
Introduction to Predicate Logic

phil 500
∀x(Fx → Gx), Fa ∴ Ga

1



Outline

The Need for Predicate Logic

Translation into PL

Symbolization Keys

Important Statement Forms

2



TheNeed for Predicate Logic



TheNeed for PL

Everyone who has a dog is happy
Obama has a dog

∴ Obama is happy

◃ This argument is valid.
◃ But it isn’t an entailment—so SL isn’t able to tell us that it is
valid.

3



TheNeed for PL

Everyone who has a dog is happy
Obama has a dog

∴ Obama is happy

◃ This argument is valid.

◃ But it isn’t an entailment—so SL isn’t able to tell us that it is
valid.

3



TheNeed for PL

Everyone who has a dog is happy
Obama has a dog

∴ Obama is happy

◃ This argument is valid.
◃ But it isn’t an entailment—so SL isn’t able to tell us that it is
valid.

3



TheNeed for PL

E

[T]

Obama has a dog
∴ Obama is happy

◃ This argument is valid.
◃ But it isn’t an entailment—so SL isn’t able to tell us that it is
valid.

3



TheNeed for PL

E

[T]

O

[T]

∴ Obama is happy

◃ This argument is valid.
◃ But it isn’t an entailment—so SL isn’t able to tell us that it is
valid.

3



TheNeed for PL

E

[T]

O

[T]

∴ H

[F]

◃ This argument is valid.
◃ But it isn’t an entailment—so SL isn’t able to tell us that it is
valid.

3



TheNeed for PL

E [T]
O

[T]

∴ H

[F]

◃ This argument is valid.
◃ But it isn’t an entailment—so SL isn’t able to tell us that it is
valid.

3



TheNeed for PL

E [T]
O [T]

∴ H

[F]

◃ This argument is valid.
◃ But it isn’t an entailment—so SL isn’t able to tell us that it is
valid.

3



TheNeed for PL

E [T]
O [T]

∴ H [F]

◃ This argument is valid.
◃ But it isn’t an entailment—so SL isn’t able to tell us that it is
valid.

3



TheNeed for PL

• Our solution: to represent more of the structure of these
statements

• We’ll have names, like
o : Obama

• We’ll have predicates, like
D : has a dog
H : is happy

◃ Putting them together will give statements like
Do : Obama has a dog
Ho : Obama is happy

4



TheNeed for PL

• Our solution: to represent more of the structure of these
statements

• We’ll have names, like
o : Obama

• We’ll have predicates, like
D : has a dog
H : is happy

◃ Putting them together will give statements like
Do : Obama has a dog
Ho : Obama is happy

4



TheNeed for PL

• Our solution: to represent more of the structure of these
statements

• We’ll have names, like
o : Obama

• We’ll have predicates, like
D : has a dog
H : is happy

◃ Putting them together will give statements like
Do : Obama has a dog
Ho : Obama is happy

4



TheNeed for PL

• Our solution: to represent more of the structure of these
statements

• We’ll have names, like
o : Obama

• We’ll have predicates, like
D : has a dog
H : is happy

◃ Putting them together will give statements like
Do : Obama has a dog
Ho : Obama is happy

4



TheNeed for PL

• Finally, we’ll have two additional symbols, known as
quantifiers:

∀x : Everything is
∃x : Something is

◃ ‘∀’ is an upside-down ‘A’—it stands for ‘all’.
◃ ∃’ is a backwards ‘E’—it stands for ‘exists’.
◃ ‘x’ is a variable—we’ll come back to this.

5



TheNeed for PL

• Finally, we’ll have two additional symbols, known as
quantifiers:

∀x : Everything is
∃x : Something is

◃ ‘∀’ is an upside-down ‘A’—it stands for ‘all’.

◃ ∃’ is a backwards ‘E’—it stands for ‘exists’.
◃ ‘x’ is a variable—we’ll come back to this.

5



TheNeed for PL

• Finally, we’ll have two additional symbols, known as
quantifiers:

∀x : Everything is
∃x : Something is

◃ ‘∀’ is an upside-down ‘A’—it stands for ‘all’.
◃ ∃’ is a backwards ‘E’—it stands for ‘exists’.

◃ ‘x’ is a variable—we’ll come back to this.

5



TheNeed for PL

• Finally, we’ll have two additional symbols, known as
quantifiers:

∀x : Everything is
∃x : Something is

◃ ‘∀’ is an upside-down ‘A’—it stands for ‘all’.
◃ ∃’ is a backwards ‘E’—it stands for ‘exists’.
◃ ‘x’ is a variable—we’ll come back to this.

5



TheNeed for PL

Everyone who has a dog is happy
Obama has a dog

∴ Obama is happy

6



TheNeed for PL

Everyone who has a dog is happy
Do

∴ Obama is happy

6



TheNeed for PL

Everyone who has a dog is happy
Do

∴ Ho

6



TheNeed for PL

∀x(Dx → Hx)
Do

∴ Ho

6



Translation into PL



Translation into PL

Symbolization Keys



Predicate Logic: Symbolization Keys

• We translated into SL with a symbolization key, which told
us, for every relevant statement letter, which statement of
English it represented.

◃ For instance:

A : Abelard loves Heloise
H : Heloise loves Abelard
B : Abelard is bald

◃ We will also translate into PL with a symbolization key,
except that these symbolization keys will tell us what each
relevant name and predicate of PL means.

7



Predicate Logic: Symbolization Keys

• We translated into SL with a symbolization key, which told
us, for every relevant statement letter, which statement of
English it represented.
◃ For instance:

A : Abelard loves Heloise
H : Heloise loves Abelard
B : Abelard is bald

◃ We will also translate into PL with a symbolization key,
except that these symbolization keys will tell us what each
relevant name and predicate of PL means.

7



Predicate Logic: Symbolization Keys

• We translated into SL with a symbolization key, which told
us, for every relevant statement letter, which statement of
English it represented.
◃ For instance:

A : Abelard loves Heloise
H : Heloise loves Abelard
B : Abelard is bald

◃ We will also translate into PL with a symbolization key,
except that these symbolization keys will tell us what each
relevant name and predicate of PL means.

7



Predicate Logic: Names

• In PL, we use the lowercase letters ‘a’ through ‘v’ as names.
(We can add subscripts if we need to.)

a, b, c, d, . . . , t, u, v, a1, b1, c1, . . .

• The names in PL are just like proper names in English. Each
name in PL refers to some particular person, place or thing.

8



Predicate Logic: Names

• In PL, we use the lowercase letters ‘a’ through ‘v’ as names.
(We can add subscripts if we need to.)

a, b, c, d, . . . , t, u, v, a1, b1, c1, . . .

• The names in PL are just like proper names in English. Each
name in PL refers to some particular person, place or thing.

8



Predicate Logic: Names

• A (partial) symbolization key:

a : Abelard
h : Heloise
b : Barcelona
j : Jupiter

9



Predicate Logic: Predicates

• In PL, we use uppercase letters, ‘A’ through ‘Z’, for
predicates. (We can add subscripts if we need to.)

A,B,C,D, . . . ,X,Y,Z,A1,B1,C1, . . .

◃ Think of a predicate as a gappy statement—it’s a statement
with a name (or names) missing.

Tammy met Sammy at the mall.

10



Predicate Logic: Predicates

• In PL, we use uppercase letters, ‘A’ through ‘Z’, for
predicates. (We can add subscripts if we need to.)

A,B,C,D, . . . ,X,Y,Z,A1,B1,C1, . . .

◃ Think of a predicate as a gappy statement—it’s a statement
with a name (or names) missing.

Tammy met Sammy at the mall.

10



Predicate Logic: Predicates

• In PL, we use uppercase letters, ‘A’ through ‘Z’, for
predicates. (We can add subscripts if we need to.)

A,B,C,D, . . . ,X,Y,Z,A1,B1,C1, . . .

◃ Think of a predicate as a gappy statement—it’s a statement
with a name (or names) missing.

Tammy met Sammy at the mall.

10



Predicate Logic: Predicates

• In PL, we use uppercase letters, ‘A’ through ‘Z’, for
predicates. (We can add subscripts if we need to.)

A,B,C,D, . . . ,X,Y,Z,A1,B1,C1, . . .

◃ Think of a predicate as a gappy statement—it’s a statement
with a name (or names) missing.

met Sammy at the mall.

10



Predicate Logic: Predicates

• In PL, we use uppercase letters, ‘A’ through ‘Z’, for
predicates. (We can add subscripts if we need to.)

A,B,C,D, . . . ,X,Y,Z,A1,B1,C1, . . .

◃ Think of a predicate as a gappy statement—it’s a statement
with a name (or names) missing.

met Sammy at the mall.

10



Predicate Logic: Predicates

• In PL, we use uppercase letters, ‘A’ through ‘Z’, for
predicates. (We can add subscripts if we need to.)

A,B,C,D, . . . ,X,Y,Z,A1,B1,C1, . . .

◃ Think of a predicate as a gappy statement—it’s a statement
with a name (or names) missing.

Tammy met Sammy at the mall.

10



Predicate Logic: Predicates

• In PL, we use uppercase letters, ‘A’ through ‘Z’, for
predicates. (We can add subscripts if we need to.)

A,B,C,D, . . . ,X,Y,Z,A1,B1,C1, . . .

◃ Think of a predicate as a gappy statement—it’s a statement
with a name (or names) missing.

Tammy met Sammy at the mall.

10



Predicate Logic: Predicates

• In PL, we use uppercase letters, ‘A’ through ‘Z’, for
predicates. (We can add subscripts if we need to.)

A,B,C,D, . . . ,X,Y,Z,A1,B1,C1, . . .

◃ Think of a predicate as a gappy statement—it’s a statement
with a name (or names) missing.

Tammy met at the mall.

10



Predicate Logic: Predicates

• In PL, we use uppercase letters, ‘A’ through ‘Z’, for
predicates. (We can add subscripts if we need to.)

A,B,C,D, . . . ,X,Y,Z,A1,B1,C1, . . .

◃ Think of a predicate as a gappy statement—it’s a statement
with a name (or names) missing.

Tammy met at the mall.

10



Predicate Logic: Predicates

• In PL, we use uppercase letters, ‘A’ through ‘Z’, for
predicates. (We can add subscripts if we need to.)

A,B,C,D, . . . ,X,Y,Z,A1,B1,C1, . . .

◃ Think of a predicate as a gappy statement—it’s a statement
with a name (or names) missing.

Tammy met Sammy at the mall.

10



Predicate Logic: Predicates

• In PL, we use uppercase letters, ‘A’ through ‘Z’, for
predicates. (We can add subscripts if we need to.)

A,B,C,D, . . . ,X,Y,Z,A1,B1,C1, . . .

◃ Think of a predicate as a gappy statement—it’s a statement
with a name (or names) missing.

Tammy met Sammy at the mall.

10



Predicate Logic: Predicates

• In PL, we use uppercase letters, ‘A’ through ‘Z’, for
predicates. (We can add subscripts if we need to.)

A,B,C,D, . . . ,X,Y,Z,A1,B1,C1, . . .

◃ Think of a predicate as a gappy statement—it’s a statement
with a name (or names) missing.

met at the mall.

10



Predicate Logic: Predicates

• In PL, we use uppercase letters, ‘A’ through ‘Z’, for
predicates. (We can add subscripts if we need to.)

A,B,C,D, . . . ,X,Y,Z,A1,B1,C1, . . .

◃ Think of a predicate as a gappy statement—it’s a statement
with a name (or names) missing.

met at the mall.

10



Predicate Logic: Predicates

• A (partial) symbolization key:

L : is large
B : is bald
P : loves Philosophy
X : is excited

11



Predicate Logic: Names and Predicates

◃ Predicates are statements with gaps.

◃ If will fill in those gaps with names, then we get back a
statement.

12



Predicate Logic: Names and Predicates

◃ Predicates are statements with gaps.
◃ If will fill in those gaps with names, then we get back a
statement.

12



Predicate Logic: Names and Predicates

a : Abelard L : is large
h : Heloise B : is bald
b : Barcelona P : loves Philosophy
j : Jupiter X : is excited

◃ Abelard is bald :

Ba
◃ Heloise is excited :

Xh

◃ Heloise isn’t bald :

¬Bh

◃ Abelard and Heloise love Philosophy :

Pa ∧ Ph

13



Predicate Logic: Names and Predicates

a : Abelard L : is large
h : Heloise B : is bald
b : Barcelona P : loves Philosophy
j : Jupiter X : is excited

◃ Abelard is bald : Ba

◃ Heloise is excited :

Xh

◃ Heloise isn’t bald :

¬Bh

◃ Abelard and Heloise love Philosophy :

Pa ∧ Ph

13



Predicate Logic: Names and Predicates

a : Abelard L : is large
h : Heloise B : is bald
b : Barcelona P : loves Philosophy
j : Jupiter X : is excited

◃ Abelard is bald : Ba
◃ Heloise is excited :

Xh
◃ Heloise isn’t bald :

¬Bh

◃ Abelard and Heloise love Philosophy :

Pa ∧ Ph

13



Predicate Logic: Names and Predicates

a : Abelard L : is large
h : Heloise B : is bald
b : Barcelona P : loves Philosophy
j : Jupiter X : is excited

◃ Abelard is bald : Ba
◃ Heloise is excited : Xh

◃ Heloise isn’t bald :

¬Bh

◃ Abelard and Heloise love Philosophy :

Pa ∧ Ph

13



Predicate Logic: Names and Predicates

a : Abelard L : is large
h : Heloise B : is bald
b : Barcelona P : loves Philosophy
j : Jupiter X : is excited

◃ Abelard is bald : Ba
◃ Heloise is excited : Xh
◃ Heloise isn’t bald :

¬Bh
◃ Abelard and Heloise love Philosophy :

Pa ∧ Ph

13



Predicate Logic: Names and Predicates

a : Abelard L : is large
h : Heloise B : is bald
b : Barcelona P : loves Philosophy
j : Jupiter X : is excited

◃ Abelard is bald : Ba
◃ Heloise is excited : Xh
◃ Heloise isn’t bald : ¬Bh

◃ Abelard and Heloise love Philosophy :

Pa ∧ Ph

13



Predicate Logic: Names and Predicates

a : Abelard L : is large
h : Heloise B : is bald
b : Barcelona P : loves Philosophy
j : Jupiter X : is excited

◃ Abelard is bald : Ba
◃ Heloise is excited : Xh
◃ Heloise isn’t bald : ¬Bh
◃ Abelard and Heloise love Philosophy :

Pa ∧ Ph

13



Predicate Logic: Names and Predicates

a : Abelard L : is large
h : Heloise B : is bald
b : Barcelona P : loves Philosophy
j : Jupiter X : is excited

◃ Abelard is bald : Ba
◃ Heloise is excited : Xh
◃ Heloise isn’t bald : ¬Bh
◃ Abelard and Heloise love Philosophy : Pa ∧ Ph

13



Predicate Logic: Names and Predicates

a : Abelard L : is large
h : Heloise B : is bald
b : Barcelona P : loves Philosophy
j : Jupiter X : is excited

◃ Heloise is excited only if Abelard loves Philosophy :

Xh → Pa
◃ Barcelona is large unless Jupiter isn’t. :

Lb ∨ ¬Lj

◃ Heloise isn’t excited if Abelard doesn’t love Philosophy :

¬Pa → ¬Xh

◃ Neither Barcelona nor Jupiter is large :

¬(Lb ∨ Lj)

14



Predicate Logic: Names and Predicates

a : Abelard L : is large
h : Heloise B : is bald
b : Barcelona P : loves Philosophy
j : Jupiter X : is excited

◃ Heloise is excited only if Abelard loves Philosophy :
Xh → Pa

◃ Barcelona is large unless Jupiter isn’t. :

Lb ∨ ¬Lj

◃ Heloise isn’t excited if Abelard doesn’t love Philosophy :

¬Pa → ¬Xh

◃ Neither Barcelona nor Jupiter is large :

¬(Lb ∨ Lj)

14



Predicate Logic: Names and Predicates

a : Abelard L : is large
h : Heloise B : is bald
b : Barcelona P : loves Philosophy
j : Jupiter X : is excited

◃ Heloise is excited only if Abelard loves Philosophy :
Xh → Pa
◃ Barcelona is large unless Jupiter isn’t. :

Lb ∨ ¬Lj
◃ Heloise isn’t excited if Abelard doesn’t love Philosophy :

¬Pa → ¬Xh

◃ Neither Barcelona nor Jupiter is large :

¬(Lb ∨ Lj)

14



Predicate Logic: Names and Predicates

a : Abelard L : is large
h : Heloise B : is bald
b : Barcelona P : loves Philosophy
j : Jupiter X : is excited

◃ Heloise is excited only if Abelard loves Philosophy :
Xh → Pa
◃ Barcelona is large unless Jupiter isn’t. : Lb ∨ ¬Lj

◃ Heloise isn’t excited if Abelard doesn’t love Philosophy :

¬Pa → ¬Xh

◃ Neither Barcelona nor Jupiter is large :

¬(Lb ∨ Lj)

14



Predicate Logic: Names and Predicates

a : Abelard L : is large
h : Heloise B : is bald
b : Barcelona P : loves Philosophy
j : Jupiter X : is excited

◃ Heloise is excited only if Abelard loves Philosophy :
Xh → Pa
◃ Barcelona is large unless Jupiter isn’t. : Lb ∨ ¬Lj
◃ Heloise isn’t excited if Abelard doesn’t love Philosophy :

¬Pa → ¬Xh
◃ Neither Barcelona nor Jupiter is large :

¬(Lb ∨ Lj)

14



Predicate Logic: Names and Predicates

a : Abelard L : is large
h : Heloise B : is bald
b : Barcelona P : loves Philosophy
j : Jupiter X : is excited

◃ Heloise is excited only if Abelard loves Philosophy :
Xh → Pa
◃ Barcelona is large unless Jupiter isn’t. : Lb ∨ ¬Lj
◃ Heloise isn’t excited if Abelard doesn’t love Philosophy :
¬Pa → ¬Xh

◃ Neither Barcelona nor Jupiter is large :

¬(Lb ∨ Lj)

14



Predicate Logic: Names and Predicates

a : Abelard L : is large
h : Heloise B : is bald
b : Barcelona P : loves Philosophy
j : Jupiter X : is excited

◃ Heloise is excited only if Abelard loves Philosophy :
Xh → Pa
◃ Barcelona is large unless Jupiter isn’t. : Lb ∨ ¬Lj
◃ Heloise isn’t excited if Abelard doesn’t love Philosophy :
¬Pa → ¬Xh
◃ Neither Barcelona nor Jupiter is large :

¬(Lb ∨ Lj)

14



Predicate Logic: Names and Predicates

a : Abelard L : is large
h : Heloise B : is bald
b : Barcelona P : loves Philosophy
j : Jupiter X : is excited

◃ Heloise is excited only if Abelard loves Philosophy :
Xh → Pa
◃ Barcelona is large unless Jupiter isn’t. : Lb ∨ ¬Lj
◃ Heloise isn’t excited if Abelard doesn’t love Philosophy :
¬Pa → ¬Xh
◃ Neither Barcelona nor Jupiter is large : ¬(Lb ∨ Lj)

14



SL Translation

• Recall from SL:

◃ Aunless B : A∨ B

◃ Aonly if B : A→ B

◃ Neither Anor B : ¬(A∨ B)

15



SL Translation

• Recall from SL:
◃ Aunless B : A∨ B

◃ Aonly if B : A→ B

◃ Neither Anor B : ¬(A∨ B)

15



SL Translation

• Recall from SL:
◃ Aunless B : A∨ B

◃ Aonly if B : A→ B

◃ Neither Anor B : ¬(A∨ B)

15



SL Translation

• Recall from SL:
◃ Aunless B : A∨ B

◃ Aonly if B : A→ B

◃ Neither Anor B : ¬(A∨ B)

15



Predicate Logic: Variables

• Predicates are statements with gaps for names. Putting a
name in the gap gives us a statement. However, we will also
allow ourselves to fill the gap in a predicate with a variable.

• In PL, the lowercase letters w, x, y, and z are variables. (We
can add subscripts if we need to.)

w, x, y, z,w1, x1, y1, z1,w2, . . .

◃ Think of a variable as a name without a fixed meaning—it
can refer to anything (in the domain).

16



Predicate Logic: Variables

• Predicates are statements with gaps for names. Putting a
name in the gap gives us a statement. However, we will also
allow ourselves to fill the gap in a predicate with a variable.

• In PL, the lowercase letters w, x, y, and z are variables. (We
can add subscripts if we need to.)

w, x, y, z,w1, x1, y1, z1,w2, . . .

◃ Think of a variable as a name without a fixed meaning—it
can refer to anything (in the domain).

16



Predicate Logic: Variables

• Predicates are statements with gaps for names. Putting a
name in the gap gives us a statement. However, we will also
allow ourselves to fill the gap in a predicate with a variable.

• In PL, the lowercase letters w, x, y, and z are variables. (We
can add subscripts if we need to.)

w, x, y, z,w1, x1, y1, z1,w2, . . .

◃ Think of a variable as a name without a fixed meaning—it
can refer to anything (in the domain).

16



Predicate Logic: Variables and quantifiers

• Variables in PL are a bit like ‘one’ in formal English.
One should be circumspect when meeting in-laws.

17



Predicate Logic: Variables and quantifiers

• Variables in PL are a bit like ‘one’ in formal English.
One should be circumspect when meeting in-laws.

17



Predicate Logic: Variables and quantifiers

• Variables in PL are a bit like ‘one’ in formal English.
One should be circumspect when meeting in-laws.

17



Predicate Logic: Variables and Quantifiers

S : should be circumspect when meeting in-laws.

◃ One should be circumspect when meeting in-laws

Sx

◃ Everyone should be circumspect when meeting in-laws

∀x Sx

◃ Someone should be circumspect when meeting in-laws

∃x Sx

18



Predicate Logic: Variables and Quantifiers

S : should be circumspect when meeting in-laws.

◃ One should be circumspect when meeting in-laws

Sx

◃ Everyone should be circumspect when meeting in-laws

∀x Sx

◃ Someone should be circumspect when meeting in-laws

∃x Sx

18



Predicate Logic: Variables and Quantifiers

S : should be circumspect when meeting in-laws.

◃ One should be circumspect when meeting in-laws

Sx

◃ Everyone should be circumspect when meeting in-laws

∀x Sx

◃ Someone should be circumspect when meeting in-laws

∃x Sx

18



Predicate Logic: Variables and Quantifiers

S : should be circumspect when meeting in-laws.

◃ One should be circumspect when meeting in-laws

Sx

◃ Everyone should be circumspect when meeting in-laws

∀x Sx

◃ Someone should be circumspect when meeting in-laws

∃x Sx

18



Predicate Logic: Variables and Quantifiers

• Let’s write ‘Ax’ for some sentence which has a variable ‘x’
in it somewhere.

• Then, ‘∀x Ax’ says that ‘Ax’ is true, no matter what we let
‘x’ refer to.

◃ Any xmakes ‘Ax’ true.

• And ‘∃x Ax’ says that ‘Ax’ is true when we let ‘x’ refer to
some thing.

◃ Some xmakes ‘Ax’ true.

19



Predicate Logic: Variables and Quantifiers

• Let’s write ‘Ax’ for some sentence which has a variable ‘x’
in it somewhere.

• Then, ‘∀x Ax’ says that ‘Ax’ is true, no matter what we let
‘x’ refer to.

◃ Any xmakes ‘Ax’ true.

• And ‘∃x Ax’ says that ‘Ax’ is true when we let ‘x’ refer to
some thing.

◃ Some xmakes ‘Ax’ true.

19



Predicate Logic: Variables and Quantifiers

• Let’s write ‘Ax’ for some sentence which has a variable ‘x’
in it somewhere.

• Then, ‘∀x Ax’ says that ‘Ax’ is true, no matter what we let
‘x’ refer to.
◃ Any xmakes ‘Ax’ true.

• And ‘∃x Ax’ says that ‘Ax’ is true when we let ‘x’ refer to
some thing.

◃ Some xmakes ‘Ax’ true.

19



Predicate Logic: Variables and Quantifiers

• Let’s write ‘Ax’ for some sentence which has a variable ‘x’
in it somewhere.

• Then, ‘∀x Ax’ says that ‘Ax’ is true, no matter what we let
‘x’ refer to.
◃ Any xmakes ‘Ax’ true.

• And ‘∃x Ax’ says that ‘Ax’ is true when we let ‘x’ refer to
some thing.

◃ Some xmakes ‘Ax’ true.

19



Predicate Logic: Variables and Quantifiers

• Let’s write ‘Ax’ for some sentence which has a variable ‘x’
in it somewhere.

• Then, ‘∀x Ax’ says that ‘Ax’ is true, no matter what we let
‘x’ refer to.
◃ Any xmakes ‘Ax’ true.

• And ‘∃x Ax’ says that ‘Ax’ is true when we let ‘x’ refer to
some thing.
◃ Some xmakes ‘Ax’ true.

19



Predicacte Logic: Domains

• Variables and Quantifiers require us to add one further
thing to our symbolization keys.

• We must say which things our variables could refer
to—which things we are potentially talking about.

• A Domain specifies which things we might be talking
about. It says which things a variable in our language could
refer to.
◃ Note: if one of our names refers to something, then that
thing must be included in the domain.

20



Predicacte Logic: Domains

• Variables and Quantifiers require us to add one further
thing to our symbolization keys.

• We must say which things our variables could refer
to—which things we are potentially talking about.

• A Domain specifies which things we might be talking
about. It says which things a variable in our language could
refer to.
◃ Note: if one of our names refers to something, then that
thing must be included in the domain.

20



Predicacte Logic: Domains

• Variables and Quantifiers require us to add one further
thing to our symbolization keys.

• We must say which things our variables could refer
to—which things we are potentially talking about.

• A Domain specifies which things we might be talking
about. It says which things a variable in our language could
refer to.

◃ Note: if one of our names refers to something, then that
thing must be included in the domain.

20



Predicacte Logic: Domains

• Variables and Quantifiers require us to add one further
thing to our symbolization keys.

• We must say which things our variables could refer
to—which things we are potentially talking about.

• A Domain specifies which things we might be talking
about. It says which things a variable in our language could
refer to.
◃ Note: if one of our names refers to something, then that
thing must be included in the domain.

20



Predicate Logic: Domains

Domain : all students at Pitt
H : is happy
D : has a dog

o : Obama

◃ Every student at Pitt has a dog.

∀x Dx

◃ Obama is happy.

21



Predicate Logic: Domains

Domain : all students at Pitt
H : is happy
D : has a dog

o : Obama

◃ Every student at Pitt has a dog.

∀x Dx

◃ Obama is happy.

21



Predicate Logic: Domains

Domain : all students at Pitt
H : is happy
D : has a dog

o : Obama

◃ Every student at Pitt has a dog.

∀x Dx

◃ Obama is happy.

21



Predicate Logic: Domains

Domain : all students at Pitt
H : is happy
D : has a dog

o : Obama

◃ Every student at Pitt has a dog.

∀x Dx

◃ Obama is happy.

21



Predicate Logic: Domains

Domain : all students at Pitt
H : is happy
D : has a dog

o : Obama

◃ Every student at Pitt has a dog.

∀x Dx

◃ Obama is happy.

21



Predicate Logic: Domains

Domain : all people
H : is happy
D : has a dog

o : Obama

◃ Every student at Pitt has a dog.

∀x Dx

◃ Obama is happy.

Ho

22



Predicate Logic: Domains

Domain : all people
H : is happy
D : has a dog

o : Obama

◃ Every student at Pitt has a dog.

∀x Dx

◃ Obama is happy.
Ho

22



Predicate Logic: Domains

Domain : all people
H : is happy
D : has a dog

o : Obama

◃ Every student at Pitt has a dog.

∀x Dx

◃ Obama is happy.
Ho

22



Predicate Logic: Domains

Domain : all people
D : has a dog
P : is a student at Pitt

◃ Every student at Pitt has a dog.

∀x (Px → Dx)

◃ Some student at Pitt has a dog.

∃x (Px ∧ Dx)

23



Predicate Logic: Domains

Domain : all people
D : has a dog
P : is a student at Pitt

◃ Every student at Pitt has a dog.

∀x (Px → Dx)

◃ Some student at Pitt has a dog.

∃x (Px ∧ Dx)

23



Predicate Logic: Domains

Domain : all people
D : has a dog
P : is a student at Pitt

◃ Every student at Pitt has a dog.

∀x (Px → Dx)

◃ Some student at Pitt has a dog.

∃x (Px ∧ Dx)

23



Predicate Logic: Domains

Domain : all people
D : has a dog
P : is a student at Pitt

◃ Every student at Pitt has a dog.

∀x (Px → Dx)

◃ Some student at Pitt has a dog.

∃x (Px ∧ Dx)

23



Predicate Logic: Domains

Domain : all people
D : has a dog
P : is a student at Pitt

◃ Every student at Pitt has a dog.

∀x (Px → Dx)

◃ Some student at Pitt has a dog.

∃x (Px ∧ Dx)

23



Predicate Logic: Domains

Domain : all people
B : is bald

P : is a person

◃ Everyone is bald.

∀x Bx

24



Predicate Logic: Domains

Domain : all people
B : is bald

P : is a person

◃ Everyone is bald.

∀x Bx

24



Predicate Logic: Domains

Domain : all people
B : is bald

P : is a person

◃ Everyone is bald.
∀x Bx

24



Predicate Logic: Domains

Domain : all things on planet Earth
B : is bald

P : is a person

◃ Everyone is bald.
∀x Bx

24



Predicate Logic: Domains

Domain : all things on planet Earth
B : is bald
P : is a person

◃ Everyone is bald.
∀x Bx

24



Predicate Logic: Domains

Domain : all things on planet Earth
B : is bald
P : is a person

◃ Everyone is bald.
∀x (Px → Bx)

24



Predicate Logic: Symbolization Keys

• A symbolization key tells us what the domain is

◃ the domain can’t be empty, by the way

• For each relevant name of PL, it gives us something in the
domain which that name refers to.

◃ Each name has to refer to one and only one thing
◃ Multiple names can refer to the same thing (e.g. ‘Sam
Clemens’ and ‘Mark Twain’)

• For each relevant predicate of PL, it tells us which gappy
statement that predicate represents.

25



Predicate Logic: Symbolization Keys

• A symbolization key tells us what the domain is
◃ the domain can’t be empty, by the way

• For each relevant name of PL, it gives us something in the
domain which that name refers to.

◃ Each name has to refer to one and only one thing
◃ Multiple names can refer to the same thing (e.g. ‘Sam
Clemens’ and ‘Mark Twain’)

• For each relevant predicate of PL, it tells us which gappy
statement that predicate represents.

25



Predicate Logic: Symbolization Keys

• A symbolization key tells us what the domain is
◃ the domain can’t be empty, by the way

• For each relevant name of PL, it gives us something in the
domain which that name refers to.

◃ Each name has to refer to one and only one thing
◃ Multiple names can refer to the same thing (e.g. ‘Sam
Clemens’ and ‘Mark Twain’)

• For each relevant predicate of PL, it tells us which gappy
statement that predicate represents.

25



Predicate Logic: Symbolization Keys

• A symbolization key tells us what the domain is
◃ the domain can’t be empty, by the way

• For each relevant name of PL, it gives us something in the
domain which that name refers to.
◃ Each name has to refer to one and only one thing

◃ Multiple names can refer to the same thing (e.g. ‘Sam
Clemens’ and ‘Mark Twain’)

• For each relevant predicate of PL, it tells us which gappy
statement that predicate represents.

25



Predicate Logic: Symbolization Keys

• A symbolization key tells us what the domain is
◃ the domain can’t be empty, by the way

• For each relevant name of PL, it gives us something in the
domain which that name refers to.
◃ Each name has to refer to one and only one thing
◃ Multiple names can refer to the same thing (e.g. ‘Sam
Clemens’ and ‘Mark Twain’)

• For each relevant predicate of PL, it tells us which gappy
statement that predicate represents.

25



Predicate Logic: Symbolization Keys

• A symbolization key tells us what the domain is
◃ the domain can’t be empty, by the way

• For each relevant name of PL, it gives us something in the
domain which that name refers to.
◃ Each name has to refer to one and only one thing
◃ Multiple names can refer to the same thing (e.g. ‘Sam
Clemens’ and ‘Mark Twain’)

• For each relevant predicate of PL, it tells us which gappy
statement that predicate represents.

25



Translation into PL

Important Statement Forms



Four Important Statement Forms

All Fs are Gs

◃ All mammals are warm-blooded
No Fs are Gs
◃ No reptiles are warm-blooded
Some Fs are Gs
◃ Some mammals are carnivorous
Some Fs are not Gs
◃ Some mammals are not carnivorous

26



Four Important Statement Forms

All Fs are Gs

◃ All mammals are warm-blooded

No Fs are Gs

◃ No reptiles are warm-blooded
Some Fs are Gs
◃ Some mammals are carnivorous
Some Fs are not Gs
◃ Some mammals are not carnivorous

26



Four Important Statement Forms

All Fs are Gs

◃ All mammals are warm-blooded

No Fs are Gs

◃ No reptiles are warm-blooded

Some Fs are Gs

◃ Some mammals are carnivorous
Some Fs are not Gs
◃ Some mammals are not carnivorous

26



Four Important Statement Forms

All Fs are Gs

◃ All mammals are warm-blooded

No Fs are Gs

◃ No reptiles are warm-blooded

Some Fs are Gs

◃ Some mammals are carnivorous

Some Fs are not Gs

◃ Some mammals are not carnivorous

26



Four Important Statement Forms

All Fs are Gs
◃ All mammals are warm-blooded
No Fs are Gs

◃ No reptiles are warm-blooded

Some Fs are Gs

◃ Some mammals are carnivorous

Some Fs are not Gs

◃ Some mammals are not carnivorous

26



Four Important Statement Forms

All Fs are Gs
◃ All mammals are warm-blooded
No Fs are Gs
◃ No reptiles are warm-blooded
Some Fs are Gs

◃ Some mammals are carnivorous

Some Fs are not Gs

◃ Some mammals are not carnivorous

26



Four Important Statement Forms

All Fs are Gs
◃ All mammals are warm-blooded
No Fs are Gs
◃ No reptiles are warm-blooded
Some Fs are Gs
◃ Some mammals are carnivorous
Some Fs are not Gs

◃ Some mammals are not carnivorous

26



Four Important Statement Forms

All Fs are Gs
◃ All mammals are warm-blooded
No Fs are Gs
◃ No reptiles are warm-blooded
Some Fs are Gs
◃ Some mammals are carnivorous
Some Fs are not Gs
◃ Some mammals are not carnivorous

26



All Fs are Gs

• All of the following mean the same thing, and so can be
translated into PL in the same way:

◃ All Fs are Gs All mammals are warm-blooded
◃ Every Fis G Every mammal is warm-blooded
◃ Each Fis G Each mammal is warm-blooded
◃ Any Fis G Any mammal is warm-blooded

27



All Fs are Gs

• All of the following mean the same thing, and so can be
translated into PL in the same way:
◃ All Fs are Gs All mammals are warm-blooded

◃ Every Fis G Every mammal is warm-blooded
◃ Each Fis G Each mammal is warm-blooded
◃ Any Fis G Any mammal is warm-blooded

27



All Fs are Gs

• All of the following mean the same thing, and so can be
translated into PL in the same way:
◃ All Fs are Gs All mammals are warm-blooded
◃ Every Fis G Every mammal is warm-blooded

◃ Each Fis G Each mammal is warm-blooded
◃ Any Fis G Any mammal is warm-blooded

27



All Fs are Gs

• All of the following mean the same thing, and so can be
translated into PL in the same way:
◃ All Fs are Gs All mammals are warm-blooded
◃ Every Fis G Every mammal is warm-blooded
◃ Each Fis G Each mammal is warm-blooded

◃ Any Fis G Any mammal is warm-blooded

27



All Fs are Gs

• All of the following mean the same thing, and so can be
translated into PL in the same way:
◃ All Fs are Gs All mammals are warm-blooded
◃ Every Fis G Every mammal is warm-blooded
◃ Each Fis G Each mammal is warm-blooded
◃ Any Fis G Any mammal is warm-blooded

27



All Fs are Gs

• Given a domain,
∀x(Fx → Gx)

says:
All Fs in the domain are G

Every Fin the domain is G
Each Fin the domain is G
Any Fin the domain is G

28



All Fs are Gs

• Given a domain,
∀x(Fx → Gx)

says:
All Fs in the domain are G

Every Fin the domain is G

Each Fin the domain is G
Any Fin the domain is G

28



All Fs are Gs

• Given a domain,
∀x(Fx → Gx)

says:
All Fs in the domain are G

Every Fin the domain is G
Each Fin the domain is G

Any Fin the domain is G

28



All Fs are Gs

• Given a domain,
∀x(Fx → Gx)

says:
All Fs in the domain are G

Every Fin the domain is G
Each Fin the domain is G
Any Fin the domain is G

28



All Fs are Gs

• Given a domain,
∀y(Fy → Gy)

says:
All Fs in the domain are G

Every Fin the domain is G
Each Fin the domain is G
Any Fin the domain is G

28



All Fs are Gs

• Given a domain,
∀z(Fz → Gz)

says:
All Fs in the domain are G

Every Fin the domain is G
Each Fin the domain is G
Any Fin the domain is G

28



All mammals are warm-blooded

Domain : all mammals
W : is warm-blooded

M : is a mammal

∀y Wy

29



All mammals are warm-blooded

Domain : all animals
W : is warm-blooded

M : is a mammal

∀y Wy

29



All mammals are warm-blooded

Domain : all animals
W : is warm-blooded
M : is a mammal

∀y Wy

29



All mammals are warm-blooded

Domain : all animals
W : is warm-blooded
M : is a mammal

∀x(Mx → Wx)

29



No Fs are Gs

• All of the following mean the same thing, and so can be
translated into PL in the same way:

◃ No Fs are Gs No reptiles are warm-blooded
◃ No Fis G No reptile is warm-blooded
◃ Every Fis not Gs Every reptile is not warm-blooded

30



No Fs are Gs

• All of the following mean the same thing, and so can be
translated into PL in the same way:
◃ No Fs are Gs No reptiles are warm-blooded

◃ No Fis G No reptile is warm-blooded
◃ Every Fis not Gs Every reptile is not warm-blooded

30



No Fs are Gs

• All of the following mean the same thing, and so can be
translated into PL in the same way:
◃ No Fs are Gs No reptiles are warm-blooded
◃ No Fis G No reptile is warm-blooded

◃ Every Fis not Gs Every reptile is not warm-blooded

30



No Fs are Gs

• All of the following mean the same thing, and so can be
translated into PL in the same way:
◃ No Fs are Gs No reptiles are warm-blooded
◃ No Fis G No reptile is warm-blooded
◃ Every Fis not Gs Every reptile is not warm-blooded

30



No Fs are Gs

• Given a domain,

∀x(Fx → ¬Gx)

says:
No Fs in the domain are G

No Fin the domain is G
Every Fin the domain is not G

31



No Fs are Gs

• Given a domain,

∀x(Fx → ¬Gx)

says:
No Fs in the domain are G

No Fin the domain is G

Every Fin the domain is not G

31



No Fs are Gs

• Given a domain,

∀x(Fx → ¬Gx)

says:
No Fs in the domain are G

No Fin the domain is G
Every Fin the domain is not G

31



No Fs are Gs

• Given a domain,

¬∃x(Fx ∧ Gx)

says:
No Fs in the domain are G

No Fin the domain is G
Every Fin the domain is not G

31



No reptiles are warm-blooded

Domain : all reptiles
W : is warm-blooded

R : is a reptile

∀y ¬Wy

32



No reptiles are warm-blooded

Domain : all animals
W : is warm-blooded

R : is a reptile

∀y ¬Wy

32



No reptiles are warm-blooded

Domain : all animals
W : is warm-blooded
R : is a reptile

∀y ¬Wy

32



No reptiles are warm-blooded

Domain : all animals
W : is warm-blooded
R : is a reptile

∀y(Ry → ¬Wy)

32



Some Fs are Gs

• All of the following mean the same thing, and so can be
translated into PL in the same way:

◃ Some Fs are Gs Some mammals are carnivorous
◃ Some Fis G Some mammal is carnivorous
◃ There are GFs There are carnivorous mammals

33



Some Fs are Gs

• All of the following mean the same thing, and so can be
translated into PL in the same way:
◃ Some Fs are Gs Some mammals are carnivorous

◃ Some Fis G Some mammal is carnivorous
◃ There are GFs There are carnivorous mammals

33



Some Fs are Gs

• All of the following mean the same thing, and so can be
translated into PL in the same way:
◃ Some Fs are Gs Some mammals are carnivorous
◃ Some Fis G Some mammal is carnivorous

◃ There are GFs There are carnivorous mammals

33



Some Fs are Gs

• All of the following mean the same thing, and so can be
translated into PL in the same way:
◃ Some Fs are Gs Some mammals are carnivorous
◃ Some Fis G Some mammal is carnivorous
◃ There are GFs There are carnivorous mammals

33



Some Fs are Gs

• Given a domain,
∃x(Fx ∧ Gx)

says:
Some Fs in the domain are G

Some Fin the domain is G
There are GFs in the domain

34



Some Fs are Gs

• Given a domain,
∃x(Fx ∧ Gx)

says:
Some Fs in the domain are G

Some Fin the domain is G

There are GFs in the domain

34



Some Fs are Gs

• Given a domain,
∃x(Fx ∧ Gx)

says:
Some Fs in the domain are G

Some Fin the domain is G
There are GFs in the domain

34



Some Fs are Gs

• Given a domain,
∃y(Fy ∧ Gy)

says:
Some Fs in the domain are G

Some Fin the domain is G
There are GFs in the domain

34



Some Fs are Gs

• Given a domain,
∃z(Fz ∧ Gz)

says:
Some Fs in the domain are G

Some Fin the domain is G
There are GFs in the domain

34



Some mammals are carnivorous

Domain : all mammals
C : is carnivorous

M : is a mammal

∃z Cz

35



Some mammals are carnivorous

Domain : all animals
C : is carnivorous

M : is a mammal

∃z Cz

35



Some mammals are carnivorous

Domain : all animals
C : is carnivorous
M : is a mammal

∃z Cz

35



Some mammals are carnivorous

Domain : all animals
C : is carnivorous
M : is a mammal

∃x(Mx ∧ Cx)

35



Some Fs are not Gs

• All of the following mean the same thing, and so can be
translated into PL in the same way:

◃ Some Fs are not Gs Some mammals are not carnivorous
◃ Some Fis not G Some mammal is not carnivorous
◃ There are non-GFs There are non-carnivorous mammals

36



Some Fs are not Gs

• All of the following mean the same thing, and so can be
translated into PL in the same way:
◃ Some Fs are not Gs Some mammals are not carnivorous

◃ Some Fis not G Some mammal is not carnivorous
◃ There are non-GFs There are non-carnivorous mammals

36



Some Fs are not Gs

• All of the following mean the same thing, and so can be
translated into PL in the same way:
◃ Some Fs are not Gs Some mammals are not carnivorous
◃ Some Fis not G Some mammal is not carnivorous

◃ There are non-GFs There are non-carnivorous mammals

36



Some Fs are not Gs

• All of the following mean the same thing, and so can be
translated into PL in the same way:
◃ Some Fs are not Gs Some mammals are not carnivorous
◃ Some Fis not G Some mammal is not carnivorous
◃ There are non-GFs There are non-carnivorous mammals

36



Some Fs are not Gs

• Given a domain,

∃x(Fx ∧ ¬Gx)

says:
Some Fs in the domain are not G

Some Fin the domain is not G
There are non-GFs in the domain

37



Some Fs are not Gs

• Given a domain,

∃x(Fx ∧ ¬Gx)

says:
Some Fs in the domain are not G
Some Fin the domain is not G

There are non-GFs in the domain

37



Some Fs are not Gs

• Given a domain,

∃x(Fx ∧ ¬Gx)

says:
Some Fs in the domain are not G
Some Fin the domain is not G
There are non-GFs in the domain

37



Some Fs are not Gs

• Given a domain,

∃w(Fw ∧ ¬Gw)

says:
Some Fs in the domain are not G
Some Fin the domain is not G
There are non-GFs in the domain

37



Some Fs are not Gs

• Given a domain,

∃z(Fz ∧ ¬Gz)

says:
Some Fs in the domain are not G
Some Fin the domain is not G
There are non-GFs in the domain

37



Some mammals are not carnivorous

Domain : all mammals
C : is carnivorous

M : is a mammal

∃z ¬Cz

38



Some mammals are not carnivorous

Domain : all animals
C : is carnivorous

M : is a mammal

∃z ¬Cz

38



Some mammals are not carnivorous

Domain : all animals
C : is carnivorous
M : is a mammal

∃z ¬Cz

38



Some mammals are not carnivorous

Domain : all animals
C : is carnivorous
M : is a mammal

∃x(Mx ∧ ¬Cx)

38



Four Important Statement Forms

◃ All Fs are Gs ∀x(Fx → Gx)

◃ No Fs are Gs ∀x(Fx → ¬Gx)
◃ Some Fs are Gs ∃x(Fx ∧ Gx)
◃ Some Fs are not Gs ∃x(Fx ∧ ¬Gx)

39



Four Important Statement Forms

◃ All Fs are Gs ∀x(Fx → Gx)
◃ No Fs are Gs ∀x(Fx → ¬Gx)

◃ Some Fs are Gs ∃x(Fx ∧ Gx)
◃ Some Fs are not Gs ∃x(Fx ∧ ¬Gx)

39



Four Important Statement Forms

◃ All Fs are Gs ∀x(Fx → Gx)
◃ No Fs are Gs ∀x(Fx → ¬Gx)
◃ Some Fs are Gs ∃x(Fx ∧ Gx)

◃ Some Fs are not Gs ∃x(Fx ∧ ¬Gx)

39



Four Important Statement Forms

◃ All Fs are Gs ∀x(Fx → Gx)
◃ No Fs are Gs ∀x(Fx → ¬Gx)
◃ Some Fs are Gs ∃x(Fx ∧ Gx)
◃ Some Fs are not Gs ∃x(Fx ∧ ¬Gx)

39


	The Need for Predicate Logic
	Translation into PL
	Symbolization Keys
	Important Statement Forms


