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Four Important Statement Forms

(A) All Fs (in the domain) are Gs ∀x (Fx→ Gx)

(E) No Fs (in the domain) are Gs ∀x (Fx→ ¬Gx)
(I) Some Fs (in the domain) are Gs ∃x (Fx ∧ Gx)

(O) Some Fs (in the domain) are not Gs ∃x (Fx ∧ ¬Gx)
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Domains

• Remember: any quantified claim in PL (∀xAx or ∃xAx)
is made relative to a domain.

◃ ‘∀xAx’ says Everything in the domain makes Ax true
◃ ‘∃xAx’ says Something in the domain makes Ax true
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Variants of ‘All Fs are Gs’

◃ All Fs are Gs
◃ Any Fis a G

◃ Every Fis G
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Variants of ‘No Fs are Gs’

◃ No Fs are Gs
◃ No Fis G
◃ No Fis a G

◃ There are no GFs
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Variants of ‘Some Fs are Gs’

◃ Some Fs are Gs
◃ Some Fs are G

◃ Some Fis G
◃ Some Fis a G

◃ There are GFs
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Variants of ‘Some Fs are not Gs’

◃ Some Fs are not Gs
◃ Some Fs are not G
◃ Some Fis not G
◃ Some Fis a non-G
◃ There are non-GFs

9



Translation

◃ In general: find a statement which means the same thing as
the statement you want to translate, but which has one of
the four forms:

◃ Then, use the translations:

(A) All Fs are Gs

∀x(Fx→ Gx)

(E) No Fs are Gs

∀x(Fx→ ¬Gx)

(I) Some Fs are Gs

∃x(Fx ∧ Gx)

(O) Some Fs are not Gs

∃x(Fx ∧ ¬Gx)
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An Aside

• Some of you may find one or more of these alternative
translations more natural—if so, you should feel free to use
them instead.

(A) All Fs are Gs ∀x(Fx→ Gx)
(E) No Fs are Gs ∀x(Fx→ ¬Gx)
(I) Some Fs are Gs ∃x(Fx ∧ Gx)
(O) Some Fs are not Gs ∃x(Fx ∧ ¬Gx)

◃ If you don’t find any of these more natural, don’t worry
about it—just ignore this slide.

11



An Aside

• Some of you may find one or more of these alternative
translations more natural—if so, you should feel free to use
them instead.

(A) All Fs are Gs ∀x(Fx→ Gx)
(E) No Fs are Gs ∀x(Fx→ ¬Gx)
(I) Some Fs are Gs ∃x(Fx ∧ Gx)
(O) Some Fs are not Gs ∃x(Fx ∧ ¬Gx)

◃ If you don’t find any of these more natural, don’t worry
about it—just ignore this slide.

11



An Aside

• Some of you may find one or more of these alternative
translations more natural—if so, you should feel free to use
them instead.

(A) All Fs are Gs ¬∃x(Fx ∧ ¬Gx)
(E) No Fs are Gs ∀x(Fx→ ¬Gx)
(I) Some Fs are Gs ∃x(Fx ∧ Gx)
(O) Some Fs are not Gs ∃x(Fx ∧ ¬Gx)

◃ If you don’t find any of these more natural, don’t worry
about it—just ignore this slide.

11



An Aside

• Some of you may find one or more of these alternative
translations more natural—if so, you should feel free to use
them instead.

(A) All Fs are Gs ¬∃x(Fx ∧ ¬Gx)
(E) No Fs are Gs ¬∃x(Fx ∧ Gx)
(I) Some Fs are Gs ∃x(Fx ∧ Gx)
(O) Some Fs are not Gs ∃x(Fx ∧ ¬Gx)

◃ If you don’t find any of these more natural, don’t worry
about it—just ignore this slide.

11



An Aside

• Some of you may find one or more of these alternative
translations more natural—if so, you should feel free to use
them instead.

(A) All Fs are Gs ¬∃x(Fx ∧ ¬Gx)
(E) No Fs are Gs ¬∃x(Fx ∧ Gx)
(I) Some Fs are Gs ¬∀x(Fx→ ¬Gx)
(O) Some Fs are not Gs ∃x(Fx ∧ ¬Gx)

◃ If you don’t find any of these more natural, don’t worry
about it—just ignore this slide.

11



An Aside

• Some of you may find one or more of these alternative
translations more natural—if so, you should feel free to use
them instead.

(A) All Fs are Gs ¬∃x(Fx ∧ ¬Gx)
(E) No Fs are Gs ¬∃x(Fx ∧ Gx)
(I) Some Fs are Gs ¬∀x(Fx→ ¬Gx)
(O) Some Fs are not Gs ¬∀x(Fx→ Gx)

◃ If you don’t find any of these more natural, don’t worry
about it—just ignore this slide.

11



An Aside

• Some of you may find one or more of these alternative
translations more natural—if so, you should feel free to use
them instead.

(A) All Fs are Gs ¬∃x(Fx ∧ ¬Gx)
(E) No Fs are Gs ¬∃x(Fx ∧ Gx)
(I) Some Fs are Gs ¬∀x(Fx→ ¬Gx)
(O) Some Fs are not Gs ¬∀x(Fx→ Gx)

◃ If you don’t find any of these more natural, don’t worry
about it—just ignore this slide.

11



Examples

domain : all people
F : is funny
S : is shy
T : is tall
Q : is quirky

Everyone is funny :

∀x Fx
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domain : all people
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Examples

domain : all people
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Examples

domain : all animals
P : is a person
V : is vegetarian
C : is carnivorous
D : is ferocious

a : Albert

Some people are vegetarian :

∃x(Fx ∧ Gx)
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Examples
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Examples

domain : all foods
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D : is delicious

All black jellybeans are delicious, but no red jellybean is :

∀x[Fx→ Gx] ∧ ∀y[Fy→ ¬Gy]
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2-Place Predicates



Predicates

• a predicate is a gappy statement—it’s a statement with a
name (or names) missing.

Tammy loves Sammy.

◃ If a predicate has a single gap, then we’ll call it a 1-place
predicate
◃ If a predicate has two gaps, then we’ll call it a 2-place

predicate
◃ If a predicate has N gaps, then we’ll call it an N-place

predicate
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2-Place Predicates

domain : all people
L : loves

a : Abelard
h : Heloise

Abelard loves Heloise :

Lah

Heloise loves Abelard :

Lha

◃ We need some way of saying which gap is which
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2-Place Predicates

domain : everything in the office
j : Jim Lxy : x likes y

m : Michael Ex : x is easy going
p : Pam Txy : x is taller than y
s : Stanley Px : x is a person

Everyone is easygoing :

∀x(Fx→ Gx)
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Syntax for PL

phil 500
∀x (Fx→ ∃yGyx)

(Fx→ ∃yGyx)

Fx ∃yGyx

Gyx
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Syntax for PL



Languages

syntax −−−
{

1. Vocabulary
2. Grammar

semantics −−3. Meaning
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Syntax for PL

Vocabulary



Vocabulary

The vocabulary of PL includes the following symbols:

1. for each N ≥ 0, N-place predicates (any capital
letter—perhaps with subscripts)

A,B,C,D,E, . . . ,X,Y,Z
A1,B1,C1,D1,E1, . . . ,X1,Y1,Z1
A2,B2,C2,D2,E2, . . . ,X2,Y2,Z2
...

22



Vocabulary

2. names (any lowercase letter between a and v—perhaps with
subscripts)

a, b, c, d, e, . . . , t, u, v
a1, b1, c1, d1, e1, . . . , t1, u1, v1
a2, b2, c2, d2, e2, . . . , t2, u2, v2
...

3. variables (lowercase w, x, y, and z—perhaps with subscripts)

w, x, y, z
w1, x1, y1, z1
w2, x2, y2, z2
...
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Vocabulary

4. Logical operators

¬,∨,∧,→,←→,∃,∀

5. parenthases
( , )

Nothing else is included in the vocabulary of PL.
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Vocabulary

• Let’s call both names and variables terms. That is, both ‘a’
and ‘x’ are terms of PL.
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Syntax for PL

Grammar



Grammar

• Any sequence of the symbols in the vocabulary of PL is an
expression of PL.

• All of the following are expressions of PL:

Vx¬((→→ anv
PQRST¬¬
(∀x Fxab→ ¬∃y Pynst)
Nxy ∨ ∨¬¬∃xBx
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Grammar: Atomic Sentences

• If R is an N-place predicate and t1, t2, . . . , tN are N terms,
then

Rt1t2 . . . tN

is an atomic sentence.
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Grammar: Atomic sentences

• Let A be a 1-place predicate, B a 2-place predicate, C a
3-place predicate, and D a 4-place predicate

• Then, all of the following are atomic sentences of PL:

Az
Aa
Bwg
Cxzt
Dcccc
Dxaxa
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Grammar: Sentences

R) Every atomic sentence is a sentence

¬) If ‘A’ is a sentence, then ‘¬A’ is a sentence.
∧) If ‘A’ and ‘B’ are sentences, then ‘(A∧B)’ is a sentence.
∨) If ‘A’ and ‘B’ are sentences, then ‘(A∨B)’ is a sentence.
→) If ‘A’ and ‘B’ are sentences, then ‘(A→ B)’ is a sentence.
←→) If ‘A’ and ‘B’ are sentences, then ‘(A←→ B)’ is a sentence.
∀) If ‘A’ is a sentence and ‘x’ is a variable, then ‘∀xA’ is a

sentence.
∃) If ‘A’ is a sentence and ‘x’ is a variable, then ‘∃xA’ is a

sentence.
−) Nothing else is a sentence.
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Grammar

Note: none of ‘A’, ‘B’, ‘x’, or ‘t’ appear in the vocabulary of PL.
They are not themselves sentences of PL. Rather, we are using
them here as meta-variables ranging over the expressions of
PL.
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Grammar

• To show that ‘(∀y Fy→ ¬∃x∃z Gzx)’ is a sentence of PL:

a) ‘Fy’ is a sentence [from (R)]
b) So, ‘∀y Fy’ is a sentence [from (a) and (∀)]
c) ‘Gzx’ is a sentence [from (R)]
d) So, ‘∃z Gzx’ is a sentence [from (c) and (∃)]
e) So, ‘∃x∃z Gzx’ is a sentence [from (d) and (∃)]
f) So, ‘¬∃x∃z Gzx’ is a sentence [from (e) and (¬)]
g) So, ‘(∀y Fy→ ¬∃x∃z Gzx)’ is a sentence [from (b), (f), and

(→)]
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Grammar

• Conventions:

• Omit the outermost parenthases in a sentence of PL.
• Allow ourselves to use square brackets ‘[, ]’ for readability

• So, rather than

(∀y Fy→ ¬∃x∃z Gzx)

• we can write
∀y Fy→ ¬∃x∃z Gzx
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Syntax Trees

(∀y Fy→ ¬∃x∃z Gzx)

∀y Fy

Fy

¬∃x∃z Gzx

∃x∃z Gzx

∃z Gzx

Gzx

33



Syntactic Structure

Is it a sentence? (F is 2-place, G is 1-place)

• ∀x(∃y(∀z Fab))

×
• ∀aGaa

×

• Fxy

X

• ∀wGx

X

• ∃x∀x Fxy

X

• ∀x Fxx→ (∃z Gz→ Fab)

X

∀x∃y∀z Fab

∃y∀z Fab

∀z Fab

Fab
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Subsentences

• ‘B’ is a subsentence of ‘A’ if and only if, in the course of
building up ‘A’ by applying the rules for sentences, ‘B’
appears on a line before ‘A’.

• ‘¬Pxa’ is a subsentence of ‘¬Pxa ∧ ∀yQy’
• ‘¬Pxa’ is not a subsentence of ‘¬(Pxa ∧ ∀yQy)’

(¬Pxa ∧ ∀yQy)

¬Pxa

Pxa

∀yQy

Qy
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building up ‘A’ by applying the rules for sentences, ‘B’
appears on a line before ‘A’.

• ‘¬Pxa’ is a subsentence of ‘¬Pxa ∧ ∀yQy’
• ‘¬Pxa’ is not a subsentence of ‘¬(Pxa ∧ ∀yQy)’
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(Pxa ∧ ∀yQy)

Pxa ∀yQy

Qy
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Main Operators

• The main operator in a (non-atomic) sentence is the
operator which would be introduced last, if we were
building the sentence up according to the rules for
sentences.
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Main Operators

• Fab→ ∃y Ay main operator:

→

(Fab→ ∃y Ay)

Fab ∃y Ay

Ay
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Main Operators

• ∃x[Rx→ (Jx ∧ Kx)] ∨ Fab main operator:

∨

(∃x(Rx→ (Jx ∧ Kx)) ∨ Fab)

∃x(Rx→ (Jx ∧ Kx))

(Rx→ (Jx ∧ Kx))

Rx (Jx ∧ Kx)

Jx Kx

Fab
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Main Operators

• ∀x (Fx→ Gx) main operator:

∀

∀x (Fx→ Gx)

(Fx→ Gx)

Fx Gx
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Main Operators

• ∃w (Fw←→ ∀xGx) main operator:

∃
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Main Operators

• A sentence whose main operator is ‘¬’ is a negation

• A sentence whose main operator is ‘∧’ is a conjunction
• A sentence whose main operator is ‘∨’ is a disjunction
• A sentence whose main operator is ‘→’ is a conditional
• A sentence whose main operator is ‘←→’ is a biconditional
• A sentence whose main operator is ‘∀’ is a universal

sentence
• A sentence whose main operator is ‘∃’ is an existential

sentence
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Scope

• The scope of an operator (in a sentence) is the sub-sentence
for which that operator is the main operator
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Scope

∀x∃y [∀wFwx←→ ∀z (Gxz→Wzyx)]

• Scope of ‘∀z’:

∀z (Gxz→Wzyx)

• Scope of ‘∀w’:

∀wFwx

• Scope of ‘∃y’:

∃y [Fx←→ ∀z (Gaz→Wzyx)]

• Scope of ‘∀x’:

∀x∃y [Fx←→ ∀z (Gaz→Wzyx)]
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Syntax for PL

Free and Bound Variables



Free and Bound Variables

• ‘Fx’ and ‘Ayc’ are sentences.

• However, their variables are free.
• The variables appearing in ‘∀x∀y Fxy’ are bound.
• In ‘∀x Px→ Qx’, the first x is bound, whereas the second

one is free.
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Free and Bound Variables

A variablex in a sentence of PL is bound if and only if it occurs
within the scope of a quantifier, ∀x or ∃x, whose associated
variable is x.

A variable x in a sentence of PL is free if and only if it does
not occur within the scope of a quantifier, ∀x or ∃x, whose
associated variable is x.

• E.g.,
∀x∀y Fy→ ∃z Gzx

45
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Free and Bound Variables

∀w(∃y Lwy→ ∃wAw)

46



Free and Bound Variables

∀w(∃y Lwy→ ∃wAw)
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Free and Bound Variables

In a sentence of the form ∀xA or ∃xA, the quantifier binds
every free occurrence of x in A. If an occurrence of x in A is
already bound, then the quantifier does not bind it.

• E.g., in
∃x∀x Fx

the variable ‘x’ is bound by the universal quantifier ‘∀x’. It is
not bound by the existential quantifier ‘∃x’.
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Open and Closed

• If all variables in Aare bound, then we’ll say that A is closed

• If a variable occurs free in A, then we’ll say that A is open
• When translating into PL, we want our translations to be
closed.
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Free and Bound Variables

∃x Lxy ∧ ∀y Lyx
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Free and Bound Variables
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Syntax for PL

Important Syntactic Features in PL



Parenthases

∀x∃y Lxy→ Gx)

∃y Lxy→ Gx

∃y Lxy

Lxy

Gx

∀x∃y Lxy→ Gx

∀x∃y Lxy

∃y Lxy

Lxy

Gx
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Term Order

∀x∃y Lxy

∃y Lxy

Lxy

∀x∃y Lyx

∃y Lyx

Lyx

51



Quantifier Order

∃y∀x Lxy

∀x Lxy

Lxy

∀x∃y Lxy

∃y Lxy

Lxy
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