z Gzx)

45

Free and Bound Variables

A variablex in a sentence of PL is bound if and only if it occurs
within the scope of a quantifier, ∀x or ∃x, whose associated
variable is x.

A variable x in a sentence of PL is free if and only if it does
not occur within the scope of a quantifier, ∀x or ∃x, whose
associated variable is x.

• E.g.,
∀x (∀y Fy→ ∃z Gzx)

45

Free and Bound Variables

∀w(∃y Lwy→ ∃wAw)

46

Free and Bound Variables

∀w(∃y Lwy→ ∃wAw)

46

Free and Bound Variables

In a sentence of the form ∀xA or ∃xA, the quantifier binds
every free occurrence of x in A. If an occurrence of x in A is
already bound, then the quantifier does not bind it.

• E.g., in
∃x∀x Fx

the variable ‘x’ is bound by the universal quantifier ‘∀x’. It is
not bound by the existential quantifier ‘∃x’.

47

Free and Bound Variables

In a sentence of the form ∀xA or ∃xA, the quantifier binds
every free occurrence of x in A. If an occurrence of x in A is
already bound, then the quantifier does not bind it.

• E.g., in
∃x∀x Fx

the variable ‘x’ is bound by the universal quantifier ‘∀x’. It is
not bound by the existential quantifier ‘∃x’.

47

Open and Closed

• If all variables in Aare bound, then we’ll say that A is closed

• If a variable occurs free in A, then we’ll say that A is open
• When translating into PL, we want our translations to be
closed.

48

Open and Closed

• If all variables in Aare bound, then we’ll say that A is closed
• If a variable occurs free in A, then we’ll say that A is open

• When translating into PL, we want our translations to be
closed.

48

Open and Closed

• If all variables in Aare bound, then we’ll say that A is closed
• If a variable occurs free in A, then we’ll say that A is open
• When translating into PL, we want our translations to be
closed.

48

Free and Bound Variables

∃x Lxy ∧ ∀y Lyx

49

Free and Bound Variables

∃x Lxy ∧ ∀y Lyx

49

Free and Bound Variables

∃x Lxy ∧ ∀y Lyx

49

Free and Bound Variables

∃x Lxy ∧ ∀y Lyx

49

Free and Bound Variables

∃x Lxy ∧ ∀y Lyx

49

Free and Bound Variables

∀xAx ∧ Bx

49

Free and Bound Variables

∀xAx ∧ Bx

49

Free and Bound Variables

∀xAx ∧ Bx

49

Free and Bound Variables

∀x(Ax ∧ Bx) ∧ ∀y(Cx ∧ Dy)

49

Free and Bound Variables

∀x(Ax ∧ Bx) ∧ ∀y(Cx ∧ Dy)

49

Free and Bound Variables

∀x(Ax ∧ Bx) ∧ ∀y(Cx ∧ Dy)

49

Free and Bound Variables

∀x(Ax ∧ Bx) ∧ ∀y(Cx ∧ Dy)

49

Free and Bound Variables

∀x(Ax ∧ Bx) ∧ ∀y(Cx ∧ Dy)

49

Free and Bound Variables

∀x∃y [Rxy→ (Jz ∧ Kx)] ∨ Ryx

49

Free and Bound Variables

∀x∃y [Rxy→ (Jz ∧ Kx)] ∨ Ryx

49

Free and Bound Variables

∀x∃y [Rxy→ (Jz ∧ Kx)] ∨ Ryx

49

Free and Bound Variables

∀x∃y [Rxy→ (Jz ∧ Kx)] ∨ Ryx

49

Free and Bound Variables

∀x∃y [Rxy→ (Jz ∧ Kx)] ∨ Ryx

49

Free and Bound Variables

∀x∃y [Rxy→ (Jz ∧ Kx)] ∨ Ryx

49

Free and Bound Variables

∀x∃y [Rxy→ (Jz ∧ Kx)] ∨ Ryx

49

Syntax for PL

Important Syntactic Features in PL

Parenthases

∀x∃y Lxy→ Gx)

∃y Lxy→ Gx

∃y Lxy

Lxy

Gx

∀x∃y Lxy→ Gx

∀x∃y Lxy

∃y Lxy

Lxy

Gx

50

Term Order

∀x∃y Lxy

∃y Lxy

Lxy

∀x∃y Lyx

∃y Lyx

Lyx

51

Quantifier Order

∃y∀x Lxy

∀x Lxy

Lxy

∀x∃y Lxy

∃y Lxy

Lxy

52

	Four Important Statement Forms
	2-Place Predicates
	Syntax for PL
	Vocabulary
	Grammar
	Free and Bound Variables
	Important Syntactic Features in PL

