Introduction to Predicate Logic

PHIL 500

 $\forall x(Fx \rightarrow Gx), Fa :: Ga$

Outline

The Need for Predicate Logic

Translation into PL

Symbolization Keys

Important Statement Forms

The Need for Predicate Logic

Everyone who has a dog is happy Obama has a dog

∴ Obama is happy

Everyone who has a dog is happy Obama has a dog

∴ Obama is happy

▶ This argument is valid.

Everyone who has a dog is happy

Obama has a dog

∴ Obama is happy

- ▶ This argument is valid.
- ▶ But it isn't an entailment—so SL isn't able to tell us that it is valid.

E

Obama has a dog

:. Obama is happy

- ▶ This argument is valid.
- ▶ But it isn't an entailment—so SL isn't able to tell us that it is valid.

E

C

∴ Obama is happy

- ▶ This argument is valid.
- ▶ But it isn't an entailment—so SL isn't able to tell us that it is valid.

E

C

∴ *H*

- ▶ This argument is valid.
- ▶ But it isn't an entailment—so SL isn't able to tell us that it is valid.

E[T]

0

∴ *H*

- ▶ This argument is valid.
- ▶ But it isn't an entailment—so SL isn't able to tell us that it is valid.

- E [T]
 O [T]
- ∴ *H*

- ▶ This argument is valid.
- ▶ But it isn't an entailment—so SL isn't able to tell us that it is valid.

```
E[T]
O[T]
\therefore H[F]
```

- ▶ This argument is valid.
- ▶ But it isn't an entailment—so SL isn't able to tell us that it is valid.

• Our solution: to represent more of the structure of these statements

- Our solution: to represent more of the structure of these statements
- We'll have names, like

o: Obama

- Our solution: to represent more of the structure of these statements
- We'll have names, like

o: Obama

• We'll have *predicates*, like

D_____: _____ has a dog H_____: ____ is happy

- Our solution: to represent more of the structure of these statements
- We'll have names, like

o: Obama

• We'll have *predicates*, like

D_____: _____ has a dog H : is happy

▶ Putting them together will give *statements* like

Do: Obama has a dog

Ho: Obama is happy

• Finally, we'll have two additional symbols, known as *quantifiers*:

 $\forall x$: Everything is ____ : Something is ____ :

• Finally, we'll have two additional symbols, known as *quantifiers*:

 $\forall x$: Everything is : $\exists x$: Something is :

▶ '∀' is an upside-down 'A'—it stands for 'all'.

• Finally, we'll have two additional symbols, known as *quantifiers*:

 $\forall x$: Everything is $\exists x$: Something is

- '∀' is an upside-down 'A'—it stands for 'all'.
- ▶ ∃' is a backwards 'E'—it stands for 'exists'.

• Finally, we'll have two additional symbols, known as *quantifiers*:

∀ <i>x</i>	:	Everything is
$\exists x$:	Something is

- ▶ '∀' is an upside-down 'A'—it stands for 'all'.
- ▶ ∃' is a backwards 'E'—it stands for 'exists'.
- ▶ 'x' is a *variable*—we'll come back to this.

Everyone who has a dog is happy Obama has a dog

: Obama is happy

Everyone who has a dog is happy

Do

:. Obama is happy

Everyone who has a dog is happy

Do

∴ *Ho*

$$\forall x (Dx \to Hx)$$

$$Do$$

$$\therefore Ho$$

Translation into PL

Translation into PL

Symbolization Keys

Predicate Logic: Symbolization Keys

• We translated into SL with a *symbolization key*, which told us, for every relevant statement letter, which statement of English it represented.

Predicate Logic: Symbolization Keys

• We translated into SL with a *symbolization key*, which told us, for every relevant statement letter, which statement of English it represented.

▶ For instance:

A : Abelard loves Heloise

H : Heloise loves Abelard

B : Abelard is bald

Predicate Logic: Symbolization Keys

- We translated into SL with a *symbolization key*, which told us, for every relevant statement letter, which statement of English it represented.
- ▶ For instance:

A : Abelard loves Heloise

H : Heloise loves Abelard

B: Abelard is bald

▶ We will also translate into PL with a *symbolization key*, except that these symbolization keys will tell us what each relevant *name* and *predicate* of PL means.

Predicate Logic: Names

• In PL, we use the lowercase letters 'a' through 'v' as *names*. (We can add subscripts if we need to.)

$$a, b, c, d, \ldots, t, u, v, a_1, b_1, c_1, \ldots$$

Predicate Logic: Names

• In PL, we use the lowercase letters 'a' through 'v' as *names*. (We can add subscripts if we need to.)

$$a, b, c, d, \ldots, t, u, v, a_1, b_1, c_1, \ldots$$

• The names in PL are just like *proper names* in English. Each name in PL refers to some particular person, place or thing.

Predicate Logic: Names

• A (partial) symbolization key:

a: Abelard

h : Heloise

b: Barcelona

j : Jupiter

• In PL, we use *uppercase* letters, 'A' through 'Z', for *predicates*. (We can add subscripts if we need to.)

$$A, B, C, D, \ldots, X, Y, Z, A_1, B_1, C_1, \ldots$$

 In PL, we use uppercase letters, 'A' through 'Z', for predicates. (We can add subscripts if we need to.)

$$A, B, C, D, \ldots, X, Y, Z, A_1, B_1, C_1, \ldots$$

► Think of a *predicate* as a *gappy statement*—it's a statement with a name (or names) missing.

Tammy met Sammy at the mall.

 In PL, we use uppercase letters, 'A' through 'Z', for predicates. (We can add subscripts if we need to.)

$$A, B, C, D, \ldots, X, Y, Z, A_1, B_1, C_1, \ldots$$

► Think of a *predicate* as a *gappy statement*—it's a statement with a name (or names) missing.

Tammy met Sammy at the mall.

• In PL, we use *uppercase* letters, 'A' through 'Z', for *predicates*. (We can add subscripts if we need to.)

$$A, B, C, D, \ldots, X, Y, Z, A_1, B_1, C_1, \ldots$$

► Think of a *predicate* as a *gappy statement*—it's a statement with a name (or names) missing.

_____ met Sammy at the mall.

• In PL, we use *uppercase* letters, 'A' through 'Z', for *predicates*. (We can add subscripts if we need to.)

$$A, B, C, D, \ldots, X, Y, Z, A_1, B_1, C_1, \ldots$$

► Think of a *predicate* as a *gappy statement*—it's a statement with a name (or names) missing.

_____ met Sammy at the mall.

 In PL, we use uppercase letters, 'A' through 'Z', for predicates. (We can add subscripts if we need to.)

$$A, B, C, D, \ldots, X, Y, Z, A_1, B_1, C_1, \ldots$$

► Think of a *predicate* as a *gappy statement*—it's a statement with a name (or names) missing.

Tammy met Sammy at the mall.

 In PL, we use uppercase letters, 'A' through 'Z', for predicates. (We can add subscripts if we need to.)

$$A, B, C, D, \ldots, X, Y, Z, A_1, B_1, C_1, \ldots$$

► Think of a *predicate* as a *gappy statement*—it's a statement with a name (or names) missing.

Tammy met Sammy at the mall.

• In PL, we use *uppercase* letters, 'A' through 'Z', for *predicates*. (We can add subscripts if we need to.)

$$A, B, C, D, \ldots, X, Y, Z, A_1, B_1, C_1, \ldots$$

► Think of a *predicate* as a *gappy statement*—it's a statement with a name (or names) missing.

Tammy met _____ at the mall.

• In PL, we use *uppercase* letters, 'A' through 'Z', for *predicates*. (We can add subscripts if we need to.)

$$A, B, C, D, \ldots, X, Y, Z, A_1, B_1, C_1, \ldots$$

► Think of a *predicate* as a *gappy statement*—it's a statement with a name (or names) missing.

Tammy met _____ at the mall.

 In PL, we use uppercase letters, 'A' through 'Z', for predicates. (We can add subscripts if we need to.)

$$A, B, C, D, \ldots, X, Y, Z, A_1, B_1, C_1, \ldots$$

► Think of a *predicate* as a *gappy statement*—it's a statement with a name (or names) missing.

Tammy met Sammy at the mall.

In PL, we use uppercase letters, 'A' through 'Z', for predicates. (We can add subscripts if we need to.)

$$A, B, C, D, \ldots, X, Y, Z, A_1, B_1, C_1, \ldots$$

► Think of a *predicate* as a *gappy statement*—it's a statement with a name (or names) missing.

Tammy met Sammy at the mall.

• In PL, we use *uppercase* letters, 'A' through 'Z', for *predicates*. (We can add subscripts if we need to.)

$$A, B, C, D, \ldots, X, Y, Z, A_1, B_1, C_1, \ldots$$

► Think of a *predicate* as a *gappy statement*—it's a statement with a name (or names) missing.

____ met ____ at the mall.

• In PL, we use *uppercase* letters, 'A' through 'Z', for *predicates*. (We can add subscripts if we need to.)

$$A, B, C, D, \ldots, X, Y, Z, A_1, B_1, C_1, \ldots$$

► Think of a *predicate* as a *gappy statement*—it's a statement with a name (or names) missing.

____ met ____ at the mall.

• A (partial) symbolization key:

L______ : _____ is large B : _____ is bald

P : loves Philosophy

 $X_{\underline{}}$: ____ is excited

▶ Predicates are statements with gaps.

- ▶ Predicates are statements with gaps.
- ▶ If will fill in those gaps with names, then we get back a statement.

▶ Abelard is bald:

▶ Abelard is bald : *Ba*

- ▶ Abelard is bald: *Ba*
- ▶ Heloise is excited:

b: Barcelona P____ : ___ loves Philosophy

j: Jupiter $X_{\underline{\underline{}}}$: ____ is excited

▶ Abelard is bald: *Ba*

▶ Heloise is excited : *Xh*

▶ Abelard is bald: Ba

▶ Heloise is excited : *Xh*

▶ Heloise isn't bald:

▶ Abelard is bald: Ba

▶ Heloise is excited : *Xh*

▶ Heloise isn't bald : $\neg Bh$

▶ Abelard is bald: Ba

▶ Heloise is excited : *Xh*

 \triangleright Heloise isn't bald : $\neg Bh$

▶ Abelard and Heloise love Philosophy:

▶ Abelard is bald: Ba

▶ Heloise is excited : *Xh*

 \triangleright Heloise isn't bald : $\neg Bh$

▶ Abelard and Heloise love Philosophy : $Pa \land Ph$

▶ Heloise is excited only if Abelard loves Philosophy:

► Heloise is excited only if Abelard loves Philosophy: $Xh \rightarrow Pa$

- ► Heloise is excited only if Abelard loves Philosophy : $Xh \rightarrow Pa$
- ▶ Barcelona is large unless Jupiter isn't. :

- ► Heloise is excited only if Abelard loves Philosophy : $Xh \rightarrow Pa$
- ▶ Barcelona is large unless Jupiter isn't. : $Lb \lor \neg Lj$

- ► Heloise is excited only if Abelard loves Philosophy : $Xh \rightarrow Pa$
- ▶ Barcelona is large unless Jupiter isn't. : $Lb \lor \neg Lj$
- ▶ Heloise isn't excited if Abelard doesn't love Philosophy:

- a: Abelard L______ : _____ is large
 h: Heloise B______ : _____ is bald
 b: Barcelona P : loves Philosophy
- j: Jupiter $X_{\underline{}}$: ____ is excited
- ► Heloise is excited only if Abelard loves Philosophy : $Xh \rightarrow Pa$
- ▶ Barcelona is large unless Jupiter isn't. : $Lb \lor \neg Lj$
- ► Heloise isn't excited if Abelard doesn't love Philosophy : $\neg Pa \rightarrow \neg Xh$

- ► Heloise is excited only if Abelard loves Philosophy : $Xh \rightarrow Pa$
- ▶ Barcelona is large unless Jupiter isn't. : $Lb \lor \neg Lj$
- ► Heloise isn't excited if Abelard doesn't love Philosophy : $\neg Pa \rightarrow \neg Xh$
- ▶ Neither Barcelona nor Jupiter is large :

- ► Heloise is excited only if Abelard loves Philosophy: $Xh \rightarrow Pa$
- ▶ Barcelona is large unless Jupiter isn't. : $Lb \lor \neg Lj$
- ► Heloise isn't excited if Abelard doesn't love Philosophy : $\neg Pa \rightarrow \neg Xh$
- ▶ Neither Barcelona nor Jupiter is large : $\neg(Lb \lor Lj)$

• Recall from SL:

- Recall from SL:
- $\triangleright \mathcal{A} \text{ unless } \mathcal{B} : \mathcal{A} \vee \mathcal{B}$

- Recall from SL:
- $\triangleright \mathcal{A} \text{ unless } \mathcal{B} : \mathcal{A} \vee \mathcal{B}$
- $\qquad \qquad \triangleright \ \, \mathscr{A} \text{ only if } \mathscr{B} \ : \ \, \mathscr{A} \to \mathscr{B}$

- Recall from SL:
- $\triangleright \mathcal{A} \text{ unless } \mathcal{B} : \mathcal{A} \vee \mathcal{B}$
- $\qquad \qquad \triangleright \ \, \mathscr{A} \text{ only if } \mathscr{B} \ \, : \ \, \mathscr{A} \to \mathscr{B}$
- $\quad \triangleright \ \, \text{Neither} \, \, \mathcal{A} \, \, \text{nor} \, \, \mathcal{B} \, \, : \, \, \neg (\mathcal{A} \vee \mathcal{B})$

Predicate Logic: Variables

• Predicates are statements with gaps for names. Putting a name in the gap gives us a statement. However, we will also allow ourselves to fill the gap in a predicate with a *variable*.

Predicate Logic: Variables

- Predicates are statements with gaps for names. Putting a name in the gap gives us a statement. However, we will also allow ourselves to fill the gap in a predicate with a *variable*.
- In PL, the lowercase letters *w*, *x*, *y*, and *z* are *variables*. (We can add subscripts if we need to.)

$$w, x, y, z, w_1, x_1, y_1, z_1, w_2, \dots$$

Predicate Logic: Variables

- Predicates are statements with gaps for names. Putting a name in the gap gives us a statement. However, we will also allow ourselves to fill the gap in a predicate with a *variable*.
- In PL, the lowercase letters *w*, *x*, *y*, and *z* are *variables*. (We can add subscripts if we need to.)

$$w, x, y, z, w_1, x_1, y_1, z_1, w_2, \dots$$

► Think of a variable as a name without a fixed meaning—it can refer to *anything* (in the domain).

Predicate Logic: Variables and quantifiers

• Variables in PL are a bit like 'one' in formal English.

One should be circumspect when meeting in-laws.

• Variables in PL are a bit like 'one' in formal English.

One should be circumspect when meeting in-laws.

• Variables in PL are a bit like 'one' in formal English.

One should be circumspect when meeting in-laws.

S_____: should be circumspect when meeting in-laws.

S_____: should be circumspect when meeting in-laws.

▶ One should be circumspect when meeting in-laws

Sx

S_____: should be circumspect when meeting in-laws.

▶ One should be circumspect when meeting in-laws

Sx

▶ Everyone should be circumspect when meeting in-laws

 $\forall x \ Sx$

S_____: should be circumspect when meeting in-laws.

▶ One should be circumspect when meeting in-laws

Sx

▶ Everyone should be circumspect when meeting in-laws

 $\forall x \ Sx$

▶ Someone should be circumspect when meeting in-laws

 $\exists x \ Sx$

• Let's write ' \mathcal{A}_x ' for some sentence which has a variable 'x' in it somewhere.

- Let's write ' \mathcal{A}_x ' for some sentence which has a variable 'x' in it somewhere.
- Then, ' $\forall x \ \mathcal{A}_x$ ' says that ' \mathcal{A}_x ' is true, no matter what we let 'x' refer to.

- Let's write ' \mathcal{A}_x ' for some sentence which has a variable 'x' in it somewhere.
- Then, ' $\forall x \ \mathcal{A}_x$ ' says that ' \mathcal{A}_x ' is true, no matter what we let 'x' refer to.
 - ightharpoonup Any x makes ' A_x ' true.

- Let's write ' \mathcal{A}_x ' for some sentence which has a variable 'x' in it somewhere.
- Then, ' $\forall x \ \mathcal{A}_x$ ' says that ' \mathcal{A}_x ' is true, no matter what we let 'x' refer to.
 - ightharpoonup Any x makes ' \mathfrak{A}_x ' true.
- And ' $\exists x \ \mathcal{A}_x$ ' says that ' \mathcal{A}_x ' is true when we let 'x' refer to some thing.

- Let's write ' \mathcal{A}_x ' for some sentence which has a variable 'x' in it somewhere.
- Then, ' $\forall x \ \mathcal{A}_x$ ' says that ' \mathcal{A}_x ' is true, no matter what we let 'x' refer to.
 - \triangleright Any x makes ' \mathcal{A}_x ' true.
- And ' $\exists x \ \mathcal{A}_x$ ' says that ' \mathcal{A}_x ' is true when we let 'x' refer to *some* thing.
 - ▶ Some x makes ' A_x ' true.

 Variables and Quantifiers require us to add one further thing to our symbolization keys.

- Variables and Quantifiers require us to add one further thing to our symbolization keys.
- We must say which things our variables could refer to—which things we are potentially talking about.

- Variables and Quantifiers require us to add one further thing to our symbolization keys.
- We must say which things our variables could refer to—which things we are potentially talking about.
- A *Domain* specifies which things we might be talking about. It says which things a variable in our language could refer to.

- Variables and Quantifiers require us to add one further thing to our symbolization keys.
- We must say which things our variables could refer to—which things we are potentially talking about.
- A *Domain* specifies which things we might be talking about. It says which things a variable in our language could refer to.
- ▶ Note: if one of our *names* refers to something, then that thing must be included in the domain.

Domain: all students at Pitt

H____: is happy

D____: has a dog

 Domain : all students at Pitt

 H_____ : ____ is happy

 D_____ : ____ has a dog

▶ Every student at Pitt has a dog.

 $\forall x \ Dx$

Domain: all students at Pitt

H____: is happy

D : has a dog

▶ Every student at Pitt has a dog.

 $\forall x \ Dx$

▶ Obama is happy.

Domain: all students at Pitt

H_____: _____ is happy
D_____: _____ has a dog

o: Obama

▶ Every student at Pitt has a dog.

$$\forall x \ Dx$$

Obama is happy.

▶ Every student at Pitt has a dog.

 $\forall x \ Dx$

Obama is happy.

 Domain : all people

 H_____ : ____ is happy

 D_____ : ____ has a dog

o: Obama

▶ Every student at Pitt has a dog.

$$\forall x \ Dx$$

Obama is happy.

▶ Every student at Pitt has a dog.

$$\forall x \ Dx$$

Obama is happy.

Ho

Domain : all people

| H_____ : ____ is happy
| D_____ : ____ has a dog
| o : Obama

▶ Every student at Pitt has a dog.

 $\forall x Dx$

Obama is happy.

Ho

Domain: all people

*D*____: has a dog

*P*_____ : ____ is a student at Pitt

Domain:	all people
<i>D</i> :	has a dog
<i>P</i> :	is a student at Pitt

▶ Every student at Pitt has a dog.

Domain: all people

*D*_____: has a dog

*P*_____ : ____ is a student at Pitt

▶ Every student at Pitt has a dog.

$$\forall x \ (Px \to Dx)$$

Domain: all people

*D*_____: has a dog

*P*_____ : ____ is a student at Pitt

▶ Every student at Pitt has a dog.

$$\forall x \ (Px \to Dx)$$

▶ Some student at Pitt has a dog.

Domain: all people

*D*_____: has a dog

*P*_____ : ____ is a student at Pitt

▶ Every student at Pitt has a dog.

$$\forall x \ (Px \to Dx)$$

▶ Some student at Pitt has a dog.

$$\exists x \ (Px \land Dx)$$

Domain: all people

B____: is bald

Domain: all people

B____: is bald

▶ Everyone is bald.

▶ Everyone is bald.

 $\forall x \ Bx$

Domain: all things on planet Earth

*B*_____ : ____ is bald

▶ Everyone is bald.

 $\forall x \ Bx$

Domain: all things on planet Earth

*B*_____ : ____ is bald

*P*_____ : ____ is a person

▶ Everyone is bald.

 $\forall x \ Bx$

Domain: all things on planet Earth

*B*_____ : ____ is bald

P_____: _____ is a person

▶ Everyone is bald.

$$\forall x \ (Px \to Bx)$$

Predicate Logic: Symbolization Keys

• A *symbolization key* tells us what the *domain* is

Predicate Logic: Symbolization Keys

- A symbolization key tells us what the domain is
 - ▶ the domain can't be empty, by the way

- A symbolization key tells us what the domain is
 - ▶ the domain can't be empty, by the way
- For each relevant name of PL, it gives us something *in the domain* which that name refers to.

- A symbolization key tells us what the domain is
 - ▶ the domain can't be empty, by the way
- For each relevant name of PL, it gives us something *in the domain* which that name refers to.
 - ▶ Each name has to refer to one and only one thing

- A symbolization key tells us what the domain is
 - ▶ the domain can't be empty, by the way
- For each relevant name of PL, it gives us something *in the domain* which that name refers to.
 - Each name has to refer to one and only one thing
 - ▶ Multiple names can refer to the same thing (e.g. 'Sam Clemens' and 'Mark Twain')

- A symbolization key tells us what the domain is
 - ▶ the domain can't be empty, by the way
- For each relevant name of PL, it gives us something *in the domain* which that name refers to.
 - ▶ Each name has to refer to one and only one thing
 - ▶ Multiple names can refer to the same thing (*e.g.* 'Sam Clemens' and 'Mark Twain')
- For each relevant predicate of PL, it tells us which gappy statement that predicate represents.

Translation into PL

Important Statement Forms

All Fs are Ss

All Fs are Ss

No Fs are Ss

- All Fs are Ss
- No Fs are Ss

Some Fs are Ss

- All Fs are Ss
- No Fs are Ss

Some Fs are Ss

Some Fs are not Ss

- All Fs are Ss
- ▶ All mammals are warm-blooded
 - No Fs are Ss

Some Fs are Ss

Some Fs are not Ss

- All Fs are Ss
- ▶ All mammals are warm-blooded
 - No Fs are Ss
- No reptiles are warm-blooded Some ℱs are ℱs

Some Fs are not Ss

- All Fs are Ss
- ▶ All mammals are warm-blooded
 No Fs are Ss
- No reptiles are warm-blooded Some ℱs are ℱs
- Some mammals are carnivorous
 Some ℱs are not ℱs

- All Fs are Ss
- ► All mammals are warm-blooded No Fs are Ss
- No reptiles are warm-blooded Some ℱs are ℱs
- Some mammals are carnivorousSome ℱs are not ℱs
- ▶ Some mammals are not carnivorous

• All of the following mean the same thing, and so can be translated into PL in the same way:

- All of the following mean the same thing, and so can be translated into PL in the same way:
- ▶ All Fs are Ss

All mammals are warm-blooded

• All of the following mean the same thing, and so can be translated into PL in the same way:

▶ All Fs are Ss

All mammals are warm-blooded

▶ Every **F** is **G**

Every mammal is warm-blooded

- All of the following mean the same thing, and so can be translated into PL in the same way:
- ▶ All Fs are Ss
- ▶ Every **F** is **G**
- ▶ Each F is S

- All mammals are warm-blooded
- Every mammal is warm-blooded
- Each mammal is warm-blooded

- All of the following mean the same thing, and so can be translated into PL in the same way:
- ▶ All Fs are Ss
- ► Every **F** is **G**
- ▶ Each F is S
- ▶ Any F is S

- All mammals are warm-blooded
- Every mammal is warm-blooded
- Each mammal is warm-blooded
- Any mammal is warm-blooded

• Given a domain,

$$\forall x (\mathcal{F}x \to \mathcal{G}x)$$

says:

All Fs in the domain are F

• Given a domain,

$$\forall x (\mathcal{F}x \to \mathcal{G}x)$$

says:

All Fs in the domain are S

Every \mathcal{F} in the domain is \mathcal{G}

• Given a domain,

$$\forall x (\mathcal{F}x \to \mathcal{G}x)$$

says:

All \mathcal{F} s in the domain are \mathcal{G}

Every \mathcal{F} in the domain is \mathcal{G}

Each \mathcal{F} in the domain is \mathcal{G}

• Given a domain,

$$\forall x (\mathcal{F}x \to \mathcal{G}x)$$

says:

All \mathcal{F} s in the domain are \mathcal{G}

Every \mathcal{F} in the domain is \mathcal{G}

Each \mathcal{F} in the domain is \mathcal{G}

Any F in the domain is S

• Given a domain,

$$\forall y (\mathcal{F} y \to \mathcal{G} y)$$

says:

All \mathcal{F} s in the domain are \mathcal{G}

Every \mathcal{F} in the domain is \mathcal{G}

Each \mathcal{F} in the domain is \mathcal{G}

Any F in the domain is S

• Given a domain,

$$\forall z (\mathcal{F}z \to \mathcal{G}z)$$

says:

All \mathcal{F} s in the domain are \mathcal{G}

Every \mathcal{F} in the domain is \mathcal{G}

Each \mathcal{F} in the domain is \mathcal{G}

Any F in the domain is S

Domain: all mammals

W____: is warm-blooded

Domain: all animals

W____: is warm-blooded

 $\forall y \ Wy$

Domain: all animals

*W*_____: is warm-blooded

*M*____: ____ is a mammal

 $\forall y \ Wy$

Domain: all animals

*W*_____: is warm-blooded

M____: ____ is a mammal

$$\forall x (Mx \to Wx)$$

• All of the following mean the same thing, and so can be translated into PL in the same way:

- All of the following mean the same thing, and so can be translated into PL in the same way:
- ▶ No Fs are Ss

No reptiles are warm-blooded

- All of the following mean the same thing, and so can be translated into PL in the same way:
- No ℱs are ℱs

No reptiles are warm-blooded

▶ No F is S

No reptile is warm-blooded

- All of the following mean the same thing, and so can be translated into PL in the same way:
- ▶ No Fs are Ss

No reptiles are warm-blooded

▶ No F is G

No reptile is warm-blooded

► Every **F** is not **S**s

Every reptile is not warm-blooded

• Given a domain,

$$\forall x (\mathcal{F}x \to \neg \mathcal{G}x)$$

says:

No Fs in the domain are S

• Given a domain,

$$\forall x (\mathcal{F}x \to \neg \mathcal{G}x)$$

says:

No \mathcal{F} s in the domain are \mathcal{G}

No F in the domain is S

• Given a domain,

$$\forall x (\mathcal{F}x \to \neg \mathcal{G}x)$$

says:

No Fs in the domain are §

No F in the domain is S

Every \mathcal{F} in the domain is not \mathcal{G}

• Given a domain,

$$\neg \exists x (\mathcal{F} x \land \mathcal{G} x)$$

says:

No Fs in the domain are F

No \mathcal{F} in the domain is \mathcal{G}

Every F in the domain is not S

Domain: all reptiles

W____: is warm-blooded

$$\forall y \neg Wy$$

Domain: all animals

W____: is warm-blooded

$$\forall y \neg Wy$$

Domain: all animals

W____: is warm-blooded

*R*_____: is a reptile

 $\forall y \neg Wy$

Domain: all animals

W____: is warm-blooded

*R*_____: is a reptile

$$\forall y (Ry \to \neg Wy)$$

• All of the following mean the same thing, and so can be translated into PL in the same way:

- All of the following mean the same thing, and so can be translated into PL in the same way:
- ▶ Some Fs are Ss

Some mammals are carnivorous

- All of the following mean the same thing, and so can be translated into PL in the same way:
- ▶ Some Fs are Ss
- ▶ Some F is S

- Some mammals are carnivorous
 - Some mammal is carnivorous

- All of the following mean the same thing, and so can be translated into PL in the same way:
- ▶ Some Fs are Ss
- ▶ Some F is S
- ▶ There are $\mathscr{G} \mathscr{F}$ s

- Some mammals are carnivorous
- Some mammal is carnivorous
- There are carnivorous mammals

• Given a domain,

$$\exists x (\mathcal{F}x \land \mathcal{G}x)$$

says:

Some Fs in the domain are F

• Given a domain,

$$\exists x (\mathcal{F}x \land \mathcal{G}x)$$

says:

Some Fs in the domain are F

Some \mathcal{F} in the domain is \mathcal{G}

• Given a domain,

$$\exists x (\mathcal{F}x \land \mathcal{G}x)$$

says:

Some Fs in the domain are F

Some \mathcal{F} in the domain is \mathcal{G}

There are $\mathcal{G} \mathcal{F}$ s in the domain

• Given a domain,

$$\exists y (\mathscr{F}y \wedge \mathscr{G}y)$$

says:

Some Fs in the domain are F

Some \mathcal{F} in the domain is \mathcal{G}

There are $\mathcal{G} \mathcal{F}$ s in the domain

• Given a domain,

$$\exists z (\mathcal{F}z \land \mathcal{G}z)$$

says:

Some Fs in the domain are F

Some \mathcal{F} in the domain is \mathcal{G}

There are $\mathcal{G} \mathcal{F}$ s in the domain

Domain: all mammals

C_____ : ____ is carnivorous

 $\exists z \ Cz$

Domain: all animals

C_____ : _____ is carnivorous

 $\exists z \ Cz$

Domain: all animals

C_____ : ____ is carnivorous

M_____: ____is a mammal

 $\exists z \ Cz$

Domain: all animals

*C*_____ : ____ is carnivorous

*M*_____ : ____ is a mammal

 $\exists x (Mx \land Cx)$

Some \mathcal{F} s are not \mathcal{G} s

• All of the following mean the same thing, and so can be translated into PL in the same way:

Some \mathcal{F} s are not \mathcal{G} s

- All of the following mean the same thing, and so can be translated into PL in the same way:
- ▶ Some Fs are not Ss Some mammals are not carnivorous

- All of the following mean the same thing, and so can be translated into PL in the same way:
- ▶ Some Fs are not Ss Some mammals are not carnivorous
- ► Some F is not S Some mammal is not carnivorous

Some \mathcal{F} s are not \mathcal{G} s

- All of the following mean the same thing, and so can be translated into PL in the same way:
- Some Fs are not Ss Some mammals are not carnivorous
- Some ℱ is not ℱ
 Some mammal is not carnivorous
- ▶ There are non- $\mathscr{G} \mathscr{F}$ s There are non-carnivorous mammals

• Given a domain,

$$\exists x (\mathscr{F}x \land \neg \mathscr{G}x)$$

says:

Some Fs in the domain are not F

• Given a domain,

$$\exists x (\mathcal{F}x \land \neg \mathcal{G}x)$$

says:

Some \mathcal{F} s in the domain are not \mathcal{G}

Some \mathcal{F} in the domain is not \mathcal{G}

• Given a domain,

$$\exists x (\mathscr{F}x \land \neg \mathscr{G}x)$$

says:

Some \mathcal{F} s in the domain are not \mathcal{G}

Some \mathcal{F} in the domain is not \mathcal{G}

There are non- $\mathcal{G} \mathcal{F}$ s in the domain

• Given a domain,

$$\exists w (\mathscr{F} w \wedge \neg \mathscr{G} w)$$

says:

Some Fs in the domain are not F

Some \mathcal{F} in the domain is not \mathcal{G}

There are non- $\mathcal{G} \mathcal{F}$ s in the domain

• Given a domain,

$$\exists z (\mathscr{F}z \land \neg \mathscr{G}z)$$

says:

Some \mathcal{F} s in the domain are not \mathcal{G}

Some \mathcal{F} in the domain is not \mathcal{G}

There are non- $\mathcal{G} \mathcal{F}$ s in the domain

Domain: all mammals

C_____: _____is carnivorous

 $\exists z \neg Cz$

Domain: all animals

C_____ : _____ is carnivorous

 $\exists z \neg Cz$

Domain: all animals

C_____: _____is carnivorous

*M*_____ : ____ is a mammal

 $\exists z \neg Cz$

Domain: all animals

C_____ : _____ is carnivorous

M____: ____ is a mammal

 $\exists x (Mx \land \neg Cx)$

$$\forall x (\mathfrak{F} x \to \mathfrak{G} x)$$

- ▶ All Fs are Ss
- ▶ No Fs are Ss

$$\forall x (\mathfrak{F} x \to \mathfrak{G} x)$$

$$\forall x (\mathfrak{F}x \to \neg \mathfrak{G}x)$$

- ▶ All Fs are Ss
- ▶ No Fs are Ss
- ▶ Some Fs are Ss

$$\forall x (\mathcal{F}x \to \mathcal{G}x)$$

$$\forall x (\mathcal{F}x \to \neg \mathcal{G}x)$$

$$\exists x (\mathcal{F}x \land \mathcal{G}x)$$

- ▶ All Fs are Ss
- ▶ No Fs are Ss
- ▶ Some Fs are Ss
- ▶ Some Fs are not Ss

$$\forall x (\mathcal{F}x \to \mathcal{G}x)$$

$$\forall x (\mathcal{F}x \to \neg \mathcal{G}x)$$

$$\exists x (\mathscr{F}x \wedge \mathscr{G}x)$$

$$\exists x (\mathscr{F}x \land \neg \mathscr{G}x)$$