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1
Interpretations of Probability

Consider the following claims about probability:
1. Whether the coin lands heads or tails is a matter of chance

2. It’s unlikely to rain

3. A smoker is more likely to get cancer than a non-smoker

4. The chance of rain is 90%
All of these claims are about probability or chance; but they are dif-
ferent kinds of claims about probability. (1) says that whether the coin
lands heads is contingent—it could be true and it could be false. It’s not
guaranteed to land heads; nor is it guaranteed to not land heads. But
it doesn’t say anything about the strength of this contingency. In con-
trast, (2) goes further. It doesn’t just say that it is contingent whether
it rains—it additionally tells us that the contingency is weak; that rain
is unlikely. Claims like this use a unary predicate like ‘likely’ or ‘un-
likely’ to describe outcomes or propositions. If we were regimenting
these kinds of claims in a formal language, we might think of using
a propositional operator like ‘Δ’, where ‘Δ𝐴’ says that 𝐴 is likely. In
contrast, claims like (3) make comparative claims about one outcome
being more, less, or just as likely as another; they invoke a binary rela-
tion between outcomes or propositions. These kinds of claims could
be regimented in a formal language with a two-place propositional
operator like ⪰, where ‘𝐴 ⪰ 𝐵’ says that 𝐴 is at least as likely as 𝐵.
Finally, (4) uses a particular number to measure probability. These
kinds of claims could be regimented with a function, ℙ, from propo-
sitions to numbers, where ‘ℙ(𝐴) = 𝑥’ says that the probability of 𝐴 is
𝑥. All of these approaches to theorizing about probability have been
pursued (and there are interesting relationships between them), but
in this course, we’re going to focus on the final approach, which is far
and away themost prevalent and common. Notice thatwemay be able
to analyze the earlier kinds of claims in terms of the final one. At first
glance, (1) will be true iff there’s a non-zero probability of the coin
landing heads and a non-zero probability that the coin doesn’t land
heads. (2) will be true iff the probability of rain is less than 1/2. And
(3) will be true iff the probability that a smoker gets cancer is greater
than the probability that a non-smoker gets cancer.

I want to begin by asking two questions about claims like these:
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1. What do these kinds of claims mean? What are they saying?

2. What determines which probabilities are the right ones?

There are roughly three families of answers to these questions. Those
in the first group all say that claims about probabilities are claims
about some objective quantity and that these quantities may be deter-
mined a priori. Those in the second group agree that probabilities are
objective, but maintain that they can only be determined a posteriori.
And those in the third group say that probabilities are subjective, and
can vary from person to person (though they may think that there are
more and less rational subjective probabilities for a person to have).

In these notes, we’re going to be exploring this final interpretation
of probabilities, according to which they are purely subjective, and
represent something like the strength of your belief. On this view, to
say that it’s unlikely to rain is just to say that you are more confident
that it won’t rain than you are that it will rain. To understand why
some people were led to this interpretation of probability, it’s worth-
while rehearsing some of the other standard views, and the standard
objections to those views.

1.1 Objective and A Priori Interpretations

Classical Interpretation According to the Classical Interpretation, to
say that the probability that the coin lands heads is one half is just to
say that the proportion of ‘equally possible’ cases in which the coin
lands heads is one half. In general, the classical interpretation as- Laplace: “The theory of chances con-

sists in reducing all events of the same
kind to a certain number of equally pos-
sible cases, that is to say, to cases whose
existence we are equally uncertain of,
and in determining the number of cases
favourable to the event whose probabil-
ity is sought. The ratio of this number to
that of all possible cases is the measure
of this probability”.

signed probabilities uniformly over all possible cases. This is known
as the “principle of indifference”.

The Principle of Indifference If 𝐴 and 𝐵 are equally possible, then the
probability of 𝐴 equals the probability of 𝐵.

It’s worthwhile asking what the classical view meant by ‘equally
possible’. The most natural interpretation is ‘equally probable’, but
that can’t be what the principle of indifference is saying, since then
the principle would be a tautology.

Objections:

⊲ Bertrand’s Paradox (cf. van Fraassen’s cube factory).
- Cubes come from the factorywith side lengths between 0 and 2
cm. The side length being between 0 and 1 cm is equally possible
as the side length being between 1 and 2 cm. So the probability
that the side length is between 0 and 1 cm is one half.
- Cubes come from the factory with face areas between 0 and
4 cm2. The face area being in (0, 1] is equally possible as (1, 2],
(2, 3], and (3, 4]. So the probability that the face area is between
0 and 1 cm2 is one fourth.
- But the side length is between 0 and 1 cm iff the face area is
between 0 and 1 𝑐𝑚2. So they must have the same probability.
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Insofar as the principle of indifference gives them different prob-
abilities, it has contradicted itself.

⊲ How is it possible to learn (e.g., the bias of a coin)? No mat-
ter how many times the coin is flipped, there remain just two
(equally?) possible outcomes.

The classical view was supplemented with an additional rule: the
Rule of Succession. It says:

probability of heads on 𝑁 + 1st flip =
number of heads in first 𝑁 flips + 1

𝑁 + 2

Logical Interpretation According toCarnap’s logical interpretation of State descriptions for 𝐹, 𝐺 and 𝑎, 𝑏:

1. 𝐹𝑎&𝐹𝑏&𝐺𝑎&𝐺𝑏

2. 𝐹𝑎&𝐹𝑏&𝐺𝑎&¬𝐺𝑏
3. 𝐹𝑎&𝐹𝑏&¬𝐺𝑎&𝐺𝑏
4. 𝐹𝑎&𝐹𝑏&¬𝐺𝑎&¬𝐺𝑏
5. 𝐹𝑎&¬𝐹𝑏&𝐺𝑎&𝐺𝑏
6. 𝐹𝑎&¬𝐹𝑏&𝐺𝑎&¬𝐺𝑏
7. 𝐹𝑎&¬𝐹𝑏&¬𝐺𝑎&𝐺𝑏
8. 𝐹𝑎&¬𝐹𝑏&¬𝐺𝑎&¬𝐺𝑏
9. ¬𝐹𝑎&𝐹𝑏&𝐺𝑎&𝐺𝑏

10. ¬𝐹𝑎&𝐹𝑏&𝐺𝑎&¬𝐺𝑏
11. ¬𝐹𝑎&𝐹𝑏&¬𝐺𝑎&𝐺𝑏
12. ¬𝐹𝑎&𝐹𝑏&¬𝐺𝑎&¬𝐺𝑏
13. ¬𝐹𝑎&¬𝐹𝑏&𝐺𝑎&𝐺𝑏
14. ¬𝐹𝑎&¬𝐹𝑏&𝐺𝑎&¬𝐺𝑏
15. ¬𝐹𝑎&¬𝐹𝑏&¬𝐺𝑎&𝐺𝑏
16. ¬𝐹𝑎&¬𝐹𝑏&¬𝐺𝑎&¬𝐺𝑏
Structure descriptions for 𝐹, 𝐺 and 𝑎, 𝑏:

- Two 𝐹𝐺s (1)

- Two 𝐹 ¬𝐺s (4)

- Two ¬𝐹 𝐺s (13)

- Two ¬𝐹 ¬𝐺s (16)

- One 𝐹𝐺 and one 𝐹 ¬𝐺 (2, 3)

- One 𝐹𝐺 and one ¬𝐹 𝐺 (5, 9)

- One 𝐹𝐺 and one ¬𝐹 ¬𝐺 (6, 11)

- One 𝐹 ¬𝐺 and one ¬𝐹 𝐺 (7, 10)

- One 𝐹 ¬𝐺 and one ¬𝐹 ¬𝐺 (8, 12)

- One ¬𝐹 𝐺 and one ¬𝐹 ¬𝐺 (14, 15)

probability, probability earn their keep in the role they play in re-
lations of inductive support. These are inductive or probabilistic
generalizations of the relation of deductive entailment; and they
have entailment as their limiting case.

Given some first-order language with some number of predicates
and constants, we construct the set of state descriptions by consid-
ering all of the possible truth-value assignments to the atomic sen-
tences of the language. For instance, if there are two predicates, 𝐹
and 𝐺, and two constants, 𝑎 and 𝑏, then we have the 16 state de-
scriptions given in the margin.

A structure description abstracts away from the identities of the con-
stants, and simply reports how many things have each collection
of properties. So a structure description gives a purely qualitative
summary of a state description.

The principle of indifference says to give each state description equal
probability. Carnap, in contrast, says to give each structure descrip-
tion equal probability (and to distribute probabilities equallywithin
each structure description).

Example: there are three ravens, 𝑎, 𝑏, and 𝑐, which could either be
black, 𝐵, or not. The principle of indifference gives us the first prob-
abilistic truth-table below; whereas Carnap gives the second:

𝐵𝑎 𝐵𝑏 𝐵𝑐 POI Carnap

1 1 1 1/8 3/12
1 1 0 1/8 1/12
1 0 1 1/8 1/12
1 0 0 1/8 1/12
0 1 1 1/8 1/12
0 1 0 1/8 1/12
0 0 1 1/8 1/12
0 0 0 1/8 3/12

Carnap then says that some evidence, 𝐸, supports a hypothesis, 𝐻,
iff (and to the extent that)

ℙ(𝐻 | 𝐸) def
=

ℙ(𝐻&𝐸)
ℙ(𝐸) > ℙ(𝐻)
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Notice that 𝐵𝑎 confirms 𝐵𝑎&𝐵𝑏&𝐵𝑐.

Objections:

⊲ If there are infinitely many things, any universal generalization
will always have probability zero; but it seems like we can con-
firm the laws of nature even in an infinite universe.

⊲ Carnap’s degrees of confirmation are language-dependent. Run
the procedure with green, and you’ll confirm “All emeralds are
green”. Run it with grue, and you’ll confirm “All emeralds are
grue”. (cf. Bertrand’s paradox)

1.2 Objective and A Posteriori Interpretations

Actual Frequentism According to the actual frequentist, to say that
the probability that the coin lands heads is one half is just to say
that the actual frequency of heads landings is one half.

ℙ(a flipped coin lands heads) = #actual flips that land heads
#actual flips

In general,

ℙ(an 𝐹 is 𝐺) = #𝐺𝐹s
#𝐹s

Note that, on this view, probabilities don’t just attach to outcomes,
but rather to an outcome and a reference class. I flip a quarter. Ac-
cording to the actual frequentist, ‘the probability that the flip lands
heads’ is ambiguous. It could be referring to the frequency of heads
landings amongst coin flips, or amongst quarter flips, or amongst
flips of American coins, etc.

Objections:

⊲ Isn’t it possible for a fair coin to land heads every time it’s flipped?

⊲ Couldn’t a fair coin be only flipped once? (or never flipped at
all?)

⊲ It seems that probabilities can be irrational (for instance, the prob-
ability that a radon atom decays in some number of seconds can
be 𝑒−1); but no actual frequency is irrational.

⊲ Doesn’t probability explain actual frequencies? It looks like you
can explain the fact that about half of the coin flips landed heads
by pointing to the fact that the probability of heads was one half.
But nothing can explain itself; so this suggests that probabilities
aren’t actual frequencies.

Hypothetical Frequentism According to hypothetical frequentism, to
say that the probability of heads is one half is to say that, were you to
flip the coin infinitely many times, the frequency of heads landings
would approach one half in the limit.

ℙ(a flipped coin lands heads) = #the first 𝑛 flips that landed heads
𝑛
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In general,

ℙ(an 𝐹 is 𝐺) = lim
𝑛→∞

#the first 𝑛 𝐹s that are 𝐺
𝑛

Objections:

⊲ How do we order the 𝐹s? Different orderings will give different
limiting frequencies. For instance, we can imagine situations in
which ordering the outcomes by their temporal locations leads
to a different limiting frequency than ordering the outcomes by
their spatial locations.

⊲ Doesn’t this trivialize the Law of Large Numbers? The (Strong) Lawof LargeNumbers says
that, if the coin is fair, then the probabil-
ity that the frequency of heads landings
approaches one half in the limit is 100%.

ℙ

(
lim
𝑛→∞

#first 𝑛 flips which land heads
𝑛

= 1/2
)
= 1

⊲ Doesn’t probability explain limiting frequency?

Long-run Propensitism To say that the probability of heads is one
half is to say that the coin-flipping set-up has a propensity, or dis-
position, to produce a limiting frequency of one-half.

⊲ A different explanatory challenge: explaining the long-run fre-
quency with the probabilities looks like the ‘dormative virtue’
explanation of Moliére’s physicists

Single Case Propensitism To say that the probability of heads is one
half is to say that the coin-flipping set up has a one half propensity
or disposition to land heads.

⊲ Why think that these propensities satisfy the usual laws of prob-
ability?

1.3 Subjective Interpretations

Bayesian Interpretation According to the Bayesians, probabilities repre-
sent somebody’s strength of belief (or the strengths of belief that they
should have)

You can determine the person’s strength of belief—or credences—
by considering their dispositions to action—for instance, their betting
behavior. (More on this later in the course.)

The basic Bayesian picture is this: at any given time, a person has
certain credences. Those credences ought to be probabilities.

Probabilism: A rational person’s credences will obey the laws of
probability.

Moreover, when they learn something new, 𝐸, they should adopt a
new degree of belief, ℙ𝐸, so that, for any proposition 𝐴:

ℙ𝐸(𝐴) = ℙ(𝐴&𝐸)
ℙ(𝐸)

So long asℙ(𝐸) > 0, this ratio,ℙ(𝐴&𝐸)÷ℙ(𝐸), is equal to the conditional
probability of 𝐴, given 𝐸, often written ‘ℙ(𝐴 | 𝐸)’.
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Conditionalization: A rational person will learn from their evi-
dence by conditioning on it. That is, if their prior credence func-
tion is ℙ then their posterior credence function, after learning,
ℙ𝐸, will be

ℙ𝐸(𝐴) = ℙ(𝐴 | 𝐸)

In the rest of these notes, we will be considering what is to be said for
and against the Bayesian position; so I won’t go through the objections
here.

Review Questions

1. What two questions is an interpretation of probability trying to an-
swer? Say how the Classical, Logical, Actual Frequentist, and Hy-
pothetical Frequentist interpretations answer these questions.

2. What does the principle of indifference say? What is Bertrand’s
Paradox, and why does it pose a problem for the principle of indif-
ference?

3. What is the difference between a state description and a structure
description? Suppose we’re going to flip a coin three times. What
are the state descriptions, and what are the structure descriptions?
Assume that the principle of indifference says that each state de-
scription should be given the same probability. Then, is Laplace’s
Rule of Succession compatible with the principle of Conditionaliza-
tion?

4. Why are the probabilities recommended by Carnap’s Logical In-
terpretation language-dependent? Why is this a problem for the
interpretation?

5. What are two objections to Actual Frequentism? What are two ob-
jections to Hypothetical Frequentism?
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Theories of Probability

2.1 Probability as Measure

The standard mathematical theory of probability treats it as a certain
kind of volume, or measure.1 Formally, it starts with a set, 𝒲. We can 1 Kolmogorov, A. N. 1950 [1933]. Founda-

tions of the theory of probability. NewYork:
Chelsea Publishing Company.think of this set a the set of possibleways for theworld to be (‘worlds’).

It’s natural to want to be able to measure, or assign a probability to,
any collection of worlds from 𝒲. But over the 20th century, mathe-
maticians encountered difficulties with doing this (more below). So
they instead select a collection of subsets of 𝒲, 𝒜. Think of 𝒜 as the
set of propositions. The pair (𝒲 ,𝒜) is known as a measurable space.

A probability function,ℙ, is any function from the set of propositions,
𝒜, to real numbers, satisfying the following constraints:

Non-negativity No probabilities are negative. For all 𝐴 ∈ 𝒜 , ℙ(𝐴) ⩾ 0.

Normalization The necessary truth has probability 1. ℙ(𝒲)= 1.

Finite Additivity If you break a proposition up into finitely many non- For any 𝐴, 𝐵 ∈ 𝒜 , if 𝐴𝐵 = ∅, then ℙ(𝐴∪
𝐵) = ℙ(𝐴) + ℙ(𝐵).overlapping parts, then the probability of the whole is the sum of

the probabilities of the parts.

The set 𝒜 is required by Kolmogorov to be at least an algebra. An
algebra is a set of propositions which contains 𝒲 itself and is closed 𝒜 is an algebra iff: (a)¬𝐴 ∈ 𝒜 whenever

𝐴 ∈ 𝒜 ; and (b) 𝐴 ∪ 𝐵 ∈ 𝒜 whenever
𝐴, 𝐵 ∈ 𝒜 .

under complementation and finite union.
If 𝒜 is an algebra and ℙ is non-negative, normalized, and finitely

additive, then it will have the following properties as well:

Monotonicity If 𝐴 entails 𝐵, then the probability of 𝐵 is not less than If 𝐴 ⊆ 𝐵, then ℙ(𝐴) ⩽ ℙ(𝐵)
the probability of 𝐴.

Strong Additivity The sum of the probabilities of 𝐴 and 𝐵 is equal to ℙ(𝐴) + ℙ(𝐵) = ℙ(𝐴 ∪ 𝐵) + ℙ(𝐴𝐵)
the sum of the probabilities of 𝐴 ∪ 𝐵 and 𝐴𝐵.

We can think of a probability function as giving us a “muddy Venn
diagram” (van Fraassen’s metaphor).

2.2 Conditional Probability and Independence

The conditional probability of 𝐴, given 𝐵, is written ℙ(𝐴 | 𝐵). This
says how likely 𝐴 is, on the indicative supposition that 𝐵 is true. Most
everyone accepts that, so long as ℙ(𝐵) > 0,
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Product Rule the probability of 𝐴𝐵 is equal to the product of the prob- For all𝐴, 𝐵 ∈ 𝒜 ,ℙ(𝐴𝐵) = ℙ(𝐴 | 𝐵)·ℙ(𝐵)
ability of 𝐴, given 𝐵, and the probability of 𝐵.

So long as ℙ(𝐵) > 0, we can derive the conditional probability ℙ(𝐴 |
𝐵) from the unconditional probabilities ℙ(𝐴𝐵) and ℙ(𝐵), since in this
case, the product rule implies that ℙ(𝐴 | 𝐵) = ℙ(𝐴𝐵) ÷ ℙ(𝐵). Some
say that, if ℙ(𝐵) = 0, then the conditional probability of 𝐴, given 𝐵,
is undefined—though they give fancy ways of defining conditional
probabilities relative to a partition. Others say that ℙ(𝐴 | 𝐵) can be A partition is a set of propositions A such

that, for any two 𝐴, 𝐵 ∈ A, 𝐴𝐵 = ∅, and⋃
A = 𝒲.

unambiguously well-defined even in cases where ℙ(𝐵) = 0.
Two propositions are said to be probabilistically independent iff the

probability of their conjunction is the product of their probabilities.

Independence The propositions 𝐴 and 𝐵 are probabilistically indepen-
dent (according to the probability function ℙ) iff

ℙ(𝐴𝐵) = ℙ(𝐴) · ℙ(𝐵)

Given our definition of conditional probability, we have that (so long
as ℙ(𝐴),ℙ(𝐵) > 0) 𝐴 and 𝐵 are independent iff ℙ(𝐴 | 𝐵) = ℙ(𝐴) and
ℙ(𝐵 | 𝐴) = ℙ(𝐵).

2.3 Regularity

Some have wanted to impose the following condition on a probability
function:

Regularity If 𝐴 is possible, then the probability of 𝐴 should be positive.
Equivalently: 𝐴’s probability is zero only if 𝐴 is impossible.

In caseswhere the cardinality of𝒲 is finite, this can be achieved using
the standard tools. But in cases where 𝒲 is uncountably infinite, it
cannot.

To appreciate why, we need to start by appreciating a simple fact
about cardinality: a countable union of finite sets is itself countable.
Thismeans that, if an uncountably infinite set is the union of countably
many sets, then at least one of the sets in that union is infinite.

Then, consider the following infinite collection of sets:

𝐴2 = {𝑤 ∈ 𝒲 | ℙ({𝑤}) ⩾ 1/2}
𝐴3 = {𝑤 ∈ 𝒲 | ℙ({𝑤}) ⩾ 1/3}
...

𝐴𝑛 = {𝑤 ∈ 𝒲 | ℙ({𝑤}) ⩾ 1/𝑛}
...

Notice that 𝒲 =
⋃∞
𝑛=2 𝐴𝑛 . If 𝒲 is uncountably large, then at least

one 𝐴𝑛 must be infinite. Take one, choose some 𝑚 > 𝑛, and let 𝐴𝑛[𝑚]
be some finite subset of 𝐴𝑛 with 𝑚 members. Then, by monotonicity



THEORIES OF PROBABILITY 13

and finite additivity,

ℙ(𝐴𝑛) ⩾ ℙ(𝐴𝑛[𝑚]) ⩾ 1
𝑛
+ 1
𝑛
+ · · · + 1

𝑛︸               ︷︷               ︸
𝑚 times

=
𝑚
𝑛

> 1

If you want probabilities to be regular, then you will need to block
some part of the preceding argument. The way this is usually done
is by enriching the range of the probability function. Instead of only
allowing real-valued probabilities, you also allow infinitesimal proba-
bilities (probabilities which are less than every real number but still
greater than zero).

2.4 Infinite Additivity

There is a further constraint which Kolmogorov says “has been found
expedient in researches of the most diverse sort”:

Countable Additivity If you break a proposition up into a countable For any 𝐴1 , 𝐴2 , · · · ∈ 𝒜 , if 𝐴𝑖𝐴𝑗 =
∅ for each 𝑖 , 𝑗, then ℙ (⋃𝑖=1∞ 𝐴𝑖) =∑∞
𝑖=1 ℙ(𝐴𝑖)

infinity of non-overlapping parts, then the probability of the whole
is equal to the infinite sum of the probabilities of the parts.

If a probability function is going to be countably additive, then it will
have to be defined over an algebra closed under complementation and 𝒜 is a 𝜎-algebra iff: (a) ¬𝐴 ∈ 𝒜 when-

ever 𝐴 ∈ 𝒜 and (b)
⋃∞
𝑖=1 𝐴𝑖 ∈ 𝒜 when-

ever 𝐴1 , 𝐴2 , · · · ∈ 𝒜 .
countable union—this is known as a 𝜎-algebra.

To appreciate the difference between finite and countable additiv-
ity:

Example 1 (The countably infinite fair lottery). There is a lottery con-
taining a countably infinite number of tickets. The lottery is fair, so each
ticket has an equal probability of winning.

Some (like Bruno de Finetti), think that countably infinite fair lot-
teries are possible. But countably infinite fair lotteries are incompat-
ible with countable additivity. We can model this example with a
set 𝒲 = {1, 2, 3, 4, . . . }, where the number 𝑛 represents the world
in which ticket number 𝑛 wins. Countable additivity implies that

ℙ({1, 2, 3, . . . }) = ℙ({1}) + ℙ({2}) + ℙ({2}) + . . .

whereas, if the lottery is fair, we must have

ℙ({1}) = ℙ({2}) = ℙ({2}) = . . .

Let ℙ({1}) = 𝛼. Then, we have that

ℙ({1, 2, 3, . . . }) = 𝛼 + 𝛼 + 𝛼 + . . .

If 𝛼 = 0, then ℙ({1, 2, 3, . . . }) = 0, in violation of normalization. But
if 𝛼 > 0, then ℙ({1, 2, 3, . . . }) = ∞, in violation of normalization. So
there is cannot be a countably infinite fair lottery, if probabilities are
countably additive. Since de Finetti thought countably infinite fair lot-
teries were possible, he rejected countable additivity.

Note that almost nobody accepts:
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Full Additivity If you break a proposition up into any number of non- For any A ⊆ 𝒜 , if 𝐴𝐵 = ∅ for each
𝐴, 𝐵 ∈ A, thenℙ (⋃A) =∑

𝐴∈A ℙ(𝐴) =𝑑𝑓
sup{∑𝐴∈B ℙ(𝐴) | B ⊆ A and B is finite}overlapping parts, then the probability of the whole is equal to the

sum of the probabilities of the parts.

Almost nobody accepts this, because almost everybody accepts the
possibility of uncountably infinite fair lotteries.

Example 2 (the uncountably infinite fair lottery). We have a circular
spinner. After being spun, it is equally likely to land anywhere around the
circle’s circumference.

However, if we accepted full additivity, then we’d have to reject the
possibility of uncountably infinite fair lotteries. The reasoning is the
same as in the case of countably additivity. If the spinner is fair, then
each point on the circle must have an equal probability of being se-
lected. Call that probability, whatever it is, ‘𝛼’. If 𝛼 is greater than
zero, then countably additivity implies that there’s some countable
subset of points from the circle that has a probability of ∞ of being
selected. But, if 𝛼 = 0, then full additivity implies that the probability
of the spinner landing somewhere ℙ([0, 1)), must be zero, in violation
of normalization.

(a)

(b)
Figure 2.1: In figure 2.1a, the fair
spinner. In figure 2.1b, the ‘half
open’ unit interval [0, 1) which we
use to model the outcome of the
spin.

2.5 Additivity and Measurability

Let’s think further about the spinner. Here’s a general fact, proven
by the Italian mathematician Giusepe Vitali: assuming the axiom of
choice, there is no probability function for example 2 with the follow-
ing properties:
(1) Totality: Every set of points in [0, 1) is in𝒜, and so has a probability

(2) Rotation-invariance: For all 𝐴 ∈ 𝒜 , ℙ(𝐴) = ℙ(𝐴 ⊕ 𝑑), where 𝐴 ⊕ 𝑑
is the set 𝐴 rotated a distance 𝑑 around the cirlce.

(3) Countable additivity
(The proof of the incompatibility is given in the margin.)

Let ℚ be the set of rational numbers in
[0, 1). ℚ⊕𝑑 = {𝑞⊕𝑑 | 𝑞 ∈ ℚ}. Andℛℚ =
{ℚ ⊕ 𝑑 | 𝑑 ∈ [0, 1)}. ℛℚ is the partition
of all the ways of rotating ℚ around the
circle. For each set in ℛℚ, choose a sin-
gle point 𝑣, and let𝑉 be the set of points
selected. Then, ℛ𝑉 = {𝑉 ⊕ 𝑟 | 𝑟 ∈ ℚ}
is a countable partition of [0, 1). By prop-
erty (1), each 𝑉 ⊕ 𝑟 has a probability. By
(2), they are all the same probability. By
(3), their countable sum is ℙ([0, 1)) = 1.
Contradiction.

This affords us an argument against countable additivity: every propo-
sition about where the spinner lands should have a rotation-invariant
probability. So (1) and (2) should be true. But this implies that count-
able additivity is false.

This is a compelling but unfortunately bad argument. The reason
is that (assuming the axiom of choice) there’s a conflict between prin-
ciples like (1) and (2) on their own. For there are ‘paradoxical’ decom-
positions of a sphere. You can split a sphere up into four disjoint sets,
𝐴, 𝐵, 𝐶, and 𝐷, so that 𝐵 can be rotated into 𝐴 ∪ 𝐵 ∪ 𝐶 and 𝐶 can
be rotated into 𝐵 ∪ 𝐶 ∪ 𝐷. (This is known as ‘Hausdorff’s Paradox’,
and it’s a precursor to the more famous ‘Banach Tarski’ paradox.) By
rotation-invariance, we must have

ℙ(𝐵) = ℙ(𝐴 ∪ 𝐵 ∪ 𝐶) = ℙ(𝐴) + ℙ(𝐵) + ℙ(𝐶)

which implies that ℙ(𝐴) = ℙ(𝐶) = 0. But by another application of
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rotation-invariance, we must have

ℙ(𝐶) = ℙ(𝐵 ∪ 𝐶 ∪ 𝐷) = ℙ(𝐵) + ℙ(𝐶) + ℙ(𝐷)

which implies that ℙ(𝐵) = ℙ(𝐷) = 0. But then ℙ(𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐷) =
ℙ(𝐴) + ℙ(𝐵) + ℙ(𝐶) + ℙ(𝐷) = 0. So we cannot have a probaiblity
function which both assigns a probability to 𝐴, 𝐵, 𝐶, and 𝐷 (and their
unions) and whose values are rotation-invariant.

But we can make an attempt at a better argument against count-
able additivity which doesn’t appeal to rotation-invariance. Stanislaw
Ulam showed that there is no probability function over a measurable
space (𝒲 ,𝒜) of size ℵ1 such that
(1) Totality: 𝒜 contains every subset of 𝒲
(2) Non-triviality: there is an uncountable setwith positive probability

even though every point in the set has probability zero

(3) Countable additivity
So if we assume the continuum hypothesis that #[0, 1) = ℵ1, then
this tells us that, if there’s a probability distribution over the landing
position of the spinner that gives probability zero to every particular
landing spot, then that probability cannot be both countably additive
and total (whether it is rotation invariant or not). Some have taken
this as an argument for ‘unmeasurable’ propositions (propositions to
which no probability could be assigned). But others have taken it as
an argument against countable additivity.

If probabilities aremerely finitely additive, then there is no obstacle
to assigning (non-trivial) probabilities to every proposition.2 2 See K.P.S. Bhaskara Rao, M. Bhaskara

Rao. 1983. Theory of Charges: A Study
of Finitely Additive Measures. New York:
Academic Press.

Mathematicians have found rotation-invariance too compelling to
give up. They wanted measure (length, area, volume, etc.) to be pre-
served under rigid rotation and translation. So they decided that not
every set of points has a measure. Some sets of points are ‘unmea-
surable’. Because they understood probability as a particular kind of
measure, they decided that not every proposition has a probability.

2.6 Conglomerability

Many have wanted to endorse a principle that’s stronger than count-
able additivity, called ‘conglomerability’. According to comglomer-
ability, if 𝐴 ∈ 𝒜 is any proposition, and E is any partition, then there
will always be some 𝐸𝑙 ∈ E and some 𝐸ℎ ∈ E such that Another way of expressing the same

idea: ℙ(𝐴) is at most the least upper
bound of {ℙ(𝐴 | 𝐸) | 𝐸 ∈ E } and at least
the greatest lower bound of {ℙ(𝐴 | 𝐸) |
𝐸 ∈ E }

ℙ(𝐴 | 𝐸𝑙) ⩽ ℙ(𝐴) ⩽ ℙ(𝐴 | 𝐸ℎ)

In other words, it cannot be that, for every 𝐸 ∈ E , ℙ(𝐴 | 𝐸) < ℙ(𝐴).
And it cannot be that, for every 𝐸 ∈ E , ℙ(𝐴 | 𝐸) > ℙ(𝐴).

Violations of countable additivity lead to violations of conglomer-
ability. (So, by contraposition, conglomerability implies countable ad-
ditivity.) For an illustrative example, consider the following example.

Example 3 (Two Countably Infinite Fair Lotteries). There are two inde-
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pendent lotteries, each of which contains a countably infinite number of tick-
ets. Each lottery is fair, so each ticket in each lottery has an equal probability
of winning.

We can model this possibility in which ticket 𝑛 wins the first lottery
and ticket 𝑚 wins the second lottery with an ordered pair, (𝑛, 𝑚).
Then, we will have 𝒲 = {(𝑛, 𝑚) | 𝑛, 𝑚 ∈ ℕ}. And we can graph
these points in the plane, as in figure 2.2.

Figure 2.2: Two Countably Infinite Fair
Lotteries. In grey, the set of worlds for
which the winning ticket in lottery 2 has
a number greater than or equal to the
winning ticket in lottery 1.

Since each of these lotteries are fair and independent, we must have
that the probability of each (𝑛, 𝑚) ∈ 𝒲 is zero. [Comprehension
check: why?]

Let’s use ‘𝑊1’ for the winning ticket in lottery 1, and ‘𝑊2’ for the
winning ticket in lottery 2. Then, consider the proposition𝑊2 ⩾ 𝑊1.
This is the proposition shown in grey in figure 2.2.

Suppose that the winning ticket in lottery 1 is 𝑛, 𝑊1 = 𝑛. What’s
your probability that the winning ticket is lottery 2 is ⩾ 𝑛? Well, there
are only finitely many tickets less than 𝑛 and there are infinitely many
tickets⩾ 𝑛. If the second lottery is fair, then it looks like the probability
that the winning ticket in lottery 2 is ⩾ 𝑛 should be 100%. But this is
the answer we will get no matter which ticket we suppose won the first
lottery. So, for every 𝑛 ∈ ℕ,

ℙ(𝑊2 ⩾ 𝑊1 | 𝑊1 = 𝑛) = 1

But {𝑊1 = 𝑛 | 𝑛 ∈ ℕ} is a partition. So conglomerability implies that

ℙ(𝑊2 ⩾ 𝑊1) = 1

Suppose, on the other hand, that the winning ticket in lottery 2 is 𝑛,
𝑊2 = 𝑛. What’s your probability that the winning ticket in lottery 1 is
< 𝑛? Again, there are only finitely many tickets less than 𝑛 and there
are infinitely many tickets ⩾ 𝑛. If the first lottery is fair, then it looks
like the probability that the winning ticket in lottery 1 is < 𝑛 should
be 0%. But this is the answer we will get no matter which ticket we
suppose won the second lottery. So, for every 𝑛 ∈ ℕ,

ℙ(𝑊2 ⩾ 𝑊1 | 𝑊2 = 𝑛) = 0

But {𝑊2 = 𝑛 | 𝑛 ∈ ℕ} is a partition. So conglomerability implies that

ℙ(𝑊2 ⩾ 𝑊1) = 0

But now we’ve reached a contradiction. If we apply conglomerability
to the partition of the outcome of lottery 1, we get one constraint on
the probability of𝑊2 ⩾ 𝑊1. And if we apply it to the partition of the
outcome of lottery 2, we get a different and incompatible constraint on
the probability of𝑊2 ⩾ 𝑊1.

What happened here is fully general. Anytime you have a violation
of countable additivity, you’ll have a violation of conglomerability.
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2.7 Random Variables

Figure 2.3: A variable maps the worlds
in 𝒲 to real numbers, ℝ.

If the set of possibilities 𝒲 is infinitely large, then we cannot have
uniform probabilities defined over every possibility. How, then, do
we define a probability function? One common approach is to impose
structure on the set 𝒲 by parameterizing its members. For instance,
if we’re interpreting𝒲 as the set of all possible worlds, wemight only
be interested in how tall Sabeen is. So we can ignore many features of
the world, and just assign probabilities to (some) propositions about
Sabeen’s height.

Sabeen’s height is a variable. A variable is very much like a ques-
tion, ‘how tall is Sabeen?’—it provides us with a partition of possible
worlds, which are the possible answers to the question. In addition to
giving us this partition, a variable assigns real numbers to each of the
possible answers to the question.

Formally, a variable𝑉 is a function from𝒲 toℝ. Given a variable,
we can form propositions about the variable’s value,

𝑉 = 𝑣
def
= {𝑤 ∈ 𝒲 | 𝑉(𝑤) = 𝑣}

𝑉 ⩾ 𝑣
def
= {𝑤 ∈ 𝒲 | 𝑉(𝑤) ⩾ 𝑣}

𝑉 > 𝑣
def
= {𝑤 ∈ 𝒲 | 𝑉(𝑤) > 𝑣}

If every one of these propositions is included in𝒜, then the variable𝑉
is said to bemeasurable. Ameasurable variable is also called a ‘random
variable’.

(a) A uniform probability density
function over 𝑆.

(b) A normal (0,1) distribution over
𝑉 .

(c) A beta (6, 2) distribution over 𝑉 .
Figure 2.4: Probability density func-
tions. The probability that a random
variable takes on a value between 𝑎 and
𝑏 is given by the area under the p.d.f. be-
tween 𝑎 and 𝑏.

Some random variables are discrete, meaning that they can take on
at most countably many possible real values. For instance, in the infi-
nite fair lottery, we could use the discrete random variable𝑊 =which
ticket wins. Other random variables are continuous, meaning that they
can take on any value in some interval of the reals. For instance, with
the circular spinner, we could use a random variable 𝑆 = how far
around the circle does the spinner stop. 𝑆 could take on any real value
between zero and one.

Given a continuous randomvariable,𝑉 , we can define a probability
function over propositions of the form 𝑉 ⩾ 𝑣 with what’s called a
probability density function, or ‘p.d.f.’, 𝑓 𝑉 . The value of this function,
𝑓 𝑉 (𝑣), doesn’t tell us how probable it is that 𝑉 = 𝑣. We know that
the probability of 𝑉 = 𝑣 is zero. Instead, it tells us how dense the
probability is at 𝑉 = 𝑣. Think about it like this: take a small region
around 𝑉 = 𝑣 with width 2𝜖, and consider the ratio ℙ(𝑣 − 𝜖 ⩽ 𝑉 ⩽
𝑣 + 𝜖) ÷ 2𝜖. And consider what happens to this ratio as 𝜖 gets smaller
and smaller. This is the density of the probability of 𝑉 = 𝑣.

In general, we find the probability that the random variable takes
a value between 𝑎 and 𝑏 by taking the area under the curve 𝑓 𝑉 in
between 𝑎 and 𝑏,

ℙ(𝑎 ⩽ 𝑉 ⩽ 𝑏) =
∫ 𝑏

𝑎
𝑓 𝑉 (𝑣) d𝑣
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Given a discrete random variable, 𝑉 , we can define the variable’s
expected value, 𝔼[𝑉], as follows:

𝔼[𝑉] def
=

∑
𝑣

𝑣 · ℙ(𝑉 = 𝑣)

And, given a continuous random variable, 𝑉 , with p.d.f. 𝑓 𝑉 , we may
define the variable’s expected value, 𝔼[𝑉], as

𝔼[𝑉] def
=

∫ ∞

−∞
𝑣 · 𝑓 𝑉 (𝑣) d𝑣

Review Questions

1. There are three core axioms of probability theory—what are they?
In addition, we saw three other,more controversial probability prin-
ciples: regularity, countable additivity, and conglomerability. What
do these additional principles say? Explain why, if you think that
infinite fair lotteries are possible, you will reject both countable ad-
ditivity and conglomerability.

2. Is countable additivity compatible with the principle of indiffer-
ence? Why or why not?

3. Explain what an ‘unmeasurable’ proposition is, and explain why
mathematicians think that there are unmeasurable propositions.

4. What is a random variable? What is a probability density function,
and how is it different from a probability function? What is the
expected value of a random variable?



3
Subjective and Objective Probability

3.1 Two Kinds of Probability

On the Bayesian interpretation, probabilities represent the degrees of
belief or credences of some (actual or idealized) epistemic agent. They
are representational states. On this interpretation, to say “rain is more
likely than snow” is just to say “I’m more confident that it will rain
than I am that it will snow”, and to say that “The probability of rain is
90%” is just to say that you are 90% sure that it will rain”.

But quantum mechanics seems to involve probabilities that aren’t
just the degrees of belief of any particular agent. Lewis wants to ac- Terminology: within philosophy, it has

become customary to reserve the word
‘chance’ for objective probabilities.

commodate the kinds of objective probabilities found in (some inter-
pretations of) quantummechanics. He is a Bayesian, but he’s a plural-
ist Bayesian. He thinks that credences are probabilities, but he doesn’t
think that they are the only kind of probability out there. He believes
that there are both subjective probabilities or credences and objective
probabilities or chances.

In A Subjectivist’s Guide to Objective Chance, Lewis is uncertain how
to understand these kinds of objective chances. He is opposed to ‘non- Lewis accepted the thesis of Humean

Supervenience: that all facts supervene
on “the spatiotemporal arrangement of
local qualities throughout all of history,
past, present and present and future.”

Humean’whatsits. So he ultimatelywants to analyze all talk of chance
in terms of the ‘Humean mosaic’ of the spatiotemporal arrangement
of local, perfectly natural properties and relations. Nonetheless, Lewis
believes that there is a connection between these two probabilities.

3.2 The Principal Principle

Lewis thinks that you can have credences about the objective chances,
just as you can have credences about any other facts about the world.
And, moreover, he thinks that your credences about the chances con-
strain your credences about other matters.

3.2.1 Questionnaire

Q1: Later today, I’ll toss a fair coin which has a 50% chance of landing
heads and a 50% chance of landing tails. To what degree should
you believe that it will land heads?

A1: 50%
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Q2: You have the evidence that the center of mass of the coin is dis-
placed, that 90 of the past 100 flips have landed tails, and that du-
plicates of this coin land landed tails in about 90% of tosses. Yet you
remain certain that the coin has a 50% chance of landing heads. To
what degree should you believe that it will land heads?

A2: 50%

Q3: The coin has already been tossed. You remain certain that it had (at
the time of the toss) a 50% chance of landing heads. You saw it land
tails. To what degree should you believe that it landed heads?

A3: Nearly 100%.

Lewis wants a general principle that accounts for these judgments.
He calls it “the principal principle”, since he believes it captures ev-
erything we know about objective chance.

The Principal Principle If ℂ0 is a reasonable initial (or ur-prior) cre-
dence function, 𝐴 is any proposition, ⟨𝒞 ℎ𝑡(𝐴) = 𝑥⟩ is the propo-
sition that the time 𝑡 chance of 𝐴 is 𝑥, and 𝐸 is any proposition
compatible with ⟨𝒞 ℎ𝑡(𝐴) = 𝑥⟩ that is admissible at time 𝑡, then

ℂ0(𝐴 | ⟨𝒞 ℎ𝑡(𝐴) = 𝑥⟩ 𝐸) = 𝑥

Notice that Lewis doesn’t require that 𝐴
is in the domain of the credence function
ℂ0, nor that ℂ0(𝐸) > 0. That’s because
Lewis accepted Regularity (he thought
credences could be infinitesimal), and
he thought that they should be defined
over any proposition.

3.2.2 Reasonable Initial Credence

In the basic, off-the-shelf Bayesian model, we said that your credences ℂ︸︷︷︸
prior

learn 𝐸−−−−−−→ ℂ𝐸︸︷︷︸
posteriorchange, over time, by conditioning them on what you’ve learned. If

you start out with the credence function ℂ, learn 𝐸, and then end up
with the new credence function ℂ𝐸, ℂ is called your ‘prior’ credence
function, and ℂ𝐸 is called your ‘posterior’ credence function. And
conditionalization said that your posterior should be your prior, con-
ditioned on your newly acquired evidence, 𝐸. That is: ℂ𝐸(𝐴) should
be ℂ(𝐴 | 𝐸) (which is just ℂ(𝐴𝐸) ÷ℂ(𝐸), so long as ℂ(𝐸) > 0.)

Lewis has a slightly different picture in mind. To appreciate this
picture, notice that your prior itself is the result of a previous learning
experiences; and the prior of that previous learning experience was
the result of a previous learning experience before that, and so on and
so forth.

· · ·ℂ learn 𝐻−−−−−−→ ℂ𝐻
learn 𝐺−−−−−−→ ℂ𝐻𝐺

learn 𝐹−−−−−−→ ℂ𝐻𝐺𝐹
learn 𝐸−−−−−−→ ℂ𝐻𝐺𝐹𝐸

If you are rational, then each of these priors were reasonable to hold,
given the evidence you had acquired up to that point. Lewis thinks
thatwe can extend further back, and ask aboutwhich opinions itwould’ve
been reasonable to hold in the absence of any evidence. Now, by the
time you were in a position to start having degrees of belief, you al-
ready had lots of evidence. Butwe can imagine a superbabywho comes
into existence with the ability to form credences, but who has yet to
undergo any experiences or acquire any evidence. Lewis thinks that
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there would be credences that would be unreasonable for superbaby
to adopt; and there are credences that would be reasonable for su-
perbaby to adopt. He calls these reasonable ‘initial’ or ‘ur-prior’ cre-
dences.

Then, Lewis accepts a slightly different learning norm (in addition
to conditionalization):

Ur-prior Conditionalization For all times 𝑡, if𝐸 is your total evidence
at time 𝑡 andℂ𝑡 is a reasonable credence function for you to have
at 𝑡, then there is a reasonable initial credence function ℂ0 such
that, for any proposition 𝐴, ℂ𝑡(𝐴) = ℂ0(𝐴 | 𝐸) If we think that there is just a single rea-

sonable initial credence, then ur-prior
conditionalization will entail condition-
alization. But if there is more than a
single reasonable initial credence, then
the two norms are logically indepen-
dent. Suppose that there are two reason-
able initial credences, ℂ0 and ℂ′

0. And
suppose that, on even days, your cre-
dence is ℂ0 conditioned on your total
evidence; whereas, on odd days, your
credence isℂ′

0 conditioned on your total
evidence. Then, you’ll satisfy ur-prior
conditionalization but not conditional-
ization. In the other direction, suppose
that there’s some unreasonble initial cre-
dence ℂ′′

0 such that whenever your total
evidence is 𝐸, your credences are given
by ℂ′′ conditioned on 𝐸. (And sup-
pose you never lose evidence.) Then,
you’ll satisfy conditionalization but not
ur-prior conditionalization.

Together with ur-prior conditionalization, the Principal Principle
entails:

The Current Principle If your total evidence at time 𝑡 is time 𝑡 ad-
missible, and ⟨𝒞 ℎ𝑡(𝐴) = 𝑥⟩ is compatible with your total evi-
dence at 𝑡, then a reasonable time 𝑡 credence in any proposition
𝐴, given that the time 𝑡 chance of 𝐴 is 𝑥, is 𝑥.

ℂ𝑡(𝐴 | ⟨𝒞 ℎ𝑡(𝐴) = 𝑥⟩) = 𝑥

3.2.3 The Proposition ⟨𝒞 ℎ𝑡(𝐴) = 𝑥⟩
‘𝒞ℎ𝑡 ’ is a definite description: ‘the time 𝑡 chance function’. Like other
definite descriptions (‘the first postmaster general’, ‘themorning star’),
it picks out different things in different possible worlds. Similarly,
‘𝒞ℎ𝑡(𝐴)’ is the definite description ‘the time 𝑡 chance of 𝐴’. So 𝒞ℎ𝑡(𝐴)
is what we called last class a random variable. It’s a function from
worlds in 𝒲 to real numbers between zero and one. The value this
random variable takes on a world 𝑤—which I’ll write ‘𝒞ℎ𝑤,𝑡(𝐴)’—is
the objective chance that 𝐴 has at the world 𝑤 and the time 𝑡.

In contrast, ‘ℂ0’ is not a definite description. It is a name for a partic- As a matter of notation, I’ll write func-
tions in blackboard boldface (like ℙ, ℂ,
or ℂℎ𝑡 ) when I’m talking about a partic-
ular probability function; and I’ll write
functions in calligraphic font (like 𝒫 , 𝒞,
ℰ , or 𝒞ℎ𝑡 ) when I’m talking about a def-
inite description for a probability func-
tion.

ular probability function. It picks out the very same probability func-
tion in every possible world.

Lewis held that—at least putting aside de se propositions which
we’ll come back to later in the course—your credences were defined
over sets of worlds, just as in the standardKolmogorov theory of prob-
ability. So, for him, the proposition ⟨𝒞 ℎ𝑡(𝐴) = 𝑥⟩ is just the set of
worlds in which the objective chance of 𝐴 is 𝑥 at time 𝑡,

⟨𝒞 ℎ𝑡(𝐴) = 𝑥⟩ = {𝑤 ∈ 𝒲 | 𝒞ℎ𝑤,𝑡(𝐴) = 𝑥}

In the proposition ⟨𝒞 ℎ𝑡(𝐴) = 𝑥⟩, we are allowed to replace ‘𝑥’ with
any real number between 0 and 1. But we are not allowed to replace
‘𝑥’ with a definite description. If we could, then the principal princi-
ple would give terrible advice. Suppose we could replace ‘𝑥’ with the
definite description ‘𝒞ℎ𝑡(𝐴)’. Then, the principle would imply that
ℂ0(𝐴 | ⟨𝒞 ℎ𝑡(𝐴) = 𝒞ℎ𝑡(𝐴)⟩) = 𝒞ℎ𝑡(𝐴). Since ⟨𝒞 ℎ𝑡(𝐴) = 𝒞ℎ𝑡(𝐴)⟩ is For any probability function ℙ, and any

propositions 𝐴, 𝐵 ∈ 𝒜 , if ℙ(𝐵) = 1, then
ℙ(𝐴 | 𝐵) = ℙ(𝐴). [Can you say why?]

necessarily true, this reduces to ℂ0(𝐴) = 𝒞ℎ𝑡(𝐴). But then, the princi-
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ple would require you to know a priori the time 𝑡 chance of any propo-
sition.

Lewis doesn’t assume that every proposition has a chance—for in-
stance, perhaps there’s no objective chance that murder is wrong. So
it could be that, for some proposition, 𝐴, ⟨𝒞 ℎ𝑡(𝐴) = 𝑥⟩ = ∅. [What
does the principle say in that case?]

Lewis has explicitly assumed that chances are time-dependent. As
time passes, the objective chance of an outcome can go up or down.
Suppose, for instance, that you enter amaze and at every turn, you flip
a coin to decide whether to turn left or right. As you move through
the maze, the chance that you find your way out may change. At the
start of the maze, half of the paths lead to an exit. Since each path is
equally likely to be taken, the chance of exit is one half. However, after
some bad luck initially, you end up at a point in the maze where only
one third of the paths ahead lead to exit. At that point, the chance of
exit has fallen to one third.

3.2.4 Admissibility

The clause about 𝐸 being admissible for the time 𝑡 is needed to make
sure that Lewis can give what he takes to be the right answers to ques-
tions 2 and 3 from his questionnaire. For question 2: he wants to
be able to say that you should continue setting your credences to the
chances, given any amount of information about times before 𝑡. So he
wants information about the chances to screen off any other informa-

A proposition 𝐸 is said to ‘screen off’ 𝐴
from 𝐵 iff 𝐴 and 𝐵 are independent, con-
ditional on 𝐸. That is, 𝐸 screens off 𝐴
from 𝐵 iff ℙ(𝐴 | 𝐸𝐵) = ℙ(𝐴 | 𝐸).

tion about the past. So any amount of information about times before
𝑡 must be admissible. For question 3: he wants to be able to say that,
once you’ve gotten information about times after 𝑡, you no longer have
to set your credences to the chances.

Lewis doesn’t provide necessary and sufficient conditions for 𝐸 be-
ing time 𝑡 admissible. As I read him (following Chris Meacham) this See Meacham. 2010. “Two Mistakes Re-

garding the Principal Principle”, in the
British Journal for the Philosophy of Science.
61: 407–431.

is mainly because he is worried about cases involving time travel into
the past. However, if we place these situations to the side, then he
accepts the following two sufficient conditions for admissibility:

Admissibility 𝐸 is time 𝑡 admissible if either (1) 𝐸 is about times be-
fore 𝑡; or (2) 𝐸 is a counterfactual conditional saying how chance
counterfactually depends upon history.

Boolean combinations of admissible propositions are them-
selves admissible.

To understand these sufficient conditions, some notation: let ‘𝐻𝑤,𝑡 ’ be
the history of 𝑤 up to time 𝑡. It is the set of worlds which perfectly
agree with 𝑤 up to the time 𝑡. And let ℋ𝑡 = {𝐻𝑤,𝑡 | 𝑤 ∈ 𝒲} be the
partition of worlds by their time 𝑡 histories. When Lewis says that

Lewis gives a more careful definition
of aboutness elsewhere that he appeals
to here. (See his Relevant Implication.)
Quickly: a subject matter, ℳ, is a par-
tition of the set of possible worlds, the
cells of which correspond toways things
might be with respect to that subject
matter. And a proposition is aboutℳ iff
it does not distinguish between worlds
within a cell of ℳ. That is: for any
𝑀 ∈ ℳ and any two 𝑤, 𝑤′ ∈ 𝑀, ei-
ther both or neither of 𝑤 and 𝑤′ are in-
cluded in the proposition. It follows that
the proposition is a union of cells from
ℳ.

𝐸 is about times before 𝑡, he means that it is a union of cells from the
partition ℋ𝑡 .

WhenLewis says that𝐸 is a conditional saying howchance depends
upon history, he means that it is a conditional of the form 𝐻𝑤,𝑡∗ �
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⟨𝒞 ℎ𝑡∗(𝐴) = 𝑥⟩ or 𝐻𝑤,𝑡∗ � ⟨𝒞 ℎ𝑡∗ = ℙ⟩, where ‘ℙ’ is a particular prob-
ability function, so that ⟨𝒞 ℎ𝑡∗ = ℙ⟩ is the set of worlds 𝑤 such that
𝒞ℎ𝑤,𝑡∗ = ℙ. Importantly, we needn’t have 𝑡∗ = 𝑡 in order for these
propositions to be admissible at the time 𝑡. Information about how
future chance counterfactually depends upon the future can be admis-
sible.

3.3 Reformulation

Lewis uses the sufficient conditions on admissibility to offer a refor-
mulation of the principal principle. Let’s start with the idea of a time 𝑡
theory of chance for a world, which we ca denote ‘𝑇𝑤,𝑡 ’ (‘𝑇’ for theory).
A time 𝑡 theory of chance for a world says how, at that world, the
chances counterfactually depend upon the history of the world up to
the time 𝑡. That is, for each 𝐻𝑡 ∈ ℋ𝑡 , 𝑇𝑤,𝑡 gives us a counterfactual of
the form 𝐻𝑡 � ⟨𝒞 ℎ𝑡 = ℙ⟩ which is true at 𝑤.

It’s worth pausing here for a second—why does Lewis get to as-
sume that there is a true counterfactual like this? There’s a famous
debate between Lewis and Stalnaker about the principle known as
‘counterfactual excluded middle’: (𝐴� 𝐶) ∨ (𝐴� ¬𝐶). Stalnaker
accepted it, but Lewis rejected it. A quantified version of the principle
says that 𝐴� (∃𝑥)𝐹𝑥 ⊢ (∃𝑥)(𝐴� 𝐹𝑥). Lewis denied that this was
valid. He gave examples like the following: if I were taller than 6 feet,
then there’s some height I’d be. But it’s not the case that there’s some
height ℎ such that, if I were taller than 6 feet, my height would be ℎ.
It’s not that I’d be 6’1’, since a world where I’m a half inch taller than 6
feet would bemore similar to the actual world; and it’s not that I’d be a
half inch taller than 6 feet, since aworldwhere I’m a quarter inch taller
than 6 feet would be more similar still. But here, Lewis seems happy
to say not only that, if the history were 𝐻𝑡 , then there would be some
ℙ such that ℙ is the objective chance function, 𝐻𝑡 � (∃ℙ)⟨𝒞 ℎ𝑡 = ℙ⟩,
but moreover, that there’s some function ℙ such that, were the history
𝐻𝑡 ,ℙwould be the objective chance function, (∃ℙ)(𝐻𝑡 � ⟨𝒞 ℎ𝑡 = ℙ⟩).
This is a ‘special case’ of counterfactual excluded middle that Lewis
was willing to accept.1 1 See in particular the discussion in sec-

tion 10, page 27, of his Causal Decision
Theory.So, given any world 𝑤 and any time 𝑡, the time 𝑡 theory of chance

for world 𝑤 will be a conjunction of counterfactuals specifying how
the time 𝑡 objective chance function counterfactually depends upon
the history of the world up until time 𝑡,

𝑇𝑤,𝑡 =
⋂
𝐻𝑡∈ℋ𝑡

𝐻𝑡 � ⟨𝒞 ℎ𝑡 = ℙ⟩

For each conjunct, we choose the probability function ℙwhich makes
that conjunct true at the world 𝑤.

The complete theory of chance for a world 𝑤 is just the conjunction
of the time 𝑡 theory of chance for 𝑤, for every time 𝑡.

𝑇𝑤 =
⋂
𝑡

𝑇𝑤,𝑡 =
⋂
𝑡

⋂
𝐻𝑡∈ℋ𝑡

𝐻𝑡 � ⟨𝒞 ℎ𝑡 = ℙ⟩
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The complete theory of chance for a world 𝑤 is admissible at every
time. And the history of theworld up until the time 𝑡 is admissible at 𝑡.
So the principal principle implies that, whenever𝐻𝑤,𝑡𝑇𝑤 is compatible
with ⟨𝒞 ℎ𝑡(𝐴) = 𝑥⟩, we will have

ℂ0(𝐴 | ⟨𝒞 ℎ𝑡(𝐴) = 𝑥⟩𝐻𝑤,𝑡𝑇𝑤) = 𝑥

Moreover, whenever 𝐻𝑤,𝑡𝑇𝑤 is compatible with ⟨𝒞 ℎ𝑡(𝐴) = 𝑥⟩, it will
entail ⟨𝒞 ℎ𝑡(𝐴) = 𝑥⟩. For the antecedent 𝐻𝑤,𝑡 , together with the condi-
tional𝐻𝑤,𝑡 � ⟨𝒞 ℎ𝑡 = ℙ⟩ will entail ⟨𝒞 ℎ𝑡 = ℙ⟩. And if this is compat-
ible with ⟨𝒞 ℎ𝑡(𝐴) = 𝑥⟩, then it must be that ℙ(𝐴) = 𝑥. So ⟨𝒞 ℎ𝑡 = ℙ⟩
must entail ⟨𝒞 ℎ𝑡(𝐴) = 𝑥⟩. So 𝐻𝑤,𝑡𝑇𝑤 entails something which entails
that ⟨𝒞 ℎ𝑡 = ℙ⟩—so it entails it.

Whenever one proposition, 𝐸, entails another, 𝐹, 𝐸𝐹 = 𝐸. So ⟨𝒞 ℎ𝑡(𝐴) =
𝑥⟩𝐻𝑤,𝑡𝑇𝑤 = 𝐻𝑤,𝑡𝑇𝑤 . And if𝐻𝑤,𝑡𝑇𝑤 entails ⟨𝒞 ℎ𝑡(𝐴) = 𝑥⟩, then𝒞𝑤,𝑡(𝐴) =
𝑥. So the principal principle implies that, for any 𝑤 and any 𝑡,

ℂ0(𝐴 | 𝐻𝑤,𝑡𝑇𝑤) = 𝒞ℎ𝑤,𝑡(𝐴)

We thus have:

The Principal Principle Reformulated Ifℂ0 is a reasonable initial cre-
dence function, 𝑤 is any world, 𝑡 any time, and 𝐴 any proposi-
tion in the domain of 𝒞ℎ𝑤,𝑡 , then

𝒞ℎ𝑤,𝑡(𝐴) = ℂ0(𝐴 | 𝐻𝑤,𝑡𝑇𝑤)

Does the reformulatedprincipal principle imply the original? Lewis
suggests that it almost entails the original—but not quite.

To see how the reverse entailment might hold, notice that {𝐻𝑤,𝑡𝑇𝑤 |
𝑤 ∈ 𝒲} is a partition, and that (1) the proposition ⟨𝒞 ℎ𝑡(𝐴) = 𝑥⟩ is a
union of cells from this partition; and (2) any propositionwhichmeets
Lewis’s sufficient condition for admissibility will be a union of cells of
the partition.

Figure 3.1: The partition {𝐻𝑤,𝑡𝑇𝑤 |
𝑤 ∈ 𝒲}. Any proposition which meets
Lewis’s sufficient conditions for admis-
sibility will be a union of the cells of
this partition (like the shaded proposi-
tion above).

If thiswere a finite partition, itwould follow straightaway thatℂ0(𝐴 |
⟨𝒞 ℎ𝑡(𝐴) = 𝑥⟩𝐸) = 𝑥. The reason is that any finitely additive prob-
ability will be conglomerable over a finite partition. That is: if ℂ0 is
a finitely additive probability, E is a finite partition of the proposi-
tion 𝐹,2 and ℂ0(𝐴 | 𝐸) = 𝑥 for every 𝐸 ∈ E , then ℂ0(𝐴 | 𝐹) = 𝑥,

2 E is a partition of 𝐹 iff
⋃

E = 𝐹 and any
two propositions in E are disjoint.

too. The conjunction ⟨𝒞 ℎ𝑡(𝐴) = 𝑥⟩𝐸 is a disjoint union of proposi-
tions of the form 𝐻𝑤,𝑡𝑇𝑤 (with 𝑡 fixed and 𝑤 variable), and for every
one of these propositions, we will have ℂ0(𝐴 | 𝐻𝑤,𝑡𝑇𝑤) = 𝑥. So,
if {𝐻𝑤,𝑡𝑇𝑤 | 𝑤 ∈ 𝒲} were a finite partition, we would have that
ℂ0(𝐴 | ⟨𝒞 ℎ𝑡(𝐴) = 𝑥⟩𝐸) = 𝑥.

So we can almost recover the original principal principle from the
reformulation. Butwe cannot quite get there—for two reasons. Firstly,
as we saw last class, conglomerability needn’t hold if ℰ is an infinite
partition. And as Lewis says, “indeed we would expect the history-
theory partition to be infinite”. Secondly, even if we had conglomer-
ability over the history-theory partition, we would only have derived
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the original principle for the time 𝑡 admissible propositions which are cov-
ered by Lewis’s sufficient conditions. We wouldn’t have derived it for
other admissible propositions (and, officially, Lewis is neutral about
whether there are other admissible propositions).

3.4 Consequences of the Principal Principle

Lewis thinks that the principal principle “capture[s] allwe knowabout
chance”. Even though it only concerns the connection between chance
and reasonable (initial) credence, we can use it to show various things
about objective chance. In particular, Lewis highlights the following
consequences of the principal principle:

1. First consequence: the past is no longer chancy–the objective chance
of any historical proposition is always one. To appreciate this con-
sequence, suppose (for reductio) that there was some world 𝑤 such
that 𝒞ℎ𝑤,𝑡(𝐻𝑤,𝑡) = 𝑥, for some 𝑥 less than one. Then, 𝐻𝑤,𝑡 is com-
patible with ⟨𝒞 ℎ𝑡(𝐻𝑤,𝑡) = 𝑥⟩. Moreover, 𝐻𝑤,𝑡 is admissible. So the
principal principle implies that ℂ0(𝐻𝑡 | 𝐻𝑡⟨𝒞 ℎ𝑡(𝐻) = 𝑥⟩) = 𝑥. But
it follows from the definition of conditional probability that ℂ0(𝐻𝑡 |
𝐻𝑡⟨𝒞 ℎ𝑡(𝐻) = 𝑥⟩) = 1. Contradiction. So there is no world 𝑤 such
that 𝒞ℎ𝑤,𝑡(𝐻𝑤,𝑡) = 𝑥, for some 𝑥 less than one. So, for every world, 𝑤,
𝒞ℎ𝑤,𝑡(𝐻𝑤,𝑡) = 1.

2. Second consequence: the chances are probabilities. This follows from
the reformulated version of the principal principle, together with the
observation that a conditional probability function is itself a proba-
bility function. [Why?] I want to emphasize that this consequence
is slightly deeper than Lewis lets on. We saw last class that there is
much controversy about which principles probability satisfies—is it
regular? countably additive? conglomerable? According to the prin-
cipal principle, once we’ve answered these questions for reasonable ini-
tial credence, we have thereby also answered them for objective chance.

According to Lewis, reasonable initial credence is regular. So the ob-
jective chances are regular in a restricted sense: at the world 𝑤 and
the time 𝑡, they give positive probability to any possibility compatible
with the history of 𝑤 at time 𝑡 and the theory of chance for 𝑤. That is:
because Lewis thinks that credences can be infinitesimal, he thereby
thinks that objective chances can be infinitesimal, too.

3. Third consequence: future chances come from past chances by condi-
tioning on the intervening history. Take two times, 𝑡1 and 𝑡2. Let 𝐼 be
a complete description of everything that happens in between 𝑡1 and
𝑡2. Then, 𝐻𝑤,𝑡2 = 𝐻𝑤,𝑡1 𝐼. By the reformulated principal principle,

𝒞ℎ𝑤,𝑡2(𝐴) = ℂ0(𝐴 | 𝐻𝑤,𝑡2𝑇𝑤) = ℂ0(𝐴 | 𝐻𝑤,𝑡1 𝐼𝑇𝑤) = 𝒞ℎ𝑤,𝑡1(𝐴 | 𝐼)

4. Fourth consequence: observed frequencies canprovide evidence about
the chances. For instance: suppose that we are going to flip a fair coin
nine times, and we are considering two chance hypotheses: firstly,
that the coin flips have an independent 1/3rd chance of landing heads
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(𝐻1/3). Secondly, that the coin flips have an independent 2/3rds chance
of landing heads (𝐻2/3). We observe that 3 of the ten flips land heads.
Call this evidence ‘𝐸’. Let 1 be the time before the flips have taken
place, and let 2 be the time after the flips have taken place. Then, us-
ing the current principle and the odds ratio form of Bayes’ rule,3 3 This says that

ℙ(𝐴 | 𝐸)
ℙ(𝐵 | 𝐸) =

ℙ(𝐸 | 𝐴)
ℙ(𝐸 | 𝐵) · ℙ(𝐴)

ℙ(𝐵)ℂ2(𝐻1/3)
ℂ2(𝐻2/3) =

ℂ1(𝐸 | 𝐻1/3)
ℂ1(𝐸 | 𝐻2/3) ·

ℂ1(𝐻1/3)
ℂ1(𝐻2/3)

=

( 1
3
)3 ( 2

3
)6( 2

3
)3 ( 1

3
)6 · ℂ1(𝐻1/3)

ℂ1(𝐻2/3)

=

( 2
3
)3( 1

3
)3 · ℂ1(𝐻1/3)

ℂ1(𝐻2/3)

= 8 · ℂ1(𝐻1/3)
ℂ1(𝐻2/3)

which means that this observation has made 𝐻1/3 eight times more
likely than 𝐻2/3 than it was before the observation was made.

This is really crucial: for Bayesians, it is the principal principle which
allows the observation of frequencies to raise their credences in hy-
potheses about the objective chances. Chances that make the frequen-
ciesmore likely are confirmed. Chances thatmake the frequencies less
likely are disconfirmed.

3.5 Another Reformulation

The third consequence tells us that the objective chance function evolves
through time by conditioning it on the intervening history. We can
think of the objective chances like an agent who learns what has hap-
pened throughout history up to the present moment. As time rolls on,
it learns everything about what has transpired.

But then, just as we thought about an ur-prior credence function,
we can also think about the ur-prior chance function at a world, 𝑤:
𝒞ℎ𝑤,0. This is the function which, when conditioned on the propo-
sition 𝐻𝑤,𝑡 , gives 𝒞ℎ𝑤,𝑡 . We could use a Lewisian theory of chance
to determine such a function; if 𝐻𝑡 � ⟨𝒞 ℎ𝑡 = ℙ⟩ is true at 𝑤, then
𝒞ℎ𝑤,0(− | 𝐻𝑡) = ℙ(−).4 And we could use such a function to deter- 4 When I write ‘𝒞ℎ𝑤,0(− | 𝐻𝑡 )’, I’m just

referring to a function that you hand a
proposition, 𝐴, and it hands you back
the value of 𝒞ℎ𝑤,0(𝐴 | 𝐻𝑡 ).

mine a Lewisian theory of chance. If𝒞ℎ𝑤,0(− | 𝐻𝑡) = ℙ, thenwe could
stipulate that 𝐻𝑡 � ⟨𝒞 ℎ𝑡 = ℙ⟩ is true at 𝑤. Going back-and-forth
between claims about ur-chance and claims about a Lewisian theory
of chance in this way relies upon some assumptions about the rela-
tionship between counterfactuals and chance that we should probably
interrogate further—and that one of you could profitably interrogate
further for a term paper. But let’s assume that we can think about
the theory of chance in this way. Then, we could give an alternative
reformulation of the Principal Principle:
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The Principal Principle Reformulated Again If ℂ0 is a reasonable ini-
tial credence function, 𝐴 is any proposition, and ⟨𝒞 ℎ0 = ℙ⟩ says
that the ur-prior chances are given by ℙ, then

ℂ0(𝐴 | ⟨𝒞 ℎ0 = ℙ⟩) = ℙ(𝐴)

3.6 The Principal Principle and Humean Supervenience

The Principal Principle tells us many things about chance. In fact, it
tells us enough to rule out several interpretations of chance—including
Lewis’s own.

3.6.1 The Best Systems Account

Distinguish twoviews about themetaphysics of objective chance: Humeans
hold that facts about chance supervene on “the spatiotemporal ar-
rangement of local qualities throughout all of history, past, present,
and future”. In other words: once you tell me exactly what happens
throughout the entire history of the universe, you will have told me
all that there is to tell about objective chance. No two worlds differ in
chance without differing in chance outcomes.

For instance: the actual frequentist is a Humean about objective
chance. Once you tell me everything that’s happened, you’ve told me
enough to know what the actual frequencies are, which is enough to
tell me what the objective chances are.

Lewis wasn’t an actual frequentist, but he was a Humean. His
views about chancewere integratedwith his views about laws of nature—
for him, the objective chances were just a particular kind of law of na-
ture. His view about laws is called the ‘Best SystemsAnalysis’ of laws.
To understand the view, imagine going to God and asking him to tell
you what the world is like. He starts off by saying “ok, well, at time 𝑡0,
particle 𝑝 is at location 𝑥 with momentum 𝑚, and...”. You interrupt,
and tell God: “Ok, look, I don’t have time to get all of the details—
could you give me an executive summary?” At that point, God tells
you “Ok, well, every particle’s acceleration is equal to the resultant
forces acting on it divided by its mass, and ...” and then God lists off
the things we think of as laws of nature. On Lewis’s view, all that it is
for something to be a law is for it to be a highly informative and simple
‘executive summary’ of the truths at a world.

More carefully, consider all of the possible deductive, axiomatic
systems (some collection of axioms closedunder deductive consequence).
Some of these systemswill be highly informative (strong). Others will
be particularly simple, with a small number of short axioms. Strength
and simplicity are both virtues of an axiomatic system, and these virtues
compete. As the system becomes simplier, it typically becomes less
informative; and as it becomes more informative, it typically becomes
less simple. Consider the axiomatic system which strikes the best bal-
ance of simplicity and strength. According to Lewis, the generaliza-
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tions which follow from that ‘best’ axiomatic system are the laws of
nature.

At least—that’s the story about deterministic laws. But what about
chancy laws (like the ones found in some interpretations of quantum
mechanics)? According to Lewis, sometimes the best way to strike
a balance between simplicity and strength is to give, not a universal
generalization, but rather a chance law. For instance, if about half of
the flips of the coin land heads and about a half of the flips of the
coin land tails, then a good ‘executive summary’ would tell you that
there’s a one half chance of the coin landing heads on any particular
flip. In the case of chance laws, informativeness is to be understood in
terms of ‘fit’ (how likely the chance laws make the actual world). It is
a virtue of a chance law that it makes the actual world’s history likely.
But this virtue trades off against the virtue of simplicity. The actual
chance laws are the ones that strike the best balance of simplicity and
fit.

3.6.2 The ‘Bug’ in the Principal Principle

The bombshell: Lewis’s theory of chance seems to be incompatible
with his principal principle.

Suppose that the only thing that will happen throughout the his-
tory of the universe is that we will flip a coin a hundred times. We can
model this case with a set of possibilities, 𝒲, where each 𝑤 ∈ 𝒲 is a
sequence of ‘𝐻’s and ‘𝑇’s with 100 entries.

Consider two worlds: 𝑤 𝑓 and 𝑤𝑢 . At 𝑤 𝑓 , we get 50 heads landings
and about 50 tails landings, and there’s no discernible pattern in these
landings. For instance, it’s not 𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇.... At 𝑤𝑢 , the coin lands
heads on each and every flip. That is, 𝑤𝑢 = 𝐻𝐻𝐻𝐻𝐻...𝐻 (a sequence
of 100 ‘𝐻’s).

The chance lawwhich says each coin has a 50% independent chance
of landing heads will fit 𝑤 𝑓 better than any other; and it is simpler
than other competitor chance laws. So, at 𝑤 𝑓 , the objective chance
of the coin landing heads on any flip is one half, and the outcome of
different flips are probabilistically independent of each other.

On the other hand, the chance law which says that the coin has
a 100% chance of landing heads on each flip fits 𝑤𝑢 better than any
other. And it is very simple. So, at 𝑤𝑢 , the objective chance of the coin
landing heads on any—and, therefore, every—flip is 100%.

At 𝑤 𝑓 , the objective chance of the coin landing heads on each and
every flip is (1/2)100. So

𝒞ℎ𝑤 𝑓 ,0(𝑤𝑢) = (1/2)100

This means that ⟨𝒞 ℎ0(𝑤𝑢) = (1/2)100⟩ is not empty. It at least contains
𝑤 𝑓 .

However, ⟨𝒞 ℎ0(𝑤𝑢) = (1/2)100⟩ does not contain 𝑤𝑢 . For 𝑤𝑢 is in-
compatible with the objective chance of 𝑤𝑢 being (1/2)100. At 𝑤𝑢 , the
objective chance of 𝑤𝑢 is 100%. In general, if 𝐴 and 𝐵 are incompat-
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ible (and the probability of 𝐵 is non-zero), then the probability of 𝐴,
conditional on 𝐵, must be zero.

So

ℂ0(𝑤𝑢 | ⟨𝒞 ℎ0(𝑤𝑢) = (1/2)100⟩) = (1/2)100 by the Principal Principle, but

ℂ0(𝑤𝑢 | ⟨𝒞 ℎ0(𝑤𝑢) = (1/2)100⟩) = 0 by probabilism

Contradiction. So by assuming Lewis’s theory of chance and his prin-
cipal principle, we arrived at a contradiction. So the principal princi-
ple is incompatible with his theory of objective chance.

More generally, the problem is that, according to Humean theories
of chance, chance can bemodest—the chance function can fail to know
that it is the objective chance function.5 That is, we can have a world 5 The terminology of ‘modesty’ and ‘im-

modesty’ comes from thinking of the ob-
jective chance function as a kind of ex-
pert. If an expert ismodest, then they are
not certain that they are the expert. And
if the expert is immodest, then they are
certain that they are the expert.

𝑤 and a time 𝑡 such that

𝒞ℎ𝑤,𝑡(⟨𝒞 ℎ𝑡 = 𝒞ℎ𝑤,𝑡⟩) < 1

But, by the second reformulation of the principal principle, we must
have

ℂ0(⟨𝒞 ℎ𝑡 = 𝒞ℎ𝑤,𝑡⟩ | ⟨𝒞 ℎ𝑡 = 𝒞ℎ𝑤,𝑡⟩) = 𝒞ℎ𝑤,𝑡(⟨𝒞 ℎ𝑡 = 𝒞ℎ𝑤,𝑡⟩)

By the definition of conditional probability, the right hand side must
be 1 whenever it is defined. So the principal principle requires the
left hand side to be 1 also. Which means that the principal principle
requires objective chance to be immodest—it must be certain that it is
the objective chance function.

3.7 The New Principle

One reaction to this is to reject Lewis’s theory of chance. However,
that’s not the reaction of Lewis himself. He instead took up the sug-
gestion of Michael Thau and Ned Hall that the ‘old’ principle be re-
vised.6 6 See Lewis’s ‘Humean Supervenience

Debugged’, Thau’s “Undermining and
Admissibility”, and Hall’s ‘Correcting
the Guide to Objective Chance’, and
‘Two Mistakes about Credence and
Chance’.

According to Hall, we should think of the principal principle as an
instance of a more general kind of principle: a principle of expert def-
erence. In general, an expert in some domain is someone whose prob-
abilities about the propositions in that domain you regard as more
trustworthy than your own. And the objective chance function has
a particularly wide domain of expertise. But Hall thinks we should
distinguish two different kinds of expert: what he calls a database ex-
pert and an analyst expert. A database expert is a function you should
trust and defer to because it knows so much more than you. For a
database expert, ℰ , you should satisfy the kind of constraint imposed
by the original principal principle, and set ℂ(𝐴 | ⟨ℰ = 𝔼⟩) = 𝔼(𝐴).
In contrast, an analyst expert is a function you should trust and defer
to not because it has more information than you, but rather because
it is better at evaluating the evidential bearing of some propositions
on another—it is better at analyzing evidence, even though it may not
have as much evidence as you do.
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When it comes to an analyst expert, you shouldn’t just defer to them
straightaway—you may have some relevant evidence the analyst ex-
pert lacks. Instead, you should bring the expert up to speed by con-
ditioning their probability function on any information you are tak-
ing for granted, and only defer to them then. If the analyst expert is
modest—if they don’t know that they are the expert—then you will
also have to bring them up to speed on this information.

In general, for an analyst expert, if 𝐸 is your total evidence, then
you should have

ℂ(𝐴 | ⟨ℰ = 𝔼⟩) = 𝔼(𝐴 | ⟨ℰ = 𝔼⟩𝐸)

Or, appealing to ur-prior conditionalization, you should have, for any
proposition 𝐸,

ℂ0(𝐴 | ⟨ℰ = 𝔼⟩𝐸) = 𝔼(𝐴 | ⟨ℰ = 𝔼⟩𝐸)

Then, Hall contends that objective chance is a modest analyst ex-
pert. So, we should have that, for any 𝐸,

ℂ0(𝐴 | ⟨𝒞 ℎ𝑡 = ℙ⟩𝐸) = ℙ(𝐴 | ⟨𝒞 ℎ𝑡 = ℙ⟩𝐸)

In particular, take any world 𝑤, any time 𝑡, let 𝐸 = 𝐻𝑤,𝑡𝑇𝑤 , and
consider the probability function 𝒞ℎ𝑤,𝑡 . Then,

ℂ0(𝐴 | ⟨𝒞 ℎ𝑡 = 𝒞ℎ𝑤,𝑡⟩𝐻𝑤,𝑡𝑇𝑤) = 𝒞ℎ𝑤,𝑡(𝐴 | ⟨𝒞 ℎ𝑡 = 𝒞ℎ𝑤,𝑡⟩𝐻𝑤,𝑡𝑇𝑤)

The conjunction 𝐻𝑤,𝑡𝑇𝑤 entails (by modus ponens) that ⟨𝒞 ℎ𝑡 = 𝒞ℎ𝑤,𝑡⟩.
So we could re-write this as

ℂ0(𝐴 | ⟨𝐻𝑤,𝑡𝑇𝑤) = 𝒞ℎ𝑤,𝑡(𝐴 | 𝐻𝑤,𝑡𝑇𝑤)

Assuming that the past has chance 1, this reduces to

ℂ0(𝐴 | ⟨𝐻𝑤,𝑡𝑇𝑤⟩) = 𝒞ℎ𝑤,𝑡(𝐴 | 𝑇𝑤)

The New Principle If ℂ0 is a reasonble initial credence function, 𝑤
is any world, 𝑡 any time, and 𝐴 is any proposition in the domain
of 𝒞ℎ𝑤,𝑡 , then

ℂ0(𝐴 | 𝐻𝑤,𝑡𝑇𝑤) = 𝒞ℎ𝑤,𝑡(𝐴 | 𝑇𝑤)

Review Questions

1. What does Lewis’s Principal Principle say? Explain why the princi-
pal principle is incompatible with Humean views about objective
chance, using the Actual Frequentist as an example. What is the
New Principle, and why is it, unlike the original principal principle,
compatible with Actual Frequentism?

2. In my statement of the principal principle, what is ‘𝒞ℎ𝑡 ’, and why
is it written in a calligraphic font?
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3. What is the complete theory of chance for a world, and how can we
use it to reformulate Lewis’s principal principle?

4. Challenge: Lewis’s original principal principle contained an admis-
sibility clause, but the reformulation does not. Why not?



4
The Philosophy of Statistics

Within the theory of probability, we build probabilistic models and
use them to calculate the chances of various outcomes or observa-
tions. When you’re doing probability theory, you are assuming that
you know precisely what the underlying probabilistic model is, and
you are deducing the consequences of that model.
Example 4 (Spinning a Biased Coin—A Binomial Process). We have a The bias of a coin flip doesn’t vary with

the mass distribution of the coin. It
pretty much always has a chance of
about 51% that it lands on the side
that was facing up when the coin was
flipped. But coin spins can have substan-
tial biases one way or the other. You can
test this for yourself: get a few coins of
the same denomination and spin them
each. You’ll probably discover that one
of them gets way more heads than the
other.

coin whose bias is 1/3—meaning that, if it is spun,then the chance that it lands
on heads is 1/3. The outcome of each spin is probabilistically independent of
the outcome of every other spin. We will spin the coin ten times. What is the
chance that it lands heads at least  times?

We can model this case with a set 𝒲 of sequences of 𝐻s and 𝑇s. A
sequence 𝐻𝐻𝑇𝐻𝐻𝑇𝐻𝐻𝑇𝐻 represents a possibility in which the coin
landedheads on the first and second spin, tails on the third spin, heads
on the fourth spin, and so on. And we can parametrize the space
𝒲 with a (discrete) random variable, 𝑋, which counts the number
of heads landings.

Then, it will turn out that, for values of 𝑥 between 0 and 10,

(10
𝑥

)
is pronounced ‘10 choose 𝑥’, and it

counts the number of ways of choosing
𝑥 things from a set of size 10. In general,
𝑛 choose 𝑘 is 𝑛!/𝑘!(𝑛−𝑘)!.

ℂℎ(𝑋 = 𝑥) =
(
10
𝑥

)
(1/3)𝑥 · (2/3)10−𝑥

The chance of each possible value of 𝑋 is shown in figure 4.2. Adding
up the values of ℂℎ(𝑋 = 8),ℂℎ(𝑋 = 9), and ℂℎ(𝑋 = 10), we get that

ℂℎ(𝑋 ⩾ 8) = 67/19,683 = 0.00340395

Figure 4.1: A probability mass function
for the random variable 𝑋. The height
of the line above 𝑥 gives ℂℎ(𝑋 = 𝑥).

Example 5 (Weight Loss Drug—A Normal Distribution). Suppose that
we divide people into two groups: a control group and a test group. The
control group is given a placebo and the test group is given a new weight loss
drug that is completely ineffective. Taking the weight loss drug does not affect
someone’s weight at all. Nonetheless, people’s weights fluctuate randomly. If
𝐷 is the difference between the average weight change in the control group and
the average weight change in the test group, then 𝐷 has a standard normal
probability density function. (As in figure ..) What is the chance that the
test group lost on average . more pounds than the control group?

Figure 4.2: A probability density func-
tion for the randomvariable𝐷. The area
of the blue region gives ℂℎ(𝐷 ⩾ 1.7).

Using a table for the standard normal distribution, you can find that
ℂℎ(𝐷 ⩾ 1.7) ≈ 0.045.
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In probability, you start from somemodeling assumptions—like, for
instance, that the coin has a 1/3rd bias towards heads or that the differ-
ence between weight lost in the test and control group has a standard
normal distribution—and you deduce consequences about the proba-
bilities of various outcomes.

When you’re making a statistical inference, you are trying to go the
other way around. You are looking at the outcome of some experiment
and trying to infer something about the probabilities that generated
that outcome.

4.1 Fischer’s Test of Significance

One standard method of statistical inference is known as a ‘signifi-
cance test’. The simplest version of significance testing was devised
by Ronald Fischer.

The basic idea behind the test of significance is this: you formulate
a probabilistic hypothesis, 𝐻, about the value of some random vari-
able. You then conduct an experiment, gather data, and if, according
to the chance hypothesis, the probability that you’d get data like that
is sufficiently low, then you reject the hypothesis 𝐻.1 1 How low is ‘sufficiently low’? Fisher

offhandedly suggested that, if the hy-
pothesis made the evidence less than
5% likely, then the data were ‘signifi-
cant’: “It is convenient to take this point
as a limit in judging whether a devia-
tion ought to be considered significant
or not”. This ‘0.05’ cut off for statistical
significance has been wildly influential
within statistics. If the hypothesis made
the evidence 5.1% likely, this is consid-
ered unpublishable. Researchers have
incentives to fudge their data to make
it over the 5% line. You can see in the
data that there are far more test results
just over the 5% significance level than
you’d expect, indicating that researchers
follow this incentive.

Example 6 (Testing the Bias of a Coin). We have a coin of unknown bias,
𝑏. The outcome of each spin is known to be probabilistically independent of
the outcome of every other spin. 𝐻 is the chance hypothesis that the coin is
/rd biased towards heads: 𝐻 : 𝐵 = 1/3. We spin the coin ten times and
find that  of the spins land heads.

As we calculated above, the probability that we’d see that many
heads landings (or more) is around 0.3%. That’s very improbable.
So, if the chance hypothesis 𝐻 were true, then it’s very improbable
that we’d have seen as many heads as we in fact saw (or more). So we
should reject the hypothesis 𝐻.

Example 7 (Testing the Effectiveness of aWeight LossDrug). We divide
people into two groups: a control group and a test group. The control group
is given a placebo and the test group is given a new weight loss drug. 𝐻 is
the hypothesis that the weight loss drug is ineffective, and that the variable
𝐷 (the difference between the average weight change in the control group and
in the test group) has a standard normal distribution. We observe an average
difference of . pounds.

As we calculated above, the probability that we’d see that much of a
weight difference (or greater) is about 4.5%. That’s very improbable.
So we should reject the chance hypothesis 𝐻, and conclude that the
weight loss drug has some effect.

4.1.1 Fischerian Significance Testing and Popperian Falsificationism

According to a traditional view in the philosophy of science, what dis-
tinguishes science from non-science or pseudo-science is that scien-
tists seek evidence that supports and confirms their hypotheses; and
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Figure 4.3: Fischer’s test of significance
(a ‘one tailed’ test). In orange, the prob-
ability density function over potential
obervations, according to the chance hy-
pothesis of interest. The values in the
blue region have a probability of 5%. If
you observe a value in that region, you
reject the hypothesis. Else, you do not
reject the hypothesis.

the kinds of hypotheses scientists accept are those with supporting
and confirmatory evidence; whereas non-science does not have sup-
porting or confirmatory evidence. On this view, scientists start with a
hypothesis, derive empirical predictions from it, and then check to see
whether the empirical predictions are borne out. If they are, then the
hypothesis is confirmed. If they are not, then the hypothesis is refuted.

Logic of Confirmation Logic of Falsification
If 𝐻, then 𝐸 If 𝐻, then 𝐸
𝐸 not-𝐸
∴ 𝐻 ∴ not-𝐻

According to Sir Karl Popper, the distinguishing mark of science is
not verification, but rather falsification. What makes a theory scientific
is that it is falsifiable; non-scientific or pseudo-scientific theories are
not falsifiable. Popper thought that his views in the philosophy of
science solved Hume’s problem of induction, since the logic of theory
confirmation is inductive; but the logic of theory rejection or falsification
is purely deductive. So Popper’s ‘solution’ to the problem of induction
was that science simply does not utilize induction.

One serious philosophical objection to Popper’s viewswere that sci- Popper’s own view was that chance hy-
potheses were not scientific. He claimed
that

Probability statements, in so far
as they are not falsifiable, are
metaphysical andwithout empir-
ical significance; and in so far as
they are used as empirical state-
ments they are used as falsifiable
statements.

Here, his idea is that a probabilistic hy-
pothesis like 𝐻 : 𝐵 = 1/2 is unscientific,
precisely because it is compatible with
any evidence whatsoever. But a more
contentful hypothesis like ‘the bias of
the coin is 1/2 and it will not land heads up
more than 80% of the time’ was scientific,
because that hypothesis is flatly incom-
patible with some evidence, and could
therefore be falsified by it.

ence very often tests probabilistic hypotheses, which cannot be deduc-
tively falsified. For instance, in example 3, if we choose to reject the
probabilistic hypothesis that the coin has a bias of 𝐵 = 1/2 on the basis
of the evidence that it landed heads up 8 out of 10 times, this inference
is not a deductively valid one. The observed evidence is consistentwith
the coin having a bias of 1/2.

Philosophers of science have almost unanimously rejected Popper’s
views—though there are a fewhold-outs—andhis views about chance
hypotheses in particular is seen as a rather weak point in his theory.
Nonetheless, Ronald Fischer’s significance tests were heavily influ-
enced byPopper’s views. However, Fischer didn’t share Popper’s views
about chance hypotheses being unscientific. Instead, Fischer thought
that we could reject a hypothesis if the evidence was sufficiently un-
likely, conditional on that hypothesis (even if the evidence was strictly
speaking compatible with the hypothesis). So Fischer agreed with
Popper that probabilistic hypotheses could not be confirmed by evidence—
no amount of evidencewouldmake it reasonable to accept a probabilis-
tic hypothesis. But he thought that nonetheless, they could be falsified
by evidence—there was evidence that would make it reasonable to re-
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ject the hypothesis.
Fischer’s significance tests follow the following logic:2 2 This is the inference Sober calls ‘prob-

abilistic modus tollens’
Logic of Probabilistic Falsification
If 𝐻, then it is unlikely that 𝐸
𝐸
∴ it unlikely that 𝐻

For instance, in example 3: if the bias of the coin were 1/2, then it is
unlikely that the coin would land heads on at least 8 out of 10 spins.
The coin did land heads on at least 8 out of 10 spins. So it is unlikely
that the bias of the coin is 1/2, and we should reject this hypothesis.

In example 4: If the weight loss drug were ineffective, then it is un-
likely that the test group would lose 1.7 more pounds than the control
group on average. The test group did lose 1.7 more pounds than the
control group, on average, so it is unlikely that the weight loss drug is
ineffective, and we should reject this hypothesis.

4.2 Bayesian Critiques of Fischer’s Test of Significance

Bayesians think that Fischer’s proposed significance test has commit-
ted at least three probabilistic fallacies. Let’s take them in turn.

4.2.1 The Principle of Total Evidence

Notice that, in a significance test, we’re not really asking about how
likely we would be to get some evidence, if the hypothesis were true.
In the case of a continuous random variable, we know that the proba-
bility of getting the data we actually got was zero—same as any other
data we could have received. Instead, we’re asking about how likely
we’d be to get evidence at least as far from the mean as the data we got
(or perhaps, at least as far from themean in this direction as the data we
got). That’s a strange feature of the inference. Why are we not looking
at the strongest thing we’ve learned? And if we’re going to be looking
at something weaker than what we learned, then why not instead ask
how likely we’d be to get evidence at least as close to the mean as the
data we in fact got?

Bayesians are committed to the following principle:

Principle of Total Evidence Any statistical inference should be based on
all of the evidence you’ve received.

The Fisherian significance test violates the principle of total evidence
by basing its inference on something logically weaker than the total
evidence.

4.2.2 The Base Rate Fallacy

Here’s a probability puzzle that a number of doctors get wrong:

Example 8. There is a symptom-less disease that % of the population has.
We have a test that is % reliable at detecting whether or not someone has the
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disease. That is: the ‘false positive’ and ‘false negative’ rates are both %.
Conditional on you having the disease, the probability that the test gives a
‘false negative’ and says you don’t have it is %. And, conditional on you
not having the disease, the probability that the test gives a ‘false positive’ and
says you do have it is %.

You get the test and it comes back positive. What is the probability that
you have the disease?

Many people—including may doctors—answer ‘90%’. But this is in-
correct. In fact, the answer is ‘50%’.

The fallacy that people make when they say that you are 90% likely
to have the disease is called the ‘base rate fallacy’—so-called because
you are ignoring the base rate of the disease in the population at large.
If the disease is antecedently unlikely (as in this case), then even if the
test is particularly reliable, a positive result needn’t raise the probabil-
ity that you have the disease above 50%.

Figure 4.4: Suppose that there are 100
people, and 10 of them have the disease.
Then, 9 of the 10 sick people will get a
true positive, and 1 of the sick people
will get a false negative. And 81 of the
90 healthy people will get a true nega-
tive, whereas 9 of the healthy peoplewill
get a false positive. When you learn that
you got a positive test result, you learn
that you are in the right-hand column.In general, we need to be careful to distinguish the probability of

a hypothesis (like, e.g., that you are sick) given the evidence (like, e.g.,
a positive test result) from the probability of the evidence given the
hypothesis.

ℙ(𝐻 | 𝐸)︸    ︷︷    ︸
posterior

ℙ(𝐸 | 𝐻)︸    ︷︷    ︸
likelihood

Recall that the quantity on the left is called the ‘posterior’ probabil-
ity of the hypothesis, given the evidence. The quantity on the right
is called the ‘likelihood’—it is how likely the hypothesis makes the
evidence. According to Bayesians, the quantity on the left is what we
should be concernedwith whenwe’re asking whether or not to accept
a hypothesis. According to the Bayesian, you can measure the degree
towhich a piece of evidence confirms a hypothesis by comparing your
posterior credence ℂ(𝐻 | 𝐸) to the prior credence ℂ(𝐻).
Bayesian Theory of Confirmation If your posterior credence is greater

than your prior, ℂ(𝐻 | 𝐸) > ℂ(𝐻), then 𝐸 has confirmed 𝐻. If the
posterior is less than the prior,ℂ(𝐻 | 𝐸) < ℂ(𝐻), then 𝐸 has discon-
firmed 𝐻. If the posterior is equal to the prior, ℂ(𝐻 | 𝐸) = ℂ(𝐻),
then 𝐸 has neither confirmed nor disconfirmed 𝐻.

The Bayesian thinks that likelihoods have an important role to play
in inductive inference. But they do not think that they are the entire
story. The likelihoods relate the prior to the posterior via Bayes’ Theo-
rem:

ℙ(𝐻 | 𝐸)︸    ︷︷    ︸
posterior

=
ℙ(𝐸 | 𝐻)
ℙ(𝐸) · ℙ(𝐻)︸︷︷︸

prior

Bayes’ theorem is just that—a theorem. But togetherwith the Bayesian’s
theory of confirmation (which is not a theorem, but a substantive philo-
sophical assumption), and the principal principle, the theorem tells us
something about the nature of confirmation. Roughly, what it says is
that theories that make better predictions get confirmed; and theories
thatmakeworse predictions get disconfirmed. Think about it like this:
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the ratio ℙ(𝐸 | 𝐻) ÷ ℙ(𝐸) gives a measure of how well the hypothesis
𝐻 did predicting the evidence. If the ratio is positive, then 𝐻 made
𝐸 more likely than it was antecedently. In that case, ℙ(𝐻 | 𝐸) will be
greater than ℙ(𝐻), and 𝐸 will confirm 𝐻.

The ‘base rate fallacy’ is effectively the fallacy of ignoring the prior
probability of the hypothesis. In example 5, it is ignoring the prior
probability that you have the disease. But it seems that the same fal-
lacy is taking place in Fischerian significance testing.

Defenders of significance testing often respond to this allegation by
appealing to a frequentist interpretation of probability—for this rea-
son, these statistical techniques are often known as ‘frequentist’ statis-
tics. Their response is that the case of significance testing is impor-
tantly different from the medical test in example 5. For, while there
is a non-trivial frequency for the disease in the population, there is
no non-trivial frequency for a probabilistic hypothesis. Either the hy-
pothesis is true, in which case its probability is 1, or the hypothesis is
false, in which case its probability is 0. And these probabilities won’t
change when you condition on 𝐸.

Frequentists draw a sharp distinction between the probability of
the evidence according to the hypothesis and the probability of the evi-
dence conditional on the hypothesis. To emphasize this difference, they
use different notation for the latter.

ℙ(𝐸;𝐻) = the probability of 𝐸 according to 𝐻

ℙ(𝐸 | 𝐻) = the probability of 𝐸 conditional on 𝐻

At base, the disagreement has to dowithwhat kinds of probabilities
there are, and what role they have to play in the practice of science.
Both Bayesians and Frequentists will draw a distinction between the
chance of 𝐸 according to 𝐻 and the chance of 𝐸 conditional on 𝐻. And
both Bayesians and Frequentists can agree that the chance of the true
chance hypothesis is 1 and the chance of the false chance hypothesis
is 0. What they disagree about is whether there is another kind of
probability out there where the chance of 𝐸 according to 𝐻 is equal
to the chance of 𝐸 conditional on 𝐻. Bayesians think that there is: a
reasonable credence function is a probability like this.

ℂℎ𝐻 (𝐸) = the chance of 𝐸 according to 𝐻

ℂ(𝐸 | 𝐻) = a reasonable credence in 𝐸 conditional on 𝐻

Because they accept something like Lewis’s principal principle, For instance, in example 3, Bayesians
think that your credence in 𝑋 ⩾ 8, con-
ditional on 𝐻 : 𝑏 = 1/3, should be
around 0.3%. And, in example 4, they
think that your credence that 𝐷 ⩾ 1.7,
conditional on the null hypothesis that
the drug is ineffective, should be around
4.5%.

Bayesians think that—at least in the absence of inadmissible evidence—
these two quantities should align. Your credence in 𝐸, conditional on
𝐻, should be the probability of 𝐸 according to 𝐻. That is,

ℂ(𝐸 | 𝐻) = ℂℎ𝐻(𝐸)

4.2.3 Neyman-Pearson Significance Test

Jerzy Neyman and Egon Pearson developed a slightly different ver-
sion of Fischer’s test of significance. Rather than focusing on a sin-
gle probabilistic hypothesis, Neyman and Pearson were interested in
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making inferences in caseswhere therewas some collection of hypothe-
ses you are deciding between. In the simplest case, there could be just
two hypotheses. These two hypotheses are called the ‘null’ hypothesis
and the ‘alternative’ hypothesis, and written ‘𝐻0’ and ‘𝐻1’

𝐻0 𝐻1
accept 𝐻0 no error type II error
accept 𝐻1 type I error no error

ℙ(type I error) = 𝛼

ℙ(type II error) = 𝛽
Neyman and Pearson thought that statistical inferencewas amatter

of managing two types of error: the error of rejecting the null when
the null is actually true (a ‘type I error’), and the error of failing to
reject the null when the null is actually false (a ‘type II error’). The
probability of a type I error is standardly called ‘𝛼’ and the probability
of a type II error is standardly called ‘𝛽’. Neyman and Pearson advised
you to formulate a rule for deciding between the two hypotheses that
appropriately balanced these two probabilities.

Figure 4.5: Neyman-Pearson signifi-
cance testing. The axis is the values
of the random variable whose value we
are observing in our experiment. The
orange curve is the probability density
function over values of the random vari-
able according to the null hypothesis.
and the purple curve is the probability
density function over values of this ran-
dom variable according to the alterna-
tive hypothesis. 𝛼 is the probability of
a type I error (accepting the alternative
when the null is true), and 𝛽 is the prob-
ability of a type II error (accepting the
null when the alternative is true). 1 − 𝛽
is called the ‘power’ of the test.

The power of a Neyman-Pearson significance test is defined to be
1 − 𝛽. That is: the power of the test is the probability the alterna-
tive hypothesis gives to you accepting the alternative hypothesis. The
higher the power, the better the test’s ability to detect the truth of the
alternative hypothesis. So Neyman and Pearson advise you to select
the test with the greatest possible power. Notice that this allows them to
answer an objection raised to Fischer: why select a region with prob-
ability 𝛼 in the tail of the null distribution? Why not instead select a
region with probability 𝛼 in the middle of the null distribution? Ney-
man andPearson justify their choice of rejection region on the grounds
that it has the greatest possible power (amongst those with a certain
fixed probability of a type I error). In other words: Neyman and Pear-
son advise you to first select an 𝛼, and thereupon choose a test which
minimizes 𝛽. This will generally lead you to select a rejection region
in the tails of the null distribution.

4.2.4 Lindley’s Paradox

Example 9. We have a coin of unknown bias. We do know, however, that it
is either fair (𝐵 = 1/2), or else it is biased /ths towards heads (𝐵 = 4/5).
We spin the coin  times and observe that it lands heads  times.

We have two hypotheses: the ‘null’ hypothesis that the coin is unbi-
ased, 𝐻0 : 𝐵 = 1/2, and the ‘alternative’ hypothesis that the coin is
4/5ths biased towards heads, 𝐻1 : 𝐵 = 4/5. Let 𝑋 be the random
variable which counts the number of heads landings. Then, figure 4.6
gives the probability distributions for the values of 𝑋, given the null
hypothesis (in blue) and given the alternative hypothesis (in orange).
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Figure 4.6: A probability mass func-
tion for the random variable ‘number
of heads landings’, both according the
null hypothesis 𝐻0 : 𝐵 = 1/2 (in blue),
and according the alternative hypothe-
sis 𝐻1 : 𝐵 = 4/5 (in orange).

How likely is it that we would have observed at least 60 heads, if
the coin were unbiased? That is: how likely is our evidence (or, rather,
a logical weakening of it), 𝑋 ⩾ 60, on the assumption that the null
hypothesis is true? It’s about 2.8% likely. Since 2.8% is less than 5%, ℙ(𝑋 ⩾ 60;𝐻0) =

100∑
𝑥=60

(
100
𝑥

)
(1/2)𝑥 · (1/2)100−𝑥

≈ 0.028
the null hypothesis has be refuted by the significance test. Following
Fisher’s logic, the hypothesis 𝐻0 should be rejected, and we should
conclude that the coin has a bias of 4/5.

Similarly, if we select an 𝛼 of 5%, Neyman and Pearson will advise
us to reject 𝐻0 if we see 59 or more of the spins land heads. So, on
a Neyman-Pearson significance test, too, we will accept that the coin
has a bias of 4/5. Notice that the power of this test is extremely high—it ℙ(𝑋 ⩾ 59;𝐻1) =

100∑
𝑥=60

(
100
𝑥

)
(4/5)𝑥 · (1/5)100−𝑥

≈ 0.999999555
is nearly 100%.

But given the Bayesian’s principle of total evidence and theBayesian
theory of confirmation, the null hypothesis is very well confirmed by
this evidence. Suppose that we started out 50% confident that the coin
was fair and 50% confident that the coin was biased. Then, the prob-
ability that the coin is fair (𝐻0), conditional on our total evidence (𝐸),
will be well over 99.9%.3 3 In this example, our total evidence will

include the precise order in which the
coin landed heads and tails; so our ev-
idence 𝐸 includes more than just the in-
formation that 𝑋 = 60. Nonetheless,
this additional information won’t make
any difference to the posterior probabil-
ity of the hypotheses, so Bayesians could
decide to simply condition on 𝑋 = 60,
even though this isn’t strictly speaking
the total evidence. Random variables
like this are called ‘sufficient statistics’,
because, once you know the value of the
random variable, that’s enough—you
don’t need to know anything else about
the data, since that additional informa-
tion won’t affect the posterior probabili-
ties.

ℙ(𝐻0 | 𝐸) = ℙ(𝐸 | 𝐻0) · ℙ(𝐻0)
ℙ(𝐸 | 𝐻0) · ℙ(𝐻0) + ℙ(𝐸 | 𝐻1) · ℙ(𝐻1)

=

[(1/2)60 · (1/2)40] · 1/2[(1/2)60 · (1/2)40] · 1/2 + [(4/5)60 · (1/5)40] · 1/2

≈ 0.999786

Intuitively, what’s going on here is that, even though the evidencewas
very unlikely according to the null hypothesis, it was even less likely
according to the alternative hypothesis. So while 𝐻0 didn’t do a very
good job predicting this evidence, it did a much better job predicting
the evidence than 𝐻1 did.

4.3 Bayesian Statistics

The Bayesian takes a very different approach to statistics. In a sense,
we have already seen the core Bayesian idea: it is encoded in the two
Bayesian norms of the principal principle and conditionalization. You
take a prior which satisfies the principal principle, and condition it on
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your total evidence. If a hypothesis’s probability goes up, then that
hypothesis has been confirmed. If the hypothesis’s probability goes
down, then that hypothesis has been disconfirmed.

The Bayesian wants to carefully distinguish two different kinds of
probability functions: the objective chance function which is generat-
ing the data, 𝒞ℎ, and your subjective credence function, ℂ. Your sub-
jective credence is just a fixed probability function, but the objective
chance function is unknown—it is something about which you have
credences.

As a reminder, I am using the calli-
graphic notation ‘𝒞ℎ’ for definite de-
scriptions of probability function, and
I am using blackboard boldface ‘ℙ’ or
‘ℂ’ for a particular (rigidly designated)
probability function.

Even though the Bayesian statistician will treat the objective chance
function as unknown, they will often assume that it comes from a par-
ticular family of probability distributions.

4.3.1 Families of Probability Distributions

Think back to examples 3 and 4. In those cases, we knew something
about the probability distribution over the variables 𝑋 (“how many
times the coin lands heads”) and 𝐷 (“the difference in average weight
change between the test and the control group”). In the case of the
coin, we knew that the outcomes of successive spinswere independent
and that each time the coin was spun, it had the same probability of
landing heads. This meant that we knew the random variable 𝑋 had
a probability distribution in the so-called ‘binomial’ family.

Binomial Distribution A (discrete) random variable 𝑋, which takes
on integer values between 0 and 𝑛, has a binomial distribution
iff there’s some number 𝐵 ∈ [0, 1] such that

𝒞ℎ(𝑋 = 𝑥) =
(
𝑛
𝑥

)
· 𝐵𝑥 · (1 − 𝐵)𝑛−𝑥

If we know that 𝑋 has a binomial distribution, thenwe can completely
characterize a chance hypothesis in terms of a single number: the
number 𝐵. (For instance, in example 3: we can characterize the chance
hypothesis in terms of the bias of the coin.)

In general, if you know that a random variable has a probability
distribution from a given family, then you will be able to completely
specify the probability distribution over that random variable with a
small number of parameter values. In the case of the binomial distri-
bution, there is just one parameter value. For another common prob-
ability family,

Figure 4.7: In blue, the normal distribu-
tion with mean 0 and standard devia-
tion 1, 𝒩(0, 1). In orange, 𝒩(1, 2). In
green, 𝒩(2, 3). In red, 𝒩(3, 4).

Normal Distribution A (continuous) randomvariable𝑋, which can
take on any real number as its value, has a normal distribution iff
there’s some pair of real number (𝜇, 𝜎), such that the probability
density function for 𝑋, 𝑓𝑋 , is given by

𝑓𝑋(𝑥) = 1√
2𝜋𝜎2

· 𝑒− (𝑥−𝜇)2
2𝜎2
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𝜇 is the mean of the distribution, and 𝜎 is the standard deviation of the
distribution. A normal distribution with mean 𝜇 and standard de-
viation 𝜎 is written ‘𝒩(𝜇, 𝜎)’. Some sample normal distributions are
shown in figure 4.7.

It’s not important, but if you’re curi-
ous, ‘Γ(𝑥)’ is the gamma function Γ(𝑥) =∫ ∞
0 𝑡𝑥−1𝑒−𝑡d𝑡

Beta Distribution A (continuous) random variable 𝑋, which can
take on any number between 0 and 1, has a beta distribution iff
there’s some pair of real number (𝛼, 𝛽), such that the probabil-
ity density function for 𝑋, 𝑓𝑋 , is given by

𝑓𝑋(𝑥) = Γ(𝛼 + 𝛽)
Γ(𝛼) · Γ(𝛽) · 𝑥

𝛼−1 · (1 − 𝑥)𝛽−1

Figure 4.8: In blue, the beta distribution
with parameter values 𝛼 = 6 and 𝛽 =
3, Beta(6, 3). In orange, Beta(10, 5). In
green, Beta(14, 7). In red, Beta(18, 9).

Just as the normal distribution is characterized by two parameters—
the mean and the standard deviation—the beta distribution is char-
acterized by two parameters, 𝛼 and 𝛽. (Note: these ‘𝛼’s and ‘𝛽’s are
different from the ‘𝛼’s and ‘𝛽’s fromNeyman-Pearson significance test-
ing.) Also, note that the Beta(1, 1) distribution is just the uniform dis-
tribution over the unit interval [0, 1]. (See figure 4.9.)

There are many other families of probability distributions, but for
our purposes, we only need to familiarize ourselves with these three.

4.3.2 Conjugate Priors and Laplace’s Rule of Succession

Suppose you know that the objective chance function is inside the bi-
nomial family. For instance, suppose you know that the coin has a
certain bias, 𝐵, and that the outcome of different spins are indepen-
dent of each other.

As the Bayesian approaches statistical inference, inference is all a
matter of taking a prior credence distribution over the values of the
parameter 𝐵 (the bias of the coin), and then updating that prior cre-
dence distribution on the observed data. In this case, we can think
about 𝐵 as a random variable—it takes on different values in different
epistemically possible worlds. This random variable takes on values
in between 0 and 1 (inclusive). And we can suppose that your subjec-
tive credences are distributed over all propositions of the form 𝐵 ⩾ 𝑏.

We assume that the objective chance distribution falls in some fam-
ily or other. As we’ve seen, this objective chance distribution can be
characterized by some number of (epistemic) random variables which
parameterize the chance distributions in that family. For mathemat-
ical convenience, Bayesian statisticians look for a prior distribution
over the random variable 𝐵 with the following property: whichever
probability family the prior starts out in, the posterior will remain in
that same family. The prior credence distributionwith this property is
said to be conjugate to the objective chance distribution. For instance,
the beta distribution is conjugate to the binomial distribution. More-
over, it’s conjugate in a particularly lovely way.
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If you know that the outcome of successive coin spins are indepen-
dent with constant bias 𝐵, and your prior subjective credence dis-
tribution over 𝐵 is the uniform distribution—that is, the Beta(1, 1)
distribution—then your posterior distribution after observing ℎ
heads and 𝑡 tails will be the Beta(ℎ + 1, 𝑡 + 1) distribution.
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(e) after 10 heads and 1 tail;
Beta(11, 2)

Figure 4.9: Evolution of your credence
distribution over 𝐵 as you learn more
and more outcomes.

There’s another fact worth dwelling on for aminute. The expected value
of any random variable with a Beta(𝛼, 𝛽) distribution is 𝛼/(𝛼 + 𝛽). So
suppose you begin with the uniform distribution over potential biases
of the coin, and you spin it a number of times 𝑛 and observe ℎ heads
and 𝑛 − ℎ tails. Then, you will end up with the Beta(ℎ + 1, (𝑛 − ℎ) + 1)
posterior distribution over 𝐵 (the bias of the coin), and the expected
value of 𝐵 will be

𝔼[𝐵] = ℎ + 1
ℎ + 1 + (𝑛 − ℎ) + 1

=
ℎ + 1
𝑛 + 2

And since your probability that the next coin lands heads will equal
to your expectation of the coin’s bias, we have that your credence that
the coin will land heads on the 𝑛+1st spin will be equal to the number
of heads you’ve observed in the first 𝑛 spins plus 1, divided by 𝑛+2—
which is just Laplace’s rule of succession!

While the Beta (1, 1) distribution is a uniform distribution, not all
conjugate priors will be uniform in this way. For instance, suppose
(as in example 4) you know that a random variable, 𝐷, has a normal
objective chance distribution, with an unknown mean but a known
standard deviation of 1. That is, the objective chance distribution over
𝐷 is given by𝒩(𝜇, 1), for some unknown value 𝜇. Then, the conjugate
subjective prior (over potential values of 𝜇) will be a normal distribu-
tion. Suppose (just for illustration) that you start off with a standard
normal (𝒩(0, 1)) prior distribution over the values of 𝐷. And then
you observe an average difference of 𝑑 between the weight changes in
the test and the control group. Then, your posterior distribution over
values of 𝑚 will change to 𝒩(𝑑/2, 1/2). (See figure 4.10).

4.3.3 Bayesian Inference
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Figure 4.10: In blue, the prior (standard
normal) distribution over potential val-
ues of 𝐷’s mean. In orange, the pos-
terior 𝒩(1.7/2, 1/2) distribution that you
get from conditioning the prior on the
observation of an average weight differ-
ence of 1.7.

The output of a Bayesian inference will just be a probability distribu-
tion like the ones shown in figure 4.9. This is a subjective probabil-
ity distribution over the parameter values characterizing the objective
chance function. For instance, in our running coin spinning example,
the output of the Bayesian inference will be a probability distribution
over the unit interval. The interpretation is that, if you started out
with the given prior, then you should end up with the posterior the
Bayesian provides.

A general recipe is to start with some assumptions about the family
of the objective chance distribution, then find a subjective probability
distribution over the parameter values characterizing that objective
chance distribution which is conjugate to the objective chance distri-
bution’s family, and then update the prior on the observed data by
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conditionalization. At the end of this process, you get a posterior cre-
dence distribution over objective parameters.

You canuse these probability distributions to constructwhat’s known
as a ‘credible interval’ (which is very different from the ‘confidence
intervals’ used by frequentists). A 99% credible interval is an interval The way to understand a ‘99% con-

fidence interval’ is to understand the
method by which it was constructed. It
is constructed according to a method
such that, if you were to construct inter-
vals according to that method over and
over again, in the long run, 99% of those
intervals would contain the true value.
This doesn’t mean that in this particular
case, it is 99% likely that the interval con-
tains the true parameter value.

which is 99% likely to contain the true parameter value (given what-
ever prior distribution).

4.4 The Problem of the Priors

One of themost central criticisms of Bayesianmethods is their reliance
on prior probability distributions. According to Frequentists, we can
subject a chance hypothesis to objective test without having to form
any prior opinions about the hypothesis. But for Bayesians, we must
beginwith a subjective prior probability distribution over hypotheses.
This reliance on a prior gives rise to two related objections to Bayesian
inference.

4.4.1 Subjectivism

One aspect of the problem of the priors is that the priors seem to be
irredeemably subjective. Themethods of science call for objective, or at
least, intersubjectivemethods for evaluating hypotheses. Science is, af-
ter all, a collaborative undertaking. But Bayesians cannot give us this,
for their priors merely represent subjective degrees of belief, which
could potentially vary from scientist to scientist. Deborah Mayo puts
the point like this:

In science, it seems, we want to know what the data are saying, quite
apart from the opinions we start out with.4 4 Mayo, Error and the Growth of Scientific

Knowledge, page 76
At this point, it’s worth pointing out that there are a variety of dif-

ferent forms of Bayesianism out there, and that some are more sub-
jective than others. In fact, there’s a continuum of different kinds of
Bayesianism, depending upon how stringent they take the require-
ments of rationality to be.5 On one side are what I’ll call the ‘radical 5 I. J. Good famously joked that there are

more versions of Bayesianism than there
are Bayesians.subjectivist’ Bayesians:

Radical Subjectivism In the absence of evidence, any probability func-
tion is a reasonable credence function.

The radical subjectivist thinks that there are but two norms of epis-
temic rationality: probabilism and conditionalization. So long as you
abide by these two norms, you will be epistemically rational.

A slightly less radical version of subjectivism additionally accepts a
principle like Lewis’sPrincipal Principle (or, perhaps, theNewPrinciple)—
but that’s it.

Subjectivism In the absence of evidence, anyprobability functionwhich
satisfies the principal principle is a reasonable credence function.

Subjectivism is slightly more constraining than radical subjectivism,
but it is still a very liberal epistemology. According to the subjectivist,
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you could assign arbitrarily high prior credence to the hypothesis that
all emeralds are green, or to the hypothesis that there is a giant tea
kettle on the other side of Jupiter.

More objective are those who think that there are rational require-
ments on credences, but who think that nonetheless, there is a range
of permissible opinion.

Permissive Objectivism Not just any probability function satisfying the
principal principle is a reasonable prior credence. But the require-
ments of rationality are not so demanding that they pin down ex-
actly one reasonable prior.

PermissivelyObjective Bayesians think that reasonable people can dis-
agree, but unlike the subjectivists, they don’t think that any disagree-
ment is reasonable (or rather, they don’t think that any disagreement
between people who satisfy the principal principle is reasonable).

On the other extreme, there are so-called ‘Objective Bayesians’:

Impermissive Objectivism In the absence of evidence, there is exactly
one reasonable prior probability function.

Impermissive objectivists think that there is a ‘one true prior’, devi-
ation from which is irrational. They often also endorse the stronger
thesis that it is determinate what the one true prior is—they will for-
mally characterize it. Given the way Bayesian statistics goes in prac-
tice, youmight expect the one true prior to be a conjugate distribution.
But philosophers tend to regard the use of conjugate priors as a mere
arithmetic convenience with little epistemic significance. Most imper-
missive objectivists endorse the principle of indifference which we en-
countered earlier in the course—or a version of it known as the ‘prin-
ciple of maximum entropy’. Many Bayesians have therefore taken the
Bertrand paradoxes as a reason to reject impermissive objectivism. So
at least many traditional Bayesians have been fairly subjected to the
charge of subjectivism.

But Bayesians have a response to the charge—they appeal to various
‘convergence’ or ‘washing out’ theorems.6 To appreciate these theo- 6 If you want to see the technical details,

you should look for Doob’s martingale
convergence theorem. See also the expo-
sition on page 144 of Earman’s Bayes or
Bust?.

rems and their relevance to the charge of subjectivity, suppose that we
have two subjectivist Bayesians, Alice and Bob. Alice and Bob both
have credence functions that satisfy the axioms of probability (in par-
ticular, they have countably additive credence functions). Alice and
Bob both assign probability zero to all the same propositions about
the bias of the coin. And both Alice and Bob update their credences
by conditionalization. Alice and Bob are going to spin a coin repeat-
edly and learn how it landed. Both Alice and Bob (and the coin) are
immortal, and they will do this forever. Then, the convergence theo-
rem says that, in the limit as the number of spins go to infinity, both
Alice and Bob will (with probability 1) converge in their opinions—
moreover, in the limit as the number of spins goes to infinity, they will
both (with probability 1) invest credence 1 in the true bias of the coin.

The upshot: Bayesians may insist that, while the priors may be in-
fected with subjectivity, this subjectivity has less and less impact on
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the posterior the more and more evidence you receive.
It’s not clear how persuasive this response is. As Keynes pointed

out, in the long run, we’re all dead. All scientific practice takes place
in the short run, with finite bodies of evidence. And in the short run,
Alice and Bob’s opinions can be as disparate as we like. Suppose, for
instance, that Alice and Bob have observed 199 spins of the coin land
heads and only 1 land tails. Alice’s prior over biases of the coin was
the uniform Beta(1, 1), whereas Bob’s was the massively non-uniform
Beta(1, 1000). After updating on the evidence, Alice is nearly certain
that the coin heavily biased heads, but Bob is nearly certain that the
coin is heavily biased tails. (See figure 4.11.)
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Figure 4.11: In blue, Beta(200, 1001). In
orange, Beta(200, 2).

This point generalizes: for any finite body of data, 𝐸, and any prior
credence function ℂ such that the posterior ℂ(𝐻 | 𝐸) ⩾ 0.99, we can
find another prior credence function ℂ′ such that ℂ′(𝐻 | 𝐸) ⩽ 0.01. So
it looks like we’re stuck with the subjectivity of priors in the short run.
Of course, this is less concerning if we think that it would be irrational
to have something like Beta(1, 1000) as your prior. So the convergence
theorems give more comfort to the permissive objectivist Bayesians.

4.4.2 The Catchall and the Problem of New Hypotheses

So there seems to be subjectivity in the prior probability of a particu-
lar hypothesis. But Bayesian inference about a particular hypothesis
doesn’t just rely upon your prior probability for that one hypothesis. It
relies upon a prior probability distribution over a partition of hypothe-
ses, {𝐻0 , 𝐻1 , . . . , 𝐻𝑁}. To appreciate this, consider Bayes’ theorem:

ℂ(𝐻0 | 𝐸) = ℂ(𝐸 | 𝐻0) · ℂ(𝐻0)
ℂ(𝐸)

How do we calculate the prior probability of the evidence? Well, given
a partition of hypotheses {𝐻0 , 𝐻1 , . . . , 𝐻𝑁} (whichwill include the hy-
pothesis of interest 𝐻0), the law of total probability allows us to de-
compose ℂ(𝐸) into a weighted sum of likelihoods, ℂ(𝐸) = ∑𝑁

𝑖=0 ℂ(𝐸 |
𝐻𝑖) · ℂ(𝐻𝑖).

ℂ(𝐻0 | 𝐸) = ℂ(𝐸 | 𝐻0) · ℂ(𝐻0)∑𝑁
𝑖=0 ℂ(𝐸 | 𝐻𝑖) · ℂ(𝐻𝑖)

Assume that each hypothesis determines a unique probability for 𝐸,
and assume that you have no inadmissible information. Then, the
principal principle (and conditionalization) will tell us that the like-
lihood must equal this chance, ℂ(𝐸 | 𝐻) = 𝒞ℎ𝐻(𝐸). So we will have

ℂ(𝐻0 | 𝐸) = 𝒞ℎ𝐻0(𝐸) · ℂ(𝐻0)∑𝑁
𝑖=1 𝒞ℎ𝐻𝑖 (𝐸) · ℂ(𝐻𝑖)

All of the quantities𝒞ℎ𝐻𝑖 (𝐸) are intersubjective. So the remaining sub-
jectivity in Bayesianism can be reduced down to the subjectivity of the
prior probability distribution over the partition of possible hypothe-
ses, ℂ(𝐻0),ℂ(𝐻1), . . . , ℂ(𝐻𝑁 ).

Now, whenwe’re conducting a scientific test or gathering evidence,
we don’t always know all of the possible hypotheses. For one instance:
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when we’re spinning the coin, it could be the the random variable
number of times the coin lands heads has a binomial distribution; but it
could have some other distribution altogether. Maybe the outcomes
are not independent. Maybe the bias of the coin changes over time. We
have some idea how things go if we’re certain that the coin spins follow
a binomial distribution—but what if they don’t? For another: the per-
ihelion of Mercury’s orbit (the point in the orbit where it is closest to
the sun) moves. This precession of Mercury’s perihelion was difficult
to account for with Newton’s theory of gravitation. And it was much
easier to account for with Einstein’s theory of general relativity. But
when the precession of Mercury’s perihelion was discovered, nobody
knew about Einstein’s theory—they didn’t even have the necessary
concepts to formulate the theory, since non-Euclidean geometry had
not even been discovered yet. But since we need the possible hypothe-
ses to be a partition, we can’t just leave Einstein’s theory out.

The Bayesian will say that, if you have the 𝑁 well-defined hypothe-
ses 𝐻0 , 𝐻1 , . . . 𝐻𝑁 , all of which are incompatible but which don’t
cover all of the possibilities, you should also have a ‘none of the above’
hypothesis,¬(𝐻0∨𝐻1∨· · ·∨𝐻𝑁 ) that you carry aroundwith you. This
‘none-of-the-above’ hypothesis is often called the ‘catchall’ hypothe-
sis.

The catchall hypothesis raises two different problems. First prob-
lem: it is unclear what the likelihoods should be for the catchall hy-
pothesis. Suppose that random variable how many times the coin lands
heads doesn’t have a binomial distribution. Then, how likely is it that
you’d see 8 out of 10 spins land heads? Or suppose that none of the
current theories of gravity are true. Then, how likely is it that Mer-
cury’s perihelion would precess? It looks like any answer to these
questions is just going to be arbitrary and incredibly subjective.

Secondproblem: what do youdowhen a newhypothesis arrives on
the scene? At this point, the algebra overwhich your credences are de-
fined will have to be expanded. For instance, when scientists acquired
the concepts necessary to entertain Einstein’s theory of general rela-
tivity, they suddenly had a new hypothesis to have credences about.
This process is called ‘awareness growth’. While Bayesians have firm
views about how your credences should change when you gain evi-
dence (conditionalization), they have less firm views about how your
credences should change when your awareness grows. There are pro-
posals, but there’s nothing like an orthodox view.

4.4.3 The Problem of Old Evidence

ClarkGlymour raised a third problem for the Bayesian’s theory of con-

See Glymour’s Why I Am Not a Bayesian.
One response to Glymour comes from
Daniel Garber’s “Old Evidence and Log-
ical Omniscience in Bayesian Confirma-
tion Theory”. Garber contends that
what scientists learned that confirmed
the theory of relativity, 𝑇, wasn’t the old
evidence, 𝐸. Instead, he suggests that
it is the new (purely a priori) informa-
tion that the theory 𝑇 implies 𝐸 (together
with our background knowledge), 𝑇 ⊢
𝐸. Now, standard Bayesianism requires
that you assign probability 1 to any a pri-
ori truth. But Garber shows how to relax
this assumption, and allow that ℂ(𝑇 ⊢
𝐸) < 1. He then shows that, even if
you have ℂ(𝐸) = 1, you can still have
ℂ(𝑇 | 𝑇 ⊢ 𝐸) > ℂ(𝑇). So the purely a
priori information that Einstein’s theory
implied the precession of the perihelion
of Mercury could be taken to confirm
Einsteins’ theory, even though the pre-
cession of the perihelion was old news.

firmation. When Einstein’s theory of relativity was being formulated,
the precession of the perihelion ofMercurywas alreadywell-known. It
was old evidence. Assuming that scientists are good Bayesian agents,
they have already conditioned on this evidence. So their credence in
the precession of the perihelion of Mercury was already 100%. So
their credence in any hypothesis, conditional on this evidence,must be
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equal to their unconditional credence in that same hypothesis. That’s
because

if ℂ(𝐸) = 1, then ℂ(𝐻 | 𝐸) = ℂ(𝐻)
So, given the Bayesian’s theory of confirmation, it follows that the pre-
cession of the perihelion of Mercury did not confirm Einstein’s general
theory of relativity.

4.5 Likelihoodism

Bayesians and Frequentists aren’t the only views in the philosophy of
statistics. There’s another character known as the ‘likelihoodist’. Like-
lihoodism doesn’t say anything about which hypotheses we should
accept or reject. Instead, it only talks about which hypotheses the ev-
idence favors over which other hypotheses.

Likelihoodism (Qualitative) The evidence 𝐸 favors hypothesis 𝐻1 over
hypothesis 𝐻2 iff the likelihood of 𝐸 given 𝐻1 is greater than the
likelihood of 𝐸 given 𝐻2, ℙ(𝐸 | 𝐻1) > ℙ(𝐸 | 𝐻2).

Likelihoodism (Quantitative) The degree to which 𝐸 favors 𝐻1 over 𝐻2

is given by the likelihood ratio ℙ(𝐸 | 𝐻1) ÷ ℙ(𝐸 | 𝐻2)

Assuming your credences satisfy the principal principle, there will
be no difference between the objective chance assigned by 𝐸 by the
hypothesis 𝐻 and your credence in 𝐸 conditional on 𝐻. So we could
replace ‘ℙ(𝐸 | 𝐻)’ with ‘ℂ(𝐸 | 𝐻)’ or with ‘ℙ(𝐸;𝐻)’, or whatever.

Note two things about likelihoodism: first, it is not a theory about
what we should accept. It is only a theory about what the evidence
favors, or supports. Secondly, it is not a theory about absolute favor-
ing; it is instead only a theory about comparative favoring. The thesis
doesn’t tell you anything about whether some piece of evidence sup-
ports a hypothesis full stop. Instead, it only tells you something about
whether the evidence supports one hypothesis over another.

On Sober’s telling, likelihoodism is strictly weaker than Bayesian-
ism. For Bayesianism, together with the following assumption, im-
plies the qualitative version of likelihoodism.

Favoring 𝐸 favors 𝐻1 over 𝐻2 iff conditioning on 𝐸 raises the ratio
ℙ(𝐻1) ÷ ℙ(𝐻2)—that is, iff

ℙ(𝐻1 | 𝐸)
ℙ(𝐻2 | 𝐸) >

ℙ(𝐻1)
ℙ(𝐻2)

To appreciate that Bayesianism and Favoring together imply Likeli-
hoodism, consider the following consequence of Bayes’ theorem:

ℙ(𝐻1 | 𝐸)
ℙ(𝐻2 | 𝐸) =

ℙ(𝐸 | 𝐻1)
ℙ(𝐸 | 𝐻2) ·

ℙ(𝐻1)
ℙ(𝐻2)

Therefore, if conditioning on 𝐸 raises the ratio ℙ(𝐻1) ÷ ℙ(𝐻2), then
the fraction ℙ(𝐸 | 𝐻1) ÷ ℙ(𝐸 | 𝐻2) must be greater than one. So it
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must be that the likelihood of 𝐸, conditional on 𝐻1, is greater than the
likelihood of 𝐸, conditional on 𝐻2.

The sense of ‘favoring’ used in Likelihoodism is different from its
use in natural language. For instance, Sober gives the following exam-
ple: you hear loud noises in the attic. This evidence is certain condi-
tional on the hypothesis that there are gremlins bowling in the attic.
But it is only somewhat likely on the hypothesis that there is a possum
in the attic. But it sounds strange, to say the least, that this evidence
favors the hypothesis that there are gremlins bowling in the attic over
the hypothesis that there is a possum in the attic.

Sober suggests that we understand ‘favoring’ as a term of art. He
doesn’t say very much to help us glom onto this term of art, but if
we are Bayesians, then we may understand him as simply defining the
word ‘favoring’ via the biconditional above: 𝐸 favors 𝐻1 over 𝐻2 iff
conditioning on 𝐸 raises the ratio ℙ(𝐻1) ÷ ℙ(𝐻2).

Likelihoodismavoids the subjectivity of Bayesianismbydoing away
with the priors. It also avoids concerns about the catchall by not re-
quiring a partition of possible hypotheses—it only requires two well-
defined hypotheses to compare. (Does it avoid the problem of old
evidence?)

However, likelihoodism also tells usmuch less than either Frequen-
tism or Bayesianism. Frequentism tells us when we can accept a hy-
pothesis; and Bayesianism tells us how confident to be in various hy-
potheses (given a prior). But the likelihoodist doesn’t do either of
these things. They only say something about which hypotheses the
evidence favors overwhich others. Richard Royall distinguished three
different questions:

1. What does the evidence say?

2. What should you believe?

3. What should you do?

Bayesians and Frequentists both attempt to answer questions (2) and
(3). But the likelihoodist is only attempting to answer question (1)— Bayesians typically approach (3)

through the lens of expected utility
theory; Neyman and Pearson addressed
it through their significance tests,
where it was assumed that various
courses of action might depend upon
which hypothesis was accepted, and
their choice of 𝛼 and 𝛽 were meant to
be informed decision-theoretically in
terms of the badness of type I and type
II errors.

at least, they are attempting to say something relevant to the ques-
tion. As we’ve seen, Bayesians can accept the likelihoodist’s answer
to question (1), given their stipulative use of the term ‘favor’. So it
can seem that the disagreement between Bayesians and Likelihood-
ists isn’t so much epistemic as practical—they are disagreeing about
how science is to be conducted, and what statisticians should concern
themselves with. The Bayesian thinks that they should be concerned
with the probability of various hypotheses; whereas the likelihoodist
thinks that they should only be concerned with which hypotheses the
evidence favors over which others.

Review Questions

1. Suppose that you want to know whether zinc reduces the duration
of the common cold. Describe, in broad outline, how you would
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investigate this question using Fischer’s Test of Significance. What
objections would a Bayesian raise to this test?

2. Suppose you know that a coin either has a bias of 50% towards
heads or a bias of 90% towards heads, and youwish to knowwhich.
Describe how you would investigate this question using Neyman
& Pearson’s Significance Test.

3. What is ‘Lindley’s Paradox’, and how could it be used to argue
against Neyman & Pearson’s Significance Test?

4. Suppose you know that a coin either has a bias of 50% towards
heads or a bias of 90% towards heads, and youwish to knowwhich.
Describe how you would investigate this question using Bayesian
statistics. What’s an objection that someone could raise to this pro-
cedure?

5. Explain what the likelihoodist says about evidence. Suppose you
know that a coin either has a bias of 50% towards heads or a bias of
90% towards heads, and you wish to know which. Would a likeli-
hoodist tell you how to settle this question? Why or why not?



5
Arguments for Probabilism

5.1 Probabilism and Its Detractors

Recall, the Bayesian interprets (at least some) probabilities as a rational
person’s degrees of belief, or credences. Because of this, they are commit-
ted to at least the following rational norm:

Probabilism A rational person’s credences will obey the laws of
probability

That is, if you are rational and if ℂ : 𝒜 → ℝ is your credence function
(where 𝒜 ⊆ 𝒫(𝒲) is an algebra), then we will at least have that

Non-negativity None of your credences are negative For all 𝐴 ∈ 𝒜 , ℂ(𝐴) ⩾ 0

Normalization Your credence in any necessary truth is 100%. ℂ(𝒲)= 1

Finite Additivity The sumof your credences in two incompatible propo- For any 𝐴, 𝐵 ∈ 𝒜 , if 𝐴𝐵 = ∅, then
ℂ(𝐴 ∪ 𝐵) = ℂ(𝐴) +ℂ(𝐵).sitions is equal to your credence in their union.

And perhaps we will also want your credences to satisfy further ratio-
nality constraints, like

Countable Additivity The sum of your credences in countably many For any 𝐴1 , 𝐴2 , · · · ∈ 𝒜 , if 𝐴𝑖𝐴𝑗 = ∅ for
each 𝑖 and 𝑗, then ℂ(𝐴1 ∪ 𝐴2 ∪ · · · ) =
ℂ(𝐴1) +ℂ(𝐴2) + · · · .disjoint propositions is equal to your credence in their union.

Conglomerability If Π is any partition (each cell of which is included
in 𝒜) and 𝐴 is any proposition from 𝒜, then there will always be
some 𝑃𝑙 ∈ Π and some 𝑃ℎ ∈ Π such that your credence in 𝐴 no less inf𝑃∈Π ℂ(𝐴 | 𝑃) ⩽ ℂ(𝐴) ⩽

sup𝑃∈Π ℂ(𝐴 | 𝑃)than your conditional credence in 𝐴, given 𝑃𝑙 , and no greater than
your conditional credence in 𝐴, given 𝑃ℎ .

Throughout, when I say that your credences are ‘probabilistic’, I’m
only talking about non-negativity, normalization, andfinite additivity.
(We’ll come back to countable additivity later on.)

It’s worth recognizing that probabilism is non-trivial and indeed
has been denied. For instance, Arthur Dempster and Glenn Schafer
gave a theory ofwhat they called ‘belief functions’which is non-probabilistic.
(I’ll just call it a ‘Dempster-Schafer function’, and I’ll write it ‘𝑏𝑒𝑙’.) A
Dempster-Schafer function is any function from propositions in 𝒜 to
real numbers that satisfy the following axioms:



ARGUMENTS FOR PROBABILISM 51

Zero Normalization 𝑏𝑒𝑙(∅) = 0

Unit Normalization 𝑏𝑒𝑙(𝒲)= 1

Superadditivity For any𝐴1 , 𝐴2 , . . . , 𝐴𝑛 ∈ 𝒜 , if 𝐴𝑖𝐴 𝑗 = ∅ for each 𝑖 , 𝑗 ⩽
𝑛, then

𝑏𝑒𝑙

(
𝑛⋃
𝑖=1

𝐴𝑖

)
⩾

𝑛∑
𝑗=1

∑
𝐽⊆{1,2,...,𝑛}:

#𝐽=𝑗

(−1)𝑗+1𝑏𝑒𝑙
(∩𝑗∈𝐽𝐴 𝑗

)
Here’s another way of thinking about a Dempster-Schafer function:
take the algebra of propositions 𝒜 and assign non-negative numbers
to these propositions such that the number given to∅ is zero and such
that the numbers sum up to 1.

∅ 0

{1} 0 {2} 0.1 {3} 0

{1, 2} 0.4 {1, 3} 0 {2, 3} 0.2

{1, 2, 3} 0.3

Figure 5.1: A sample mass function.

This kind of function is called a mass function; and any mass func-
tion will determine a Dempster-Shafer function 𝑏𝑒𝑙, via the identity
𝑏𝑒𝑙(𝐴) = ∑

𝐵:𝐵⊆𝐴 𝑚𝑎𝑠𝑠(𝐵). For instance, in the example from the mar-
gin, 𝑏𝑒𝑙({1}) = 0, 𝑏𝑒𝑙({1, 2}) = 0.5, 𝑏𝑒𝑙({2, 3}) = 0.3, and 𝑏𝑒𝑙({1, 2, 3}) =
1.

To interpret what’s going on here: think about 1, 2, and 3 as three
different horses in a horse race. It could be that you have some evi-
dence that 3 will lose, some evidence that 1 will lose, and some evi-
dence that 2 will win. In that case, when I ask how confident you are
that 3 will lose ({1, 2}), you’ll just add up the evidence you have that 3
will lose, and the evidence you have that 2 will win, getting that you’re
one half confident that 3 loses, 𝑏𝑒𝑙({1, 2}) = 0.5. And when I ask how
confident you are the 3 will win, you’ll notice that you don’t have any
evidence suggesting that 3 will win, so you’ll have no confidence that
3 wins, 𝑏𝑒𝑙({3}) = 0. (In the case of a finite algebra, if a mass function
only gives positive values to the singleton propositions, then it will
determine a probability distribution.)

Bayesians are committed to thinking that this approach to degrees
of belief is fundamentallymistaken—but a bunch of smart people have
taken it very seriously. What do Bayesians have to say about why they
are wrong? Here, we’re going to consider three different arguments
for the conclusion that your credences should be probabilities (and
not, for instance, Dempster-Shafer functions).

5.1.1 Representation Theorems

The first justification of probabilism piggybacks on a justification of
the normof expected utility maximization. So it’s worth spending a bit of
time thinking aboutwhat this norm says. The norm of expected utility
maximization says that you should prefer acts with higher expected
utilities and disprefer acts with lower expected utilities.

Example 10. Before you are two boxes. The first one contains a bowl of
jellybeans. The contents of the second one are hidden from you. Yesterday I
rolled a fair three sided die. If (but only if) the die landed on 3, I put a chocolate
ice cream cone in the second box. The utility you attach to a chocolate ice
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cream cone is  utiles and the utility you attach to a jelly bean is  utile. The
utility of getting neither a jellybean nor a chocolate ice cream cone of  utiles.
You can take at most one box.

You can think of utilities as something like the strength of your de-
sires. Whenwe say that the utility of the ice cream cone is 4, the utility
of the jellybeans is 1, and the utility of neither is 0, we are saying that
the degree to which you want the ice cream more than the jellybeans
is three times larger than the degree to which you want the jellybeans
more than nothing.

In this example, you have three acts available to you: you can take
no boxes, you can take the first box, or you can take the second box.
The utilities of the first two options are known: taking no boxes gets
you a guaranteed 0 utiles; and taking the first box gets you a guar-
anteed 1 utile. So you should prefer taking the first box to taking no
box:

no box ≺ box 1

But the utility you’ll get from the second box is unknown. If the die
lands 1 or 2, then 𝒰(box 2) = 0; whereas, if the die lands on 3, then
𝒰(box 2) = 4. While you don’t know what this utility is, you can
calculate its expectation.

𝔼[𝒰(box 2)] = ℂ(𝒰(box 2) = 0) · 0 +ℂ(𝒰(box 2) = 4) · 4

= 2/3 · 0 + 1/3 · 4

= 4/3

Since 4/3 > 1, expected utility theory says that you should prefer tak-
ing box 2 to taking box 1:

box 1 ≺ box 2

Why should we think that there are utilities like this? And why
should we accept this norm?

One answer to this question appeals to a theorem known as a ‘rep-
resentation theorem’. This theorem says that, so long as your prefer-
ences between acts satisfy certain rationality constraints, those pref-
erences will be ‘representable’ with a utility function 𝒰 and a proba-
bilistic credence function ℂ such that one act is preferred to another if
and only if the first act has a higher expected utility than the second
(relative to that pair of credence and utility functions).

Representation Theorem (Schema) If your preferences satisfy constraints
C , then there is a probabilistic credence function ℂ and a utility
function 𝒰 such that, for any two acts 𝑎 and 𝑏,

𝑎 ⪰ 𝑏 iff 𝔼[𝒰(𝑎)] ⩾ 𝔼[𝒰(𝑏)]

(where𝔼 is the expectation associatedwith the probability function
ℂ)

For instance, Leonard Savageproved a representation theorem from
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the rationality constraints given in themargin. But there are other rep- Savage represents acts with functions
from 𝒲 to outcomes. And he assumes
that, for any two acts 𝑎 and 𝑏, and any
proposition 𝐸, there is a third act, 𝑎𝐸𝑏,
which has the same outcome as 𝑎 when-
ever 𝐸 is true and has the same outcome
as 𝑏 otherwise. An act is constant iff
it leads to the same outcome in every
world.
Then, he lays down the following ra-

tionality constraints on preference: for
any acts 𝑎, 𝑏, 𝑐, and 𝑑, and any proposi-
tions 𝐸 and 𝐹:
1. either 𝑎 ⪰ 𝑏 or 𝑏 ⪰ 𝑎

2. if 𝑎 ⪰ 𝑏 and 𝑏 ⪰ 𝑐, then 𝑎 ⪰ 𝑐

3. 𝑐𝐸𝑎 ⪰ 𝑐𝐸𝑏 iff 𝑑𝐸𝑎 ⪰ 𝑑𝐸𝑏

4. if 𝐸 is non-null, then 𝑎 ⪰ 𝑏 iff, for all
𝑓 , 𝑎𝐸 𝑓 ⪰ 𝑏𝐸 𝑓

5. if 𝑎 ≻ 𝑏 and 𝑐 ≻ 𝑑, then 𝑎𝐸𝑏 ≻ 𝑎𝐹𝑏 iff
𝑐𝐸𝑑 ≻ 𝑐𝐹𝑑

6. for some constant acts 𝑎, 𝑏, 𝑎 ≻ 𝑏.

7. if 𝑎 ≻ 𝑏, then there’s a finite partition
{𝐸1 , 𝐸2 , . . . , 𝐸𝑁} such that, for every
𝑖, 𝑎 ≻ 𝑐𝐸𝑖 𝑏 and 𝑐𝐸𝑖 𝑎 ≻ 𝑏.

resentation theorems out there—including ones proved by Ramsey,
von Neumann andMorgenstern, Jeffrey and Bolker (for evidential de-
cision theory), and Joyce (for causal decision theory).

These theorems afford us an argument (schema) for probabilism:

P1) If you are rational, then your preferences over acts will satisfy the
constraints C .

P2) If you satisfy the constraintsC , then you can be represented asmax-
imizing expected utility relative to a probabilistic credence func-
tion.

∴ C) If you are rational, you will have a probabilistic credence function.

The second premise is just a theorem, so there’s no objections to be
raised there. Someobjections to the argument focus on the first premise—
for instance, is totality (𝑎 ⪰ 𝑏 or 𝑏 ⪰ 𝑎) really a rational requirement?
But Alan Hájek raises a deeper concern: it looks like the argument
is invalid. He give the following parody of the argument: if your
preferences satisfy certain constraints, then you can be represented
as though your decisions were the product of warring voodoo spirits.
You should satisfy these constraints. Therefore, your decisions should
be the product of warring voodoo spirits.

The proponents of this argument were thinking that there’s no dif-
ference between having a certain credence and utility function pair and
being representable as having those credences and utilities. They were
driven by a behavioristic understanding of mental state ascriptions,
according towhich there is no deep fact-of-the-matter about what you
believe beyond the difference those beliefs make to action. If we reject
this kind of behaviorism, then the argument will be invalid.

Titelbaum points out that, even if we reject the behavioristic as-
sumptions underlying the old argument, we can reformulate the ar-
gument. He appeals to the following kind of theorem:

Revised Representation Theorem (Schema) If your preferences satisfy con-
straints C , then there is a credence function ℂ (unique up to posi-
tive scalar transformation) and a utility function 𝒰 (unique up to
positive linear transformation) such that, for any acts 𝑎 and 𝑏,

𝑎 ⪰ 𝑏 iff 𝔼[𝒰(𝑎)] ⩾ 𝔼[𝒰(𝑏)]

(where𝔼 is the expectation associatedwith the probability function
ℂ) Moreover, one of the scalar multiples of ℂ is a probability.

He then offers the following argument for probabilism,which assumes
the norm of expected utility maximization:

P1) If you are rational, then your preferences over acts will satisfy the
constraints C .

P2) If you are rational, then you will prefer acts with greater expected
utility
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P3) If you satisfy the constraints C and prefer acts with greater ex-
pected utility, then your credences are a scalar multiple of a prob-
ability

∴ C) If you are rational, your credences will be a scalar multiple of a
probability

Assuming that we take the choice of 1 for your probability in 𝒲 to
be an arbitrary choice, this argument gets us probabilism. But unlike
the original argument, it requires us to assume expected utility maxi-
mization. Also unlike the original argument, there is no version of the
revised representation theorem which applies to evidential or causal
decision theory.

5.2 The Dutch Book Argument

Let’s suppose that your utilities are linear in dollars; and let’s suppose
that your fair price for a $1 bet on any proposition 𝐴 is equal to your
credence in 𝐴. That is, consider the following ticket:

$1 if 𝐴
$0 else

If you have this ticket in your possession, then it will entitle you to $1 if
𝐴 turns out to be true. Otherwise, it is worthless. We will assume that
you are willing to pay up to $ℂ(𝐴) for this ticket. This could be justi-
fied on the grounds of expected utility maximization, for the expected
utility of possessing this ticket is given by

ℂ(𝐴) · 1 +ℂ(¬𝐴) · 0 = ℂ(𝐴)

So if the price of the ticket is greater than ℂ(𝐴), you will not want to
buy it; and if the price of the ticket is less than ℂ(𝐴), you will want to
buy it. Correlatively: if the price of the ticket is greater thanℂ(𝐴), you
will want to sell it; and if the price of the ticket is less than ℂ(𝐴), you
will not want to sell it.

Now: suppose that there is a race between three horses and your
credences about the winner are given by the Dempster Shafer belief
function from figure 1, so that 𝑏𝑒𝑙({1, 2}) = 0.5 and 𝑏𝑒𝑙({3}) = 0. And
suppose I offer to buy bet 1 from you.

Bet 1
$1 if horse 1 or 2 wins
$0 else

price: 51¢

Bet 2
$1 if horse 3 wins
$0 else

price: 1¢

Since the price of this bet is greater than your credence that either
horse 1 or 2 wins, you will be willing to sell it. Next, suppose I offer
to buy bet 2 from you. Since the price of the bet is greater than your
credence that horse 3 wins (which is zero), you will be willing to sell
it.

But now you’re in trouble. Let’s consider the possible outcomes for
you:

Horse 1 or 2 wins Horse 3 wins
Net profit from selling bet 1 −49¢ 51¢
Net profit from selling bet 2 1 ¢ −99¢
Overall net profit −48¢ −48¢
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No matter what happens, you’re going to lose 48¢ . A combination of
bets like this (which is guaranteed to lose you money no matter what)
is called a ‘Dutch book’. (The origin of the name is unclear). So what
we’ve seen is that, if your credences are given by the Dempster Shafer
function from figure 1, and you use your credences as your fair betting
prices, then you will purchase a Dutch book.

In fact, something similarwill happenwheneveryouhave non-probabilistic
credences. This is a general theorem:

Dutch Book Theorem If your credences are not probabilistic, and you
use those credences as your fair betting prices, then a Dutch book
can be constructed against you.

This affords us the following argument:

P1) If you are rational, then youwill not be susceptible to a Dutch book.

P2) You are susceptible to a Dutch book if your credences are not prob-
abilistic.

∴ C) If you are rational, then your credences will be probabilistic.

You might worry about the first premise. We’ve shown that non-
probabilistic credences areDutch bookable, butwe haven’t shown that
probabilistic credences aren’t Dutch-bookable. Perhaps there’s just no
way to avoid beingDutch-bookable—or perhaps the onlyway to avoid
being Dutch-bookable is to not use your credences as your fair betting
odds. We can allay these kinds of concerns with the following con-
verse theorem:

Converse Dutch Book Theorem If your credences are probabilistic, and
you use those credences as your fair betting prices, then a (static
and finite) Dutch book cannot be constructed against you.

When I say that the Dutch book is ‘static’, I mean that the bets com-
prising the Dutch book are all bought or sold while your credences
remain fixed. When I say that it is ‘finite’, I mean that there are only
finitely many bets included in the book. (We’ll come back to infinite
numbers of bets shortly.)

Against the second premise: suppose somebody is a recovering
gambling addict, and they turn down any bets they’re offered (even
if they think that the bets are more than fair). They just don’t want to
relapse. Moreover, this person’s credences are not probabilistic. This
person seems to be a counterexample to the second premise. They
have non-probabilistic credences, but they are not susceptible to aDutch
book.

Relatedly: the Dutch book argument seems to be dealing in the
wrong kind of reasons. We want to know why it is epistemically re-
quired to have probabilistic credences, but the argument is pointing
us to a pragmatic defect. If we’re pragmatists who think that the epis-
temic norms on belief are derivative from pragmatic norms, then per-
haps this will move us. But many of us are not pragmatists. We think,
for instance, that there can be pragmatic costs to being epistemically
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rational. (Perhaps believing certain truths will leave you depressed
and have no other benefits; but we still think that it is epistemically
required to believe those truths)

In response to this, many have tried to ‘depragmatize’ the Dutch
book arguments. Roughly, their thought is that the Dutch book ar-
gument reveals an evaluative inconsistency in non-probabilistic cre-
dences. They take their to be a normative link between your credences
and how you evaluate certain bets:

Evaluation-Credence Link If your credence in 𝐴 is 𝑥, and your utilities
are linear in dollars, then you should evaluate the ticket

$1 if 𝐴
$0 else
price: 𝑦¢

as valuable if 𝑥 > 𝑦, disvaluable if 𝑦 < 𝑥, and neutral if 𝑥 = 𝑦.

Then, the ‘depragmatized’ version of the Dutch book argument goes
like this:

P1) If your credences are not probabilistic, then you’ll evaluate each of
a collection of bets are individually valuable, and you’ll evaluate
their collection as disvaluable

P2) If your credences are rational, they will not lead you to evaluate
each of a collection of bets as individually valuable and yet evaluate
their collection as disvaluable.

∴C) If your credences are rational, then they will be probabilistic.

(P1) comes from theDutch book theoremand the Evaluation-Credence
Link. One objection to (P1) targets this link. We’ve seen that the link
follows if we evaluate betting tickets in terms of their expected utili-
ties, but as we learnt on the first problem set, expectations are closely
linked to probabilities. If you’rewilling to give up on probabilism, you
may also want to sever the link between expected utility and rational
preference.

Another objections questions (P2). We could argue for this premise
with the following two principles:

Equivalence Principle If two betting arrangements have the same pay-
offs in every possible world, then you should value them in exactly
the same way.

Package Principle If you regard betting arrangement 1 as valuable and
you regard betting arrangement 2 as valuable, then you should re-
gard the package of both betting arrangements together as valuable.

Applied to our sample Dutch book from above: the package principle
says that, if you regard selling bet 1 as valuable, and you regard sell-
ing bet 2 as valuable, then you should regard selling both bet 1 and bet
2 as valuable. And since selling both bets 1 and 2 together is equiva-
lent to a guaranteed 48¢ loss, the equivalence principle says that you
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should regard a 48¢ loss as valuable. Insofar as you don’t, your values
are inconsistent. And this inconsistency is due to the failure of your
credences to be probabilistic.

Non-probabilists have objected to the package principle. They con-
tend that it smuggles in precisely the kind of additivity that we were
trying to establish. (To get your evaluation of the package of bets, just
‘add up’ your evaluation of each bet individually.)

5.2.1 The Dutch Book Argument for Countable Additivity

There areDutch book arguments for countable additivity aswell. Sup-
pose that we have a lottery with a countable infinity of tickets in it,
and your credence that any given ticket wins is zero. Then, you will
bewilling to sell each of the infinitelymany bets of the following form:

$1 if ticket 𝑛 wins the lottery
$0 else

price: 1/2𝑛¢

With each sale, you will take in a positive monetary amount and you
are 100% confident that you won’t have to pay out. However, when
you package all of these bets together, you face a sure loss. Together,
the tickets will only bring in 1¢ since

1
2
+ 1

4
+ 1

8
+ · · · = 1

But exactly one of the bets will pay out, so you will lose $1, and your
net profit will be a guaranteed −99¢.

But notice that we can give a similar ar-
gument for full additivity. Suppose a
random number will be selected from
between 0 and 1, and you sell all of the
uncountably many bets

$1 if number 𝑛 is selected
$0 else

price: $0

Individually, you judge each of these
bets as fair, even though, collectively,
you recognize that they are a guaranteed
loss.
Defenders of countable additivity

have pointed out that, in the first
Dutch book, the individual sales are all
favorable; whereas, in the second Dutch
book, the individual tickets are merely
fair, but not favorable.

5.2.2 The Dutch Book Argument for Conglomerability

Suppose that you violate Comglomerability. Then, there’s a partition
Π and a proposition 𝐴 such that, for every 𝑃 ∈ Π, ℂ(𝐴) > ℂ(𝐴 | 𝑃).
Then, you will be happy to sell the following bet on 𝐴:

$1 if 𝐴 is true
$0 else
price: ℂ(𝐴)¢

And you will be happy to buy each of the following conditional bets: We’ll think more about these kinds of
bets when we consider the Dutch book
argument for conditionalization.$1 if 𝐴 is true

$0 else

price:

{
ℂ(𝐴 | 𝑃)¢ if 𝑃
0 if ¬𝑃

But since ℂ(𝐴) > ℂ(𝐴 | 𝑃), you will certainly lose money on this com-
bination of bets. (Moreover, each of these bets is favorable.)

5.3 Accuracy Arguments for Probabilism

Al Hájek poses the following SAT analogy problem:

belief : truth :: credence :
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The idea is this: when we think about binary (on/off) belief, truth is
the standard of correctness or vindication—even if the belief isn’t known,
or isn’t justified, or is unreasonable, if the belief turns out to be true,
then you got it right (in spite of your irrationality). What is the paral-
lel notion for degree of belief? When are your credences correct? When
are they vindicated?

Hájek himself gives the answer “chance”. (Question: chance at what
time?) Hájek is looking for something degreed to serve as the potential
vindication for credence. Since truth doesn’t come in degrees (let’s
suppose), he thinks we need something that does come in degrees to
serve as the standard of correctness. Against Hájek, consider the following

case: a fair coin is about to be flipped.
You believe it will land heads and you
have a credence of 1 that it will land
heads. I don’t believe it will land heads
and have a credence of 1/2 that it will
land heads. The coin is flipped and
in fact landed heads. While your be-
lief may not have been justified or rea-
sonable, it was nonetheless true. Carry-
ing the analogy forward, shouldn’t your
(perhaps unjustified, perhaps unreason-
able) high credence similarly count as
vindicated? But if credence is to chance
as belief is to truth, your high credence
in heads won’t count as vindicated; in-
stead, my middling credence in heads
will be vindicated.

Another possible answer is “calibration”.

Calibration your credences are (perfectly) calibrated iff, for every 𝑥, amongst
the propositions you give a credence of 𝑥 to, exactly 100𝑥% of them
are true.

For instance, if 10% of the propositions you give a credence of 0.1 to
are true, 20% of the propositions you give a credence of 0.2 to are true,
and so on and so forth, then your credences are perfectly calibrated.

Titelbaum argues that calibration isn’t the right answer to Hájek’s
SAT analogy question, either. He gives the following counterexample:
suppose that there are two races for Senate: candidates 𝐴 and 𝐵 face
off against each other, and candidates 𝐶 and 𝐷 face off against each
other. Nate Silver and Alan Lichtman both make forecasts about who
will win.

Candidate: 𝐴∗ 𝐵 𝐶∗ 𝐷

Silver’s forecast: 90% 10% 90% 10%
Lichtman’s forecast: 50% 50% 50% 50%

Suppose that the starred candidates (𝐴 and 𝐶) won. It seems like Sil-
ver should be at least more vindicated than Lichtman; but Lichtman’s
forecasts are perfectly calibrated, whereas Silver’s forecast is not. So if
we think of vindication in terms of calibration, we will say that Licht-
man was vindicated. But this seems like the wrong result.

James M. Joyce gives a different answer to Hájek’s SAT analogy:
(gradational) accuracy. Whereas Hájek’s tried to match the degreed na-
ture of credence in the thing that was doing the vindicating, Joyce
makes vindication itself a degreed notion. Truth is the thing that vin-
dicates both belief and credence. The only that that is degreed is how
close to truth your credences are to truth—that is, the only thing that’s
degreed is how vindicated your credences are.

Joyce thinks that we have to introduce some way of measuring how
accurate credences are. Here’s a sample way of doing that measuring:

Quadratic Measure of Inaccuracy (Local) The inaccuracy of a credence 𝑥
in a proposition 𝐴 at a possible world 𝑤, ℐ (𝑥, 𝐴, 𝑤), is the square
of the difference between 𝑥 and 𝐴’s truth-value at 𝑤.

The Quadratic measure is also called the
‘Brier’ measure—after Glenn Brier, who
proposed it as a way of gauging the ac-
curacy of weather forecasts.

ℐ (𝑥, 𝐴, 𝑤) = (1𝐴(𝑤) − 𝑥)2
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Quadratic Measure of Inaccuracy (Global) The inaccuracy of a credence
function, ℂ, at a world 𝑤, is the sum of the quadratic inaccuracy, at
𝑤, of ℂ’s credence in every proposition.

ℐ (ℂ, 𝑤) =
∑
𝐴∈𝒜

ℐ (ℂ(𝐴), 𝐴, 𝑤) =
∑
𝐴∈𝒜

[1𝐴(𝑤) −ℂ(𝐴)]2

Joyce uses this gradational measure of accuracy to mount a non-
pragmatic argument for probabilism. To give you a flavor for how that
argument goes, consider an example in which there are just two pos-
sible worlds: 𝑤𝐻 , at which the coin lands heads, and 𝑤𝑇 , at which
the coin lands tails. Let’s assume for now that your credence in 𝒲 =
{𝑤𝐻 , 𝑤𝑇} is 100%, and that your credence in ∅ is 0% (we will come
back to those credences in a bit).

Figure 5.2: Each point in the 1×1 box
represents a possible assignment of cre-
dence to the propositions {𝑤𝐻} and
{𝑤𝑇}.

Figure 5.3: The probability functions are
all of the credences on the pink line. The
blue dot is the perfectly vindicated func-
tion if the coin lands heads; the orange
dot is the perfectly vindicated function
if the coin lands tails. If we use the Brier
measure, then the given non-probability
will have a greater inaccuracy than the
given probability no matter what.

Then, we can think about every possible assignment of credences
to 𝑤𝐻 and 𝑤𝑇 as some point in the 1×1 box in figure 5.2. And the
essence of Joyce’s defense of probabilism can be seen in figure 5.3. In
that diagram, the blue dot in the upper left hand corner is the func-
tion which assigns 1 to all truths and 0 to all falsehoods, if the coin
lands tails. It is the truth-function for the world 𝑤𝑇 . Likewise, the or-
ange dot in the lower right hand corner is the truth-function for the
world 𝑤𝐻 . Suppose that you have the non-probabilistic credence dis-
tribution shown in figure 5.3—your credences in 𝑤𝐻 and 𝑤𝑇 do not
sum up to 100%. Then, the orange curve shows all of the credence
functions which are as inaccurate as you are, if the coin in fact lands
heads. And the blue curve shows all of the credence functions which
as as inaccurate as you are, if the coin in fact lands tails. Then, notice
that, no matter whether the coin lands heads or tails, the probabilistic
credence function shown in figure 5.3 will be less inaccurate than you.
You are, in other words: accuracy dominated.

Accuracy Domination The credence functionℂ is accuracy dominated by
the credence function ℂ∗ iff, for every possible world 𝑤 ∈ 𝒲 ,

ℐ (ℂ, 𝑤) ⩾ ℐ (𝐶∗ , 𝑤)

and, for some possible world 𝑤 ∈ 𝒲 ,

ℐ (ℂ, 𝑤) > ℐ (𝐶∗ , 𝑤)

The same thing will happen to you if your credence in the neces-
sary truth {𝑤𝐻 , 𝑤𝑇} is anything less than 100%, and if your credence
in the necessary falsehood ∅ is anything greater than 0%. The cre-
dence function which is exactly like you but gives those propositions
credence 1 and 0, respectively, will accuracy dominate yours.

In fact, this isn’t just true for this particular example. It is true in
general.

Theorem If we measure inaccuracy with the Brier measure, then: (1)
every non-probabilistic credence function is accuracy dominated;
and (2) no probabilistic credence function is accuracy dominated.
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This is the basic idea behind Joyce’s non-pragmatic argument for
probabilism: you should have a probability function because, oth-
erwise, your credences will be accuracy-dominated. Having a non-
probability function guarantees that you are further from the truth
that you could otherwise be. And this is irrational. So having non-
probabilistic credences is irrational.

Now, there are arguments for using the Brier measure. But Joyce
doesn’t want to rest his hat on this particular way of measuring in-
accuracy. Instead, he points to a collection of features that he thinks
any measure of accuracy should have, and he proves a theorem show-
ing that, for any measure of accuracy which has these features, non-
probabilitieswill be accuracy-dominated, and probabilitieswill not be
accuracy-dominated. The features are given in the margin.

Here are the features Joyce assumed a
reasonable measure of accuracy would
have:
Structure For every𝑤 ∈ 𝒲 ,ℐ (ℂ, 𝑤) is a

non-negative continuous function of
ℂ which goes to infinity in the limit
as ℂ(𝐴) goes to infinity for any 𝐴 ∈
𝒜.

Extensionality At each possible world
𝑤 ∈ 𝒲 , ℐ (ℂ, 𝑤) is a function of
nothing other than the truth-values
of the propositions 𝐴 ∈ 𝒜 and
the credence which ℂ gives to those
propositions.

Truth-Directedness If ℂ(𝐴) = ℂ∗(𝐴) for
every 𝐴 ∈ 𝒜 other than 𝐵, and ℂ(𝐵)
is closer to the truth-value of 𝐵 at
𝑤 than ℂ∗(𝐵) [i.e., |1𝐵(𝑤) − ℂ(𝐵)| <
|1𝐵(𝑤) − ℂ∗(𝐵)| , then ℐ (ℂ, 𝑤) <
ℐ (𝐶∗ , 𝑤).

Normality If |1𝐴(𝑤) − ℂ(𝐴)| = 1𝐴(𝑤∗) −
ℂ(𝐴)| for every 𝐴 ∈ 𝒜 , then
ℐ (ℂ, 𝑤) = ℐ (ℂ, 𝑤∗).

Convexity If ℐ (ℂ, 𝑤) = ℐ (ℂ∗ , 𝑤), then
ℐ ([ℂ + ℂ∗]/2, 𝑤) ⩽ ℐ (ℂ, 𝑤), with
equality only if ℂ = ℂ∗.

Symmetry If ℐ (ℂ, 𝑤) = ℐ (ℂ∗ , 𝑤), then
for any 𝜆 ∈ [0, 1], ℐ (𝜆ℂ + (1 −
𝜆)ℂ∗ , 𝑤) = ℐ ((1 − 𝜆)ℂ + 𝜆𝐶∗ , 𝑤).

He then was able to prove a the-
orem showing that, if ℐ satisfies
these assumptions, then (1) every
non-probabilistic credence function is
accuracy-dominated; and (2) no prob-
abilistic credence function is accuracy
dominated.

Oneof the key assumptions thatwewill dwell on is convexity: which
says that the ‘equal inaccuracy’ curves in figure 5.3 must be convex—
the mixture of any two points on those curves must be strictly less
inaccurate (more accurate) than the points on the curve themselves
are. Joyce’s summary of this is as follows:

[Convexity] is motivated by the intuition that extremeism in the pursuit
of accuracy is no virtue. It says that if a certain change in a person’s
degrees of belief does not improve accuracy, then amore radical change
in the same direction and of the same magnitude should not improve
accuracy either...If it did not hold, one could have absurdities like this:
“I raised by confidence levels in [𝐴] and [𝐵] and my beliefs became less
accurate overall, so I raised my confidence levels in [𝐴] and [𝐵] again,
by exactly the same amounts, and the initial accuracy was restored.

But Paul Horwich and Patrick Maher have both defended a mea-
sure of accuracy which does not satisfy convexity. This is the linear
measure of inaccuracy.

Linear Measure of Inaccuracy (Local) The inaccuracy of a credence 𝑥 in
a proposition 𝐴 at a possible world 𝑤, ℐ (𝑥, 𝐴, 𝑤), is the absolute
value of the difference between 𝑥 and 𝐴’s truth-value at 𝑤.

ℐ (𝑥, 𝐴, 𝑤) = |1𝐴(𝑤) − 𝑥)|

Linear Measure of Inaccuracy (Global) The inaccuracy of a credence func-
tion, ℂ, at a world 𝑤, is the sum of the quadratic inaccuracy, at 𝑤,
of ℂ’s credence in every proposition.

ℐ (ℂ, 𝑤) =
∑
𝐴∈𝒜

ℐ (ℂ(𝐴), 𝐴, 𝑤) =
∑
𝐴∈𝒜

|1𝐴(𝑤) −ℂ(𝐴)|

The linear measure will not work for the accuracy-dominance argu-
ment. Consider the three credence distributions over (𝑤𝐻 , 𝑤𝑇): (1/3, 1/3),
(1/2, 1/2), and (2/3, 2/3) (shown in figure 5.4).

Figure 5.4: The blue line is the set of all
credences as inaccurate as (1/2, 1/2) if
the coin landed tails; the orange line is
the set of all credences as inaccurate as
(1/2, 1/2) if the coin landed heads.

If we use the linear measure, then all three of these credence distri-
butions will have exactly the same inaccuracy at every possible world.
So the non-probability won’t be accuracy-dominated by the probabil-
ity. (And, in general, there won’t be anything accuracy-dominating
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the non-probability (1/3, 1/3) if we measure inaccuracy with the lin-
ear measure.

Using more recent results, we can offer a different argument for
probabilism. This argument again singles out a class of accuracymea-
sures and then shows a comparable theorem: any non-probability is
going to be accuracy dominated on this measure, and no probability
will be.

To appreciate this later argument, let’s start by noticing something
odd about the linear measure of accuracy. Suppose that you know
for sure that the coin is biased 2/3rds towards heads, and (therefore)
your credence that the coin lands tails is 1/3rd and your credence that
the coin lands heads is 2/3rds: that is, your credences are given by the
probabilistic (2/3, 1/3). Then, ask yourself: which credence function do
you expect to be most accurate? That is: ask yourself: which credence
function has the greatest expected accuracy (or the lowest expected in-
accuracy)?

The answer will depend upon which accuracy measure we use.
Suppose first that we use the quadratic, or Brier, measure. Then, it
will turn out that the (unique) credence functionwhichmaximizes ex-
pected accuracywill be your current credences: (2/3, 1/3) (see the quick
calculations in the margin if you know calculus). But the same is not If we use the quadratic measure, then

the expected inaccuracy of the credences
(𝑐, 𝑑) is given by

2/3 · [(1 − 𝑐)2 + 𝑑2] + 1/3[𝑐2 + (1 − 𝑑)2]
We can find the minimum by taking the
first-order condition for the choice of 𝑐
(while treating 𝑑 as a constant):

2/3 · [−2(1 − 𝑐)] + 1/3[2𝑐] = 0
−4 + 4𝑐 + 2𝑐 = 0

𝑐 = 2/3

And likewise, taking the first-order con-
dition for the choice of 𝑑 (while treating
𝑐 as a constant):

2/3 · [2𝑑] − 1/3[2(1 − 𝑑)] = 0
4𝑑 − 2 + 2𝑑 = 0

𝑑 = 1/3

(You can verify the second-order condi-
tions and the boundary conditions your-
self, but if you trust me, I can let you
know that this is the unique global min-
imum)

true for the linearmeasure. If you use the linearmeasure, then the cre-
dences with the lowest expected inaccuracy are the extremal credences
(1, 0), which is certain the coin will land heads.

So Joyce notes that there’s something self-defeating about holding
the credences (2/3, 1/3) andmeasuring inaccuracywith the linearmeasure—
by your own lights, it would be better to switch to the extremal cre-
dences (1, 0). Joyce assumes that, if your credences are self-defeating
in this way, then they are irrational.

Self-Recommendation is Required If some credence function other than
your own has an expected inaccuracy at least as low as yours, then
it is irrational to hold your current credences.

Equivalently: if it is rational to hold your credences, then no other
credence function has a lower expected inaccuracy than your own. So
rational credences should expect themselves to be best. Lewis offers
the following analogy:

It is as if Consumer Bulletin were to advise you that Consumer Reports
was a best buy whereas Consumer Bulletin itself was not acceptable; you
could not possibly trust Consumer Bulletin completely thereafter.

Lewis’s point is that, if your credences are not self-recommending,
then, if you rely on them, you won’t rely on them. So you can’t rely on
a non-self-recommending credence function.

If every probability function uniquely recommends itself (on a cer-
tain measure of accuracy), then that measure of accuracy is said to be
strictly proper.

Strict Propriety ℐ is a strictly proper measure of inaccuracy iff, for any
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probability function ℙ and any credence function ℂ,

𝔼ℙ[ℐ (ℙ, 𝑤)] ⩽ 𝔼ℙ[ℐ (ℂ, 𝑤)]

with equality only when ℙ = ℂ.

I will inform you of the following theorem (but won’t go through the
proof):

Theorem If ℐ is any strictly proper and continuous measure of inaccu-
racy, then (1) every non-probability is accuracy-dominated; and (2)
no probability is accuracy-dominated.1 1 This theorem was proven by Predd et

al, 2009. “Probabilistic Coherence and
Proper Scoring Rules”. In IEEE Transa-
tions on Information Theory, vol. 55 (10):
4786–4792.

Putting together all of the pieces, wehave the followingnon-pragmatic
argument for probabilism:

P1) For any probability function, there is some evidence you could hold
that would make it rationally permissible to have that probability
function.

P2) Self-Recommendation is Required: If some credence function other than
your own has an expected inaccuracy at least as low as yours, then
your credences are irrational.

P3) Small changes in credence shouldn’t lead to big changes in accuracy,
so accuracy should be measured in a continuous way.

∴ C1) Accuracy should be measured in a strictly proper and continuous
way.

P4) Theorem: If accuracy is measured in a strictly proper and continu-
ous way, then any non-probabilistic credence function is accuracy-
dominated.

P5) AccuracyDomination is Irrational: if your credences are accuracy-dominated,
then they are irrational.

∴C2) If your credences are not probabilistic, then they are irrational.

You might think that (P1) is question-
begging; but it’s important to recog-
nize that it’s much weaker than proba-
bilism. (P1) just says that, in some cir-
cumstances, having a probability is per-
missible. But probabilism says that, in
all circumstances, having a probability
is required. Note also that even a propo-
nent of the Dempster-Shafer theory will
be happy to accept (P1). Joyce further ar-
gues for (P1) bypointing out that, for any
probability function, you could have the
evidence that the objective chances are
given by exactly that probability func-
tion.

Review Questions

1. What is probabilism?

2. What is a representation theorem, and how could it be used to ar-
gue for probabilism? What is Hájek’s objection to this argument?

3. What is a ‘Dutch book’? What is the ‘Dutch book argument’ for
probabilism? Explain how this argument can be ‘depragmatized’.

4. Imagine that we are going to flip a coin, and you have credences
in the two propositions ‘the coin lands heads’ and ‘the coin lands
tails’. Assume the quadraticmeasure of accuracy to argue that your
credences should be probabilistic. (Draw a picture.)

5. What is strict propriety, and why does assuming that a measure of
accuracy should be strictly proper help us to argue for probabilism?
How does Joyce argue that a measure of accuracy should be strictly
proper?



6
Arguments for Conditionalization

6.1 What does Conditionalization say?

Recall, the Bayesian interprets (at least some) probabilities as a ratio-
nal person’s degrees of belief or credences. They are committed to two
fundamental norms governing these degrees of belief. Firstly, they
should be probabilities. Secondly, when you acquire new evidence,
they should be revise in line with the norm of conditionalization:

Conditionalization You should learn from your evidence by condi-
tioning on it. That is, if your prior credence in 𝐴, at 𝑡0, is ℂ(𝐴),
then your posterior credence in 𝐴, at 𝑡1, after learning 𝐸, should
be ℂ(𝐴 | 𝐸).

Let’s start by getting clearer aboutwhat this norm says. First, let’s clear
up a potential misunderstanding with the notation ‘ℂ(𝐴 | 𝐸)’. As I’m
using the notation here, it is your prior conditional credence in 𝐴, given
𝐸. This is a synchronic feature of your doxastic state at 𝑡0; ℂ(𝐴 | 𝐸)
says how many times more likely than 𝐸 you think the conjunction
𝐴𝐸 is. So long asℂ(𝐸) > 0, ℂ(𝐴 | 𝐸) is equal to the ratioℂ(𝐴𝐸)÷ℂ(𝐸).

Let’s carefully distinguish ℂ(𝐴 | 𝐸) from how confident you plan
to be in 𝐴, if you end up learning 𝐸. I’ll write this second quantity
‘ℂ𝐸(𝐴)’.

And we should further distinguish your credence revision plans
from the credences you actually endup adopting, after learning. Through-
out, let’s suppose that you will learn something in between the times
𝑡0 and 𝑡1. Then, ‘ℂ’ will be your prior credence function at 𝑡0, and ‘ℂ+’
will be your posterior credence function at 𝑡1. Then, we can separate
out the thesis of conditionalization into two subsidiary these:

Plan Conditionalization Before learning, you should plan to have
credence 𝐶(𝐴 | 𝐸) in 𝐴 after learning 𝐸. That is: you should
have

ℂ𝐸(𝐴) = ℂ(𝐴 | 𝐸) = ℂ(𝐴𝐸) ÷ℂ(𝐸)



64 AN ADVANCED INTRODUCTION TO BAYESIAN EPISTEMOLOGY

Honor Your Plans After learning, your credence in 𝐴 should be
equal to the credence you planned to have in 𝐴, if you learned
𝐸. That is: you should have

ℂ+(𝐴) = ℂ𝐸(𝐴)

These two norms together imply that, at 𝑡1, your posterior credence in
𝐴 will be equal to your prior conditional credence in 𝐴, given 𝐸.

6.1.1 Examples

We’ve already seen the principle of conditionalization at work in sev-
eral examples throughout the course. But let’s startwith an illustrative
example to make vivid what kind of normative commitment Condi-
tionalization is:

Example 11. Daniel the Democrat is intensely partisan. Whenever he hears
about a Democratic politician involved in a scandal, he is disposed to be very
confident that the Democratic politician has done no wrong. On the other
hand, whenever he hears about a Republican politician involved in a scandal,
he is disposed to be very confident that the Republican politician has done
something wrong. That’s not because Daniel thinks that the actions of politi-
cians gives evidence about which acts are wrong. Beforehand, he thinks that
the wrongness of being lax with classified information, using your office to
enrich political donors, and so on, is independent of whether a Democrat or
Republican does these things. Nonetheless, whenever Daniel learns that a
Democrat has done one of these things, he is disposed to think that their acts
were not wrong; and whenever he learns that a Republican has done one of
these things, he is disposed to think that their acts were wrong.

On the other hand, Melissa the Moderate is equally inclined to think that
𝜙-ing is wrong, whether the person who is found to have 𝜙-ed is a Democrat
or a Republican. She is sometimes inclined to think that a Democrat has done
wrong, and sometimes inclined to think that a Republican has done wrong.

The Bayesian says that Daniel is irrational—why? Because he is not
updating his credences by conditionalization. We said that he starts
out thinking that whether 𝜙-ing is wrong is independent of whether
a Democrat or a Republican 𝜙s. So if ℂ is Daniel’s credence function,
then we have

ℂ(𝜙-ing is wrong | a Democrat 𝜙s) = ℂ(𝜙-ing is wrong) = ℂ(𝜙-ing is wrong | a Republican 𝜙s)

Yet

ℂa Democrat 𝜙s(𝜙-ing is wrong) < ℂ(𝜙-ing is wrong) < ℂa Republican 𝜙s(𝜙-ing is wrong)

So Daniel does not plan to condition on the evidence that a Democrat
or a Republican has mishandled classified information, used their of-
fice to enrich political donors, and so on. On the other hand, Melissa
could very well be conditionalizing on her evidence. So the Bayesian
has no objection to Melissa’s dispositions to learn from evidence.



ARGUMENTS FOR CONDITIONALIZATION 65

Here’s another example:

Example 12. We’re going to roll a six-sided die. I will see how it landed,
but you will not. I won’t tell you exactly how it landed; but I will tell you
whether it landed on an odd or even number. I roll the die and tell you that it
landed odd. How confident should you be that it landed on a high number (,
, or ), if you learn that it landed odd? How confident should be you that it
landed on a high number if you learn that it landed even?

This example is simple, but I want to approach it meticulously, since
dotting every i and crossing every t will help us later on. You have
credences defined over the possibilities {1, 2, 3, 4, 5, 6}, given by the
probability table in the margin.

𝑤 ℂ({𝑤}) ℂ({𝑤} | 𝑂) ℂ({𝑤} | 𝐸)
1 1/6 1/3 0
2 1/6 0 1/3
3 1/6 1/3 0
4 1/6 0 1/3
5 1/6 1/3 0
6 1/6 0 1/3

In this example, there are two things you might learn: you might
learn that the die landed on an odd number, 𝑂 = {1, 3, 5}, and you
might learn that it landed on an even number, 𝐸 = {2, 4, 6}. Your
prior conditional credences in high (𝐻 = {4, 5, 6}), given odd, is one
third, since

ℂ(𝐻 | 𝑂) = ℂ(𝐻𝑂)
ℂ(𝑂) =

ℂ({5})
ℂ({1, 3, 5}) =

1/6
3/6

=
1
3

So Plan Conditionalization says that you should plan to be one third
confident of high, if you learn odd,ℂ𝑂(𝐻) = 1/3. If you then learn that
it landed odd,Diachronic Conditionalization says that you should follow
through on this plan and adopt the posterior credence ℂ+(𝐻) = 1/3.

Your prior conditional credence in high, given even, is two thirds,
since

ℂ(𝐻 | 𝐸) = ℂ(𝐻𝐸)
ℂ(𝐸) =

ℂ({4, 6})
ℂ({2, 4, 6}) =

2/6
3/6

=
2
3

So Plan Conditionalization says that you should plan to be two thirds
confident of high, if you learn even, ℂ𝐸(𝐻) = 2/3. If you then learn
that it landed even, Diachronic Conditionalization says that you should
follow through on this plan and adopt the posterior credenceℂ+(𝐻) =
2/3.

Example 13. There are three prisoners,𝐴, 𝐵, and𝐶, scheduled to be executed
tomorrow. However, in a show of leniency, the king has decreed that one
prisoner be selected (at random) to be spared execution. The guards know
who will be spared, but the prisoners do not. 𝐵 approaches one of the guards,
and says “I know that you’re not allowed to tell me whether I will be executed
or not; but I already know that at least one of 𝐴 and 𝐶 will be executed.
So if you tell me that one of them is slated for execution, you’ll give me no
information about whether I will be executed.” The guard agrees and tells 𝐵
that 𝐴 will be executed tomorrow. How confident should 𝐵 now be that they
will be executed?

Before learning, there are three possibilities: either 𝐴 was spared
from execution, 𝐵 was spared from execution, or 𝐶 was spared from
execution. Since each was equally likely to be spared, 𝐵 has prior cre-
dences defined over the possibilities {𝐴, 𝐵, 𝐶}, given by the probabil-
ity distrribution in the margin.

𝑤 ℂ({𝑤}) ℂ({𝑤} | ¬𝐴) ℂ({𝑤} | ¬𝐶)
𝐴 1/3 0 1/2
𝐵 1/3 1/2 1/2
𝐶 1/3 1/2 0
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There are two things 𝐵 might learn: they might learn that 𝐴 was
not spared, ¬𝐴 = {𝐵, 𝐶}, and they might learn that 𝐶 was not spared,
¬𝐶 = {𝐴, 𝐵}. Their prior conditional credence in 𝐵, given ¬𝐴, is one
half, and their prior conditional credence in 𝐵, given ¬𝐶, is one half,

ℂ(𝐵 | ¬𝐴) = 1
2

ℂ(𝐵 | ¬𝐶) = 1
2

So, following the normof conditionalization, 𝐵will getmore confident
that they were spared no matter what they learn. But wait—how could
this be? How could getting the guard to slip information in this way
allow 𝐵 to manufacture for themselves the guaranteed evidence that
they are less likely to die?

This is known as the ‘three prisoner’s paradox’. It is closely related
to the Monty Hall puzzle,

Example 14 (Monty Hall Puzzle). You’re on the Monty Hall show. Before
you are three doors. Behind one of the doors is a new car, and behind two of
the doors is a goat. You choose door . At this point, Monty opens door  to
reveal a goat and asks whether you want to change your mind and take the
prize behind door  instead. (He always reveals a goat to the guests after their
initial choice and gives them the option to switch in this way.) Should you
switch?

𝑤 ℂ({𝑤}) ℂ({𝑤} | ¬1) ℂ({𝑤} | ¬3)
1 1/3 0 1/2
2 1/3 1/2 1/2
3 1/3 1/2 0In Monty Hall, after you make your initial choice, there is a one third

chance that you’ve selected the prize. And you know that Monty will
either reveal a goat behind door 1 or a goat behind door 3. If you
condition on ‘there’s no car behind door 1’ or ‘there’s no car behind
door 3’, then your posterior probability for the car being behind door
2 will be one half, no matter what Monty reveals.

The usual Bayesian line on both of these examples is that the anal-
ysis above has made a mistake. The mistake is that we’ve conditioned
on the wrong thing. You conditioned on something that you learned,
but you didn’t condition on everything that you learned. The Bayesian
is committed not just to conditioning on something that you learn; they
are committed to conditioning on everything that you learn.

In the three prisoner’s puzzle, 𝐵 didn’t just learn that𝐴 isn’t spared;
they also learned that the guard told them this. Let’s use ‘𝐺¬𝐴’ for this
proposition. If the guard had told 𝐵 instead that 𝐶 wasn’t spared, then
𝐵 would have additionally learned this stronger proposition—call it
‘𝐺¬𝐶’. Before learning, 𝐵 had the prior credence distribution in the
margin.

𝐴 𝐵 𝐶
𝐺¬𝐴 0 1/6 1/3
𝐺¬𝐶 1/3 1/6 0If they condition on 𝐺¬𝐴, then their probability that 𝐶 was spared

will rise to two thirds. If they condition on 𝐺¬𝐶, then their proba-
bility that 𝐴 was spared will rise to two thirds. But either way, their
probability that they are spared will remain fixed at one third. 1 2 3

𝑀¬1 0 1/6 1/3
𝑀¬3 1/3 1/6 0

The same thing happens in Monty Hall. You don’t just learn that
there’s a goat behind door #1. You additionally learn thatMonty revealed
a goat behind door #1, 𝑀¬1. If we include this additional evidence,
then your probability that there’s a car behind door #2 will stay fixed
at one third, and your probability that there’s a car behind door #3will
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rise to two thirds. So the answer to the puzzle is (counterintuitively?):
yes, you should switch.

Notice a strange thing about our initial reasoning in examples 2 and
3: no matter what was learned, your credence in a given proposition
was going to go up. In the Three Prisoner’s Puzzle, this seemed like
the wrong result—it seemed like prisoner 𝐵 shouldn’t be able to guar-
antee themselves confirmation that they’d been spared in this way.
They shouldn’t be able to reason to a foregone conclusion. Let’s lay
this down as a general principle:

No Guaranteed Confirmation If you might learn something that raises
your credence in 𝐴, then there must be something else you might
learn that would lower your credence in 𝐴.

Let’s use E for the set of possible evidence you might receive. For
instance, in example 1, E = {𝑂, 𝐸} = {{1, 3, 5} , {2, 4, 6}} . And in ex-
ample 2, we started out making the assumption that E = {¬𝐴,¬𝐶};
but then our solution to the puzzle was that in fact E = {𝐺¬𝐴, 𝐺¬𝐶}.
Then, what No Guaranteed Confirmation says is this: if there’s some
𝐸 ∈ E such that ℂ𝐸(𝐴) > ℂ(𝐴), then there must be some 𝐸 ∈ E such
that ℂ𝐸(𝐴) < ℂ(𝐴).

There’s a specific reason that we ended up violating No Guaran-
teed Confirmation in the Three Prisoner’s Puzzle. It was because we
assumed that E was not a partition. If E is a finite partition (each cell
of which has positive credence) and you update by conditionalization,
then you will always satisfy No Guaranteed Confirmation.

The reasons we have for liking No Guaranteed Confirmation should
carry over to prohibit even expected confirmation. So it looks like there’s
reason to favor the following principle:

No Expected Confirmation Your expectation of the degree to which any
proposition is confirmed should be zero.

𝔼 [ℂE (𝐴) −ℂ(𝐴)] = 0

Notation: ℂE (𝐴) is a definite descrip-
tion for ‘the credence you plan to have in
𝐴 after you learn whichever proposition
in E you happen to learn’. In a world
where you learn 𝐸 ∈ E , ‘ℂE (𝐴)’ will re-
fer to ℂ𝐸(𝐴).

If we assume that you know for sure what your current credence in 𝐴
is, this will imply the following norm, which is known as the principle
of Reflection (or, sometimes, the general principle of Reflection):

Reflection Your expectation of your planned posterior credence in
any proposition should be equal to your prior credence in that
proposition. That is: your plans should be such that, for any
proposition 𝐴,

𝔼[ℂE (𝐴)] = ℂ(𝐴) Assuming that E is a finite partition
(each cell of which has positive cre-
dence), Reflection follows from Plan
Conditionalization.

6.2 The Dutch Strategy Argument for Conditionalization

Return to example 12. Suppose that you don’t plan to update your
credences by conditionalization. For instance, suppose that you plan
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to have a credence of 1/4 in 𝐻, if you learn 𝑂, and you plan to have a
credence of 3/4 in 𝐻, if you learn 𝐸.

ℂ𝑂(𝐻) = 1/4 ℂ𝐸(𝐻) = 3/4

So ℂ𝑂(𝐻) < ℂ(𝐻 | 𝑂) and ℂ𝐸(𝐻) > ℂ(𝐻 | 𝐸), in violation of the norm
of conditionalization.

Then, here’s a strategy we could enact that will surely leave you
poorer, no matter what. Before you learn anything at all, you will be
happy to buy the following conditional bet:

Bet #1
$1 if 𝐻𝑂 is true
$0 else

price:

{
$1/3 if 𝑂
0 if 𝐸

Here, we are assuming (as alwayswith these ‘Dutch book’ arguments)
that you value dollars linearly, and that your ‘fair price’ for a condi-
tional bet like this is given by your conditional credence.

Similarly, before you learn anything at all, you will be happy to sell
the following conditional bet:

Bet #2
$1 if 𝐻𝐸 is true
$0 else

price:

{
$2/3 if 𝐸
0 if 𝑂

Now, if you learn𝑂, bet 2 will be called off, and only bet #1 will still
be relevant. At that stage, your new credence in 𝐻 will be 1/4, so you
will be happy to sell bet #3:

Bet #3
$1 if 𝐻 is true
$0 else

price: $1/4

But now, the combination of bets #1 and #3 add up to a guaranteed
loss:

𝐻 ¬𝐻
Net profit from buying bet 1 $2/3 −$1/3
Net profit from selling bet 3 −$3/4 $1/4
Overall net profit −$1/12 −$1/12

On the other hand, if you learn 𝐸, bet 1 will be called off, and only
bet #2 will still be relevant. At that stage, your new credence in 𝐻 will
be 3/4, so you will be happy to buy bet #4:

Bet #4
$1 if 𝐻 is true
$0 else

price: $3/4

But now, the combination of bets #2 and #4 add up to a guaranteed
loss:

𝐻 ¬𝐻
Net profit from selling bet 2 −$1/3 $2/3
Net profit from buying bet 4 $1/4 −$3/4
Overall net profit −$1/12 −$1/12
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No matter what happens, you’re going to lose a twelfth of a dollar.
So there’s a so-called Dutch Strategy against you.

Dutch Strategy a Dutch Strategy is a contingency plan for buying and
selling betswhich is guaranteed to leave youpoorer nomatterwhat.

Moreover, something similar will happen any time you have deter-
minate credence revision plans which you’ll certainly follow through
on which do not abide by conditionalization.

The Dutch Strategy Theorem was first
shown (to my knowledge) by David
Lewis, in a handout that was reported
by Paul Teller, and publishedmuch later
by Lewis himself. The converse result
(that conditionalization is not suscepti-
ble to a Dutch strategy) was proven by
Brian Skyrms.

Dutch Strategy Theorem If you stand to learn one of a partition of propo-
sitions and you follow determinate plan to revise your credences
which is not the conditionalization plan, then there will be a strat-
egy for trading betswith youwhich is guaranteed to lose youmoney
no matter what. And, if you plan to revise your credences by con-
ditioning on the member of the partition that you learn, then there
is no such strategy.

A comprehension test: suppose that, in
example 1, you learn that the die landed
even and condition on this. Before learn-
ing, I buy off of you a $1 bet on𝐻 for fifty
cents.

$1 if 𝐻 is true
$0 else price: $1/2

After you learn that the die landed even,
I sell you a $1 bet on 𝐻 for the price of
$2/3.

$1 if 𝐻 is true
$0 else price: $2/3

But the combination of these two bets is
guaranteed to lose you $1/6 no matter
what.
Is this aDutch strategy against the con-

ditionalizer? (If so, is it a counterexam-
ple to the theorem?) Why or why not?

This affords us the following argument for Plan Conditionalization:

P1) If your credence revision plans are rational, then they will not be
susceptible to a Dutch strategy.

P2) Dutch Strategy Theorem

∴C) If your credence revision plans are rational, then you will plan to
conditionalize on what you learn.

Why shouldn’t your credence revision plans be susceptible to a
Dutch strategy? We could give a purely pragmatic argument for this—
but, as in the case of the Dutch book argument for probabilism, we
might instead want to give a ‘depragmatized’ version of the argu-
ment. We might say that, by adopting these plans for revising your
credences, you have committed yourself to certain contingency plans
for the buying and selling of bets. You have endorsed these contin-
gency plans. But, by your own lights, these contingency plans are sure
losers. So, under two different modes of description that you can rec-
ognize are equivalent, you evaluate these contingency plans as both
good and bad. So, on the ‘depragmatized’ understanding, susceptibil-
ity to a Dutch strategy reveals an underlying evaluate inconsistency.

Let’s grant the first premise; and let’s trust the Dutch Strategy the-
orem (which is true). Even granting this, the argument’s conclusion is
weaker than the full norm of conditionalization. Whatwe’ve shown in
this argument is only that your credence revision plans should abide
by the norm of conditionalization. So we’ve only justified what we
earlier called Plan Conditionalization. We haven’t additionally justified
what I earlier called Conditionalization. To justify that additional as-
sumption, we might attempt to run an argument like this:

P1) If you are rational, then youwill not end up actually buying/selling a
collection of bets which are guaranteed to lose you money no matter
what

P2) Dutch Strategy Theorem

∴C) If you are rational, then you will actually condition on whatever you
learn
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But this argument is both invalid (because the conclusion doesn’t fol-
low from the premises) and it has a premise that the defender of con-
ditionalization themselves should reject. To appreciate both of these
points, go back to the comprehension test in the margin above: Being
susceptible to a Dutch strategy is a very importantly different notion
from having two of your time slices actually buy a Dutch book. A con-
ditionalizer can end up buying into a Dutch book. That’s not the thing
that’s meant to be bad about being susceptible to a Dutch strategy.
What’s meant to be bad about being susceptible to a Dutch strategy is
that you could be sold a Dutch book no matter what you learn. In the
comprehension test, even though the conditionalizer could be sold a
Dutch book if they learnt that the die landed even, they could not have
been similarly ensnared in a Dutch book if they had instead learnt that
the die landed odd.

This is a problem for any attempt Conditionalization by separating
it out into the two theses we considered above (Plan Conditionaliza-
tion and Honor Your Plans), and then separately justifying each with
some kind of Dutch strategy argument. The problem is that there’s no
Dutch strategy argument for honoring your plans. (We’ll see a similar
problem recur when we consider the accuracy-based arguments for
conditionalization.)

There are further problems, even if we restrict ourselves to the jus-
tification of Plan Conditionalization. For the argument we gave is at
best enthymematic. For the argument to be valid, we must make the
following additional assumptions:

P3) If you are rational, youwill have definite plans for how to revise your
credences if you learn 𝐸, for each 𝐸 ∈ E .

P4) The set of propositions you might learn, E , will always form a parti-
tion.

To see why the first assumption is important, suppose that, in exam-
ple 3, whether you learn odd or even, you’ll flip a coin. If the coin
lands heads, then your posterior credence in 𝐻 will be one third; but
if the coin lands tails, then your posterior credence in 𝐻 will be two
thirds. This will scotch the Dutch strategy we considered above (com-
prehension check: why?). And, in general, you won’t be susceptible
to a Dutch strategy if you adopt an indeterministic credence revision
plan like this. But this indeterministic credence revision plan is not
the conditionaliztion plan. So we need some reason to rule out this
kind of plan.

To see why the second assumption is needed, notice that the Dutch
Strategy Theorem depends upon the assumption that E forms a parti-
tion. Go back to the Three Prisoner’s Puzzle (example 2), and suppose
that in fact prisoner 𝐵 might either learn ¬𝐴 or ¬𝐶 (and no more).
Then, E is the non-partition {¬𝐴,¬𝐶}. If prisoner 𝐵 adopts the con-
ditionalization plan, then before learning, they will happily sell a $1
bet on them being spared for the price of $1/3,

Bet # 5
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$1 if 𝐵 is true
$0 else

price: $1/3

And after they learn from the guard (no matter what they learn from
the guard), they will buy the very same bet back at the price of $1/2,

Bet #6
$1 if 𝐵 is true
$0 else

price: $1/2

But the combination of these two bets is guaranteed to lose them a
1/6th of a dollar no matter what.

𝐵 ¬𝐵
Net profit from selling bet 5 −$2/3 $1/3
Net profit from buying bet 6 $1/2 −$1/2
Overall net profit −$1/6 −$1/6

So, in situations where E does not form a partition, the plan to con-
ditionalize on what you learn is susceptible to a Dutch strategy.

6.3 The Accuracy Arguments for Conditionalization

Return to example 11: why is Melissa more rational than Daniel? The
Dutch Strategy argument points out that Daniel opens himself up to a
Dutch strategy—but this justification looks overly pragmatic. Is there
any purely epistemic or accuracy-based reason why Daniel’s credence-
revision dispositions should be irrational? One very natural sugges-
tion is to say something about Daniel’s relationship to the truth. In
this section, we’ll consider three different accuracy arguments that
Daniel’s credence-revisiondispositions are less rational thanMelissa’s.

As with probabilism, these arguments are all centered around the
idea that accuracy is the sole epistemic good. As in the case of proba-
bilism, these arguments take for granted a conception of the epistemic
good—accuracy—togetherwith a kind of epistemic consequentialism.
Let’s make these assumptions explicit:

Veritism The only epistemic value is accuracy.

Epistemic Consequentialism To be epistemically rational is to pur-
sue epistemic value in an instrumentally rational way.

According to the epistemic consequentialist, we can think of our-
selves as facing a hypothetical choice between different doxastic states.
Some of these doxastic states will be better than others, though we
won’t always know which are better than which others. Nonetheless,
we should have a doxastic state that it would be instrumentally ratio-
nal to choose in this hypothetical decision, if our only final goal was
epistemic goodness. In our accuracy-based justification of probabil-
ism, we appealed to a simple norm of instrumental rationality, known
as dominance:
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Dominance If one available choice will be better than another, no mat-
ter what the world ends up being like, then the second choice is
irrational.

6.3.1 Accuracy Dominance Argument for Conditionalization

Note that, in example 11, there’s no guarantee that Daniel’s credences
will be less accurate than Melissa’s. For it could easily turn out that
the Democrats really aremore moral than the Republicans, and that all
and only the Republican scandals really were morally wrong. In that
case, Daniel’s methods of forming beliefs would have led him to all
and only true beliefs about American political scandals. See Briggs, R. A. & Pettigrew, Richard

(2020). “An Accuracy‐Dominance Ar-
gument for Conditionalization”. Noûs
54 (1): 162-181.
Briggs & Pettigrew assume that the

measure of inaccuracy, ℐ, satisfies the
following constraints:
Seperability The inaccuracy of a cre-

dence function, ℂ, at a world, 𝑤, is
the sum of the inaccuracy of ℂ’s cre-
dence in 𝐴 at 𝑤, for each 𝐴 to which
ℂ assigns a credence. That is, there’s
some localmeasure of the inaccuracy
of a credence 𝑥 in the proposition 𝐴
at the world 𝑤, ℐ (𝑥, 𝐴, 𝑤), such that

ℐ (𝐶, 𝑤) =
∑
𝐴∈𝒜

ℐ (ℂ(𝐴), 𝐴, 𝑤)

Continuity Small changes in your cre-
dence in 𝐴 don’t lead to big changes
in the inaccuracy of your credence
in 𝐴, holding everything else fixed.
That is: ℐ (𝑥, 𝐴, 𝑤) is a continuous
function of 𝑥.

Extensionality The only feature of the
world that’s relevant to the inaccu-
racy of a credence 𝑥 in 𝐴 at 𝑤 is the
truth-value of 𝐴 at 𝑤. That is: if
1𝐴(𝑤) = 1𝐵(𝑤′), then ℐ (𝑥, 𝐴, 𝑤) =
ℐ (𝑥, 𝐵, 𝑤)

Strict Propriety Every probability func-
tion expects itself to be strictly more
accurate than any other credence
function. That is, for every proba-
bility function ℙ, and any credence
function ℂ ≠ ℙ,∑
𝑤∈𝒲

ℙ(𝑤)·ℐ (ℙ, 𝑤) <
∑
𝑤∈𝒲

ℙ(𝑤)·ℐ (ℂ, 𝑤)

So, at first glance, it doesn’t look like we can give an argument
that Daniel is accuracy-dominated. Nonetheless, R.A. Briggs & Richard
Pettigrew show that there’s some sense in which Daniel is accuracy-
dominated by Melissa. They suppose that we have a measure of inac-
curacy satisfying the properties given in the margin, and they more-
over assume that we can measure the accuracy of an updating plan by
adding together the accuracy of the prior function ℂ together with the
accuracy of the posterior function.

More carefully, we suppose that there is some evidence partition, E
= {𝐸1 , 𝐸2 , . . . , 𝐸𝑁}, such that one of the 𝐸𝑖s in E will be the strongest
thing you learn. And you have some (definite) plan for responding
to each piece of evidence you might receive, ℂE . Then, Briggs & Pet-
tigrew are interested not in the accuracy of your posterior credences
on their own, but instead they are interested in the total accuracy of
both your prior credences and your posterior credences, ⟨ℂ,ℂE ⟩. And
they say that you can measure the accuracy of this pair by just adding
together the accuracy of each credence function in the pair:

ℐ (⟨ℂ,ℂE ⟩, 𝑤) = ℐ (ℂ, 𝑤) + ℐ (ℂE , 𝑤)

(Note thatℂE will be a different probability function depending upon
what is learnt. When we ask about the inaccuracy of ℂE at 𝑤, we are
really asking about the inaccuracy of ℂ𝐸 at 𝑤, where 𝐸 is the cell of
the partition E which contains 𝑤.)

If ℂ is a probability function and ℂE is the conditionalizing plan,
then say that the pair ⟨ℂ,ℂE ⟩ is a probabilistic conditionalizing plan.
Briggs & Pettigrew prove the following theorem:

Non-Conditionalization is Accuracy-Dominated (Briggs & Pettigrew) If ⟨ℂ,ℂE ⟩
is not a probabilistic conditionalizing plan, then there is some other
credal plan which accuracy dominates it. And, if ⟨ℂ,ℂE ⟩ is a prob-
abilistic conditionalizing plan, then there is no other credal plan
which accuracy dominates it.

This theorem affords us the following argument for conditionaliza-
tion:

P1) Having an accuracy-dominated credal plan is epistemically irrational
P2) Inaccuracy is measured with a separable, continuous, extensional,

and strictly proper function ℐ.
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P3) Non-probabilistic and non-conditioning credal plans are accuracy-
dominated on any separable, continuous, extensional, and strictly
proper measure.

∴ C) Having a non-probabilistic or non-conditioning credal plan is epis-
temically irrational.

This is a beautiful argument; but what it shows is something less
than what we might have wanted. As Briggs & Pettigrew themselves
acknowledge, it only establishes what they call the wide scope norm of
conditionalization:

Conditionalization (Wide-Scope) Suppose that, between 𝑡0 and 𝑡1,
you will learn the true cell of the partition E (and no more).
Then, it is rationally required that: your have a probabilistic
prior ℂ and an update plan ℂE such that ℂE is the plan to con-
ditionalize on the true member of E .

It does not give an argument for what they call the narrow scope norm
of conditionalization:

Conditionalization (Narrow-Scope) Suppose that, between 𝑡0 and 𝑡1,
you will learn the true cell of the partition E (and nomore), and
suppose that your prior credence function is the probabilisticℂ.
Then, it is rationally required that you have an update plan ℂE

which is the plan to conditionalize on the true member of E .

Why doesn’t this follow? Because the sunk-cost fallacy is a fallacy.
Suppose that Danielle drunkenly and foolishly buys a $1 bet on the
slowest horse in the race for 50¢. The next day, she comes to her senses
and tries to sell it back, but the market is only accepting it for 40¢. It
can be perfectly rational for Danielle to sell the bet at this price, given
that she’s rationally very confident that the slow horse is going to lose.
But notice that the plan to buy the bet for 50¢ and then sell it back for
40¢ is dominated. True enough, but that shouldn’t stop Danielle from
selling the bet today. Tomorrow’s choices are in the past and beyond
her control. All she can control now iswhat she does today; and today,
selling is the best choice.

Daniel’s positionmight be likeDanielle’s. Daniel finds himselfwith
his prior credences—those are already set, and now beyond his con-
trol. His only choice now iswhich update plans to adopt. Now,maybe
he’s made some bad choices with his priors, but just like Danielle’s
choices yesterday shouldn’t figure into her decision about whether to
sell the bet today, Daniel’s past choices shouldn’t figure into his de-
liberation about which update plans to adopt today. Since ℂE is the
only thing under his control, he should only be concerned with the
accuracy of that plan. But since his motivated reasoning plan could
easily end upmaking himmore accurate tomorrow thanMelissa’s con-
ditionalizing plan makes her tomorrow, it’s not clear that the Briggs
& Pettigrew result gives Daniel a reason to condition.
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6.3.2 An Expected Accuracy Maximization Argument for Condi-
tionalization

Adifferent accuracy-based argument for conditionalization can be found
in the work of Hannes Leitgeb and Richard Pettigrew. Their result

See Leitgeb, Hannes & Pettigrew,
Richard (2010). “An Objective
Justification of Bayesianism II: The Con-
sequences of Minimizing Inaccuracy”.
Philosophy of Science 77 (2): 236-272.
As I discuss in my Learning and Value
Change, Leitgeb and Pettigrew actually
give two independent strategies for
justifying conditionalization. Here, I’m
only discussing the second.

can be used to argue for a genuinely narrow-scope version of condi-
tionalization, but it relies on some additional decision-theoretic and
evidential assumptions.

They assume that you start out with some prior (probabilistic) cre-
dence function,ℂ, and then you acquire the evidence, 𝐸. They assume
that acquiring this evidence changes which possibilities are epistemi-
cally possible for you. Whereas before, all of the worlds in 𝒲 were
epistemically possible, now, only the worlds in 𝐸 are epistemically
possible for you. This change in your credal state might prompt you
to exchange your credence function for another. How should you
choose? They suggest—drawing on a long tradition from decision
theory—that you should selectwhichever one has the greatest expected
epistemic value. That is: they are drawing on the following decision-
theoretic norm:

Maximize Expected Value When choosing from amongst a collection of
options, you should choose one with the greatest expected value.

Because the prior ℂ was probabilistic, and because accuracy is mea-
sured in a strictly proper way, the prior ℂ maximized expected value
(when the expectation is taken relative to itself). That’s just what it
means for the measure of accuracy to be strictly proper. But things
have changed—not all the worlds in 𝒲 are still live possibilities. So
Leitgeb and Pettigrew now suggest that you should choose a credence
function, ℂ+, which minimizes this weighted sum:∑

𝑤∈𝐸
ℂ(𝑤) · ℐ (ℂ+ , 𝑤)

And, so long as ℐ is a strictly proper measure of (in)accuracy, the
unique choice ofℂ+ whichminimizes this weighted sumwill beℂ(− |
𝐸).1 1 Proof : ℂ(− | 𝐸) is a probability func-

tion. Since ℐ is strictly proper, the
unique choice of ℂ+ which minimizes∑

𝑤∈𝒲
ℂ(𝑤 | 𝐸) · ℐ (ℂ+ , 𝑤)

=
∑
𝑤∈𝐸

ℂ(𝑤 | 𝐸) · ℐ (𝐶+ , 𝑤)

will be ℂ+(− | 𝐸). (The expectation on
the top is equal to the weighted sum on
the bottom since ℂ(𝑤 | 𝐸) = 0 when-
ever 𝑤 ∉ 𝐸.) If a choice of ℂ+ minimizes
this function, it will also minimize the
function after we multiply it by a posi-
tive constant. So it will also minimize

ℂ(𝐸) ·
∑
𝑤∈𝐸

ℂ(𝑤 | 𝐸) · ℐ (𝐶+ , 𝑤)

=
∑
𝑤∈𝐸

ℂ(𝑤 | 𝐸) · ℂ(𝐸) · ℐ (ℂ+ , 𝑤)

=
∑
𝑤∈𝐸

ℂ(𝑤) · ℐ (ℂ+ , 𝑤)

Č

So Leitgeb & Pettigrew afford us the following defense of condi-
tionalization:

P1) When you learn 𝐸, you should adopt a posterior credence function
which minimizes expected inaccuracy within those worlds compat-
ible with the evidence.

P2) Inaccuracy is measured with a strictly proper measure ℐ.
P3) If ℐ is strictly proper, then ℂ(− | 𝐸) uniquely minimizes expected

inaccuracy within the worlds compatible with 𝐸.
∴ C) When you learn 𝐸, you should adopt your prior credence function

conditioned on your evidence.

According to this justification of conditionalization, Daniel is irrational
because (roughly), once the evidence of the scandal is in, he should ex-
pect his motivated reasoning to take him further from the truth than
Melissa’s non-motivated reasoning.
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(P2) is just a theorem, so any objection will have to be to the norma-
tive claim (P1) or the contention that accuracy is strictly proper, (P3).
We discussed reasons to think that inaccuracy is strictly proper in last
class. At first glance, you might suspect that (P1) is just a relatively
uncontroversial application of the norm Maximize Expected Value. But
this isn’t quite right. We need to carefully distinguish these two func-
tions: ∑

𝑤∈𝒲
ℂ(𝑤) · ℐ (ℂ+ , 𝑤)

∑
𝑤∈𝐸

ℂ(𝑤) · ℐ (ℂ+ , 𝑤)

The thing on the left is the expected inaccuracy ofℂ+. Andwe already
know what (uniquely) minimizes this—it is ℂ itself. That’s just what
it means for ℐ to be a strictly proper measure of inaccuracy. The norm
of Maximize Expected Value, together with the assumption of Veritism,
tells us that we should try to minimize this function; so it is what tells
us that it’s irrational to move from ℂ to any other credence function.
But the thing on the right is not the expected inaccuracy of ℂ+. That’s
so because the function 𝑓 [𝑉] =

∑
𝑤∈𝐸 ℂ(𝑤) · 𝑉(𝑤) does not satisfy

the properties of an expectation—recall, an expectation should satisfy
𝔼[𝑐] = 𝑐, if 𝑐 is a constant. But 𝑓 [𝑐] = ℂ(𝐸) · 𝑐, which is going to be
less than 𝑐. So this weighted sum on the right isn’t an expectation of
epistemic value, because it’s not an expectation.

The justification offered by Leitgeb and Pettigrewpoints us towards
a puzzle about any attempt to justify a norm like conditionalization
using considerations of expected accuracy: we already know, from the
fact that ℐ is strictly proper, that your prior maximizes expected accu-
racy. So we know that the conditionalization posterior ℂ(− | 𝐸) has a
lower expected accuracy than ℂ itself. So how could maximizing ex-
pected accuracy every give us any reason to exchange the prior for the
conditionalization posterior? Won’t this mean just exchanging a dox-
astic state with higher expected accuracy for one with lower expected
accuracy?

6.3.3 Another Expected Accuracy Maximization Argument

No—but the reason is somewhat subtle. Strict propriety of ℐ means
thatℂwill have a greater expected accuracy than any fixed probability
function. But that doesn’t mean that it will have a greater expected
accuracy than any definite description for a probability function. Recall:
a definite description for a probability function, 𝒫 , is a function from
worlds to probability functions. The interpretation is that the value
this function takes on at a world, 𝑤, is the probability function which
‘𝒫 ’ refers to at the world 𝑤.

Consider, then, the omniscient credence function, 𝒪 . This is a func-
tion from aworld𝑤 to the probability functionwhich is certain of {𝑤}.
The expected inaccuracy of 𝒪 is zero,2 which is certainly less than the 2 Why? Because the probabilities which

𝒪𝑤 gives to every proposition 𝐴 is just
𝐴’s truth-value at 𝑤, so the distance be-
tween𝒪𝑤(𝐴) and 1𝐴(𝑤)will be zero, for
every 𝐴. And the weighted sum of any
number of zeros is zero.

expected inaccuracy of ℂ unless ℂ happens to be certain about what
world is actual.

Now think aboutℂE —your update plans for how to respondwhen
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you learn the truemember of the partition E . This is not any particular
probability function. Instead, it is a definite description for a probabil-
ity function. So strict propriety isn’t going to say that the expected
inaccuracy of ℂE must be greater than the expected inaccuracy of ℂ.

An argument fromHilary Greaves and DavidWallace justifies con- See Greaves, Hilary & Wallace, David
(2006). “Justifying conditionalization:
Conditionalization maximizes expected
epistemic utility”. Mind 115 (459): 607-
632.

ditionalization by showing that the conditioning plan is the one that
minimizes expected inaccuracy. But any such argument must be care-
fully formulated—after all, we know already that 𝒪—the plan to be-
come certain of the truth—will minimize expected accuracy. In partic-
ular, it will have lower expected accuracy than the conditioning plan.
So Greaves & Wallace want to limit the scope of the kinds of update
plans they are going to consider. They say that they are only interested
in available update plans.

Just to formalizesome of the things we’ve been talking about in-
formally, let’s say that an update plan, 𝒰 , is a function from worlds
𝑤 ∈ 𝒲 to probability functions over the relevant algebra of proposi-
tions, 𝒜.

Update Plans An update plan, 𝒰 , is a function from worlds in 𝒲 to
probability functions over 𝒜. 𝒰𝑤 is the posterior probability func-
tion the update plan prescribes adopting in the world 𝑤

On this definition, 𝒰 is an update plan. It is just the plan to become
omniscient after learning. But Greaves & Wallace contend that this
update plan is not available.

Available Update Plans If you are going to learn the true member of
the (finite) partition E = {𝐸1 , 𝐸2 , . . . , 𝐸𝑁}, then an update plan 𝒰
is available iff, for any 𝐸 ∈ E , and any two worlds 𝑤, 𝑤∗ ∈ 𝐸, 𝒰𝑤 =
𝒰(𝑤∗).

In other words: an update plan is available iff it only distinguishes be-
tween worlds in which you have different evidence. Worlds in which
you have the same evidence are not worlds in which you can plan to
update differently.

Then, Greaves & Wallace prove the following theorem:

A proof of Greaves and Wallace’s theo-
rem: The expected inaccuracy of an up-
date plan 𝒰 is∑

𝑤∈𝒲
ℂ(𝑤) · ℐ (𝒰𝑤 , 𝑤)

=
∑
𝐸∈E

∑
𝑤∈𝐸

ℂ(𝑤) · ℐ (𝒰𝑤 , 𝑤)

Since 𝒰 is available, 𝒰𝑤 = 𝒰𝑤∗ for
each 𝑤, 𝑤∗ ∈ 𝐸 and each 𝐸 ∈ E , so
we can write ‘𝒰𝐸 ’ for the posterior rec-
ommended for any world in 𝐸, and the
above becomes

=
∑
𝐸∈E

∑
𝑤∈𝐸

ℂ(𝑤 | 𝐸) · ℂ(𝐸) · ℐ (𝒰𝐸 , 𝑤)

=
∑
𝐸∈E

ℂ(𝐸)
∑
𝑤∈𝐸

ℂ(𝑤 | 𝐸) · ℐ (𝒰𝐸 , 𝑤)

Our choice of 𝒰𝐸 is independent of our
choice of 𝒰𝐸′ , for any 𝐸 ≠ 𝐸′. So when
we minimize the weighted sum above,
we must for each 𝐸 ∈ E make what-
ever choice minimizes the inner sum∑
𝑤∈𝐸 ℂ(𝑤 | 𝐸) · ℐ (𝒰𝐸 , 𝑤). But since

ℂ(− | 𝐸) is a probability function and
ℐ is strictly proper, we know that the
choice 𝒰𝐸 = ℂ(− | 𝐸) uniquely min-
imizes this inner sum. And the same
goes for every 𝐸 ∈ E . So the conditional-
ization plan will uniquely minimize ex-
pected inaccuracy.

Conditionalization Maximizes Expected Accuracy (Greaves & Wallace) If in-
accuracy ismeasuredwith a strictly propermeasure, and you stand
to learn the truemember of the (finite) partitionE = {𝐸1 , 𝐸2 , . . . , 𝐸𝑁}
then the available update plan which minimizes expected accuracy
is the conditionalization plan.

(The proof is in the margin.)
This affords us the following justification of conditionalization:

P1) Whenyou’re learningwhichmember of a partition is true, you should
choose an available update plan thatminimizes expected inaccuracy.

P2) Inaccuracy is measured with a strictly proper function.
P3) Conditionalization Maximizes Expected Accuracy
∴C) When learning which member of a partition is true, you should plan

to condition on whatever you learn.
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Later, we’re going to consider reasons to worry about what hap-
pens if and when you are learning something other than which cell of
a partition is true. But for now, let’s consider some reasons to worry
about the underlying epistemic consequentialism which all of these
arguments are presupposing.

6.4 Objections to Epistemic Consequentialism

6.4.1 A Digression on Instrumental Rationality

Let’s start off by acknowledging a fact that we’ve been ignoring up to
this point: norms like Dominance and Maximize Expected Value cannot
be correct in general. Consider the application of those norms to the
following decision:

Shakedown Crazy Joe Gallo tells you that you have a nice store, men-
tions that it would be terrible if anything happens to it, and offers
you the mafia’s “protection”. The protection costs $100 a month.

We can suppose that all you care about is how much money you have
at the end of the month. If your store is vandalized, you’ll lose $1000.
If you pay the protection money, you’ll lose $100. Consider the deci-
sion table in the margin. Store Vandalized Store not Vandalized

Pay −$1100 −$100
Don’t −$1000 $0

There are two possible states of the world: either the store will be
vandalized or it won’t. And there are two available acts: either you
pay the protection fee or you don’t. Notice that, no matter whether the
store is vandalized or not, paying the protection feewill leave you $100
poorer than not paying. So a naïve application of dominance would
tell you that you shouldn’t pay. Likewise, suppose that your proba-
bility that your store will be vandalized is 𝑥. Then, the expected value
of paying will be less than the expected value of not paying,

𝑥 · (−1100) + (1 − 𝑥) · (−100) ?
< 𝑥 · (−1000) + (1 − 𝑥) · 0

−1100𝑥 + 100𝑥 − 100
?
< −1000𝑥

−100
✓
< 0

But obviously, in this decision, you should pay—if you don’t pay,
Gallo is going to vandalize your store, and if you pay, he won’t! The
trouble here is that there is act-state dependence. Which state (store
vandalized or not) obtains depends upon which act you choose. The
normsDominance andMaximize Expected Valueworkwell when there’s
no act-state dependence, but when there is act-state dependence, they
need to be modified.

It turns out that there’s controversy about how they should bemod-
ified. Some people think that the kind of dependence that matters is
probabilistic dependence; whereas others think that the kind of depen-
dence that’s relevant is causal dependence. The classic way of bringing
out the difference is with this decision from Nozick:

Newcomb’s Problem Before you are two boxes: one transparent and
one opaque (the ‘mystery box’). You are leaving with the mystery
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box and its contents no matter what—it’s a gift. Your only choice
is whether or not to take or leave behind the transparent box. In-
side the transparent box is $1000. Yesterday, I made a quite reliable
prediction about what you would choose. If I predicted that you
would take just the mystery box (‘one box’), then I put $1,000,000
inside themystery box. And if I predicted that youwould take both
the mystery box and the transparent box (‘two box’), then I left the
mystery box empty.

There is considerable controversy about how to react to this decision.
Some think that, because one-boxing raises the probability that there’s
$1,000,000 in the mystery box, you should one box. Others think that,
because two-boxing will certainly cause you to get $1000 more than
one-boxing would, you should two-box.

Two dominant decision theories have been built up around these
twodifferent intuitions. According to the first, evidential decision theory,
we should generalize Dominance and Maximize Expected Value in this
way:

Evidential Dominance If 𝒮 is a partition of states which are proba-
bilistically independent of how you choose, and one option, 𝐴,
is better than another, 𝐵, in every state in 𝒮—that is, if the value
of 𝐴𝑆 is greater than the value of 𝐵𝑆,𝒱(𝐴𝑆) > 𝒱(𝐵𝑆), for every
𝑆 ∈ 𝒮—then 𝐵 is irrational.

Maximize Evidential Expected Value 𝐴 is a more rational choice
than 𝐵 whenever∑

𝑤∈𝒲
ℂ(𝑤 | 𝐴) · 𝒱 (𝑤) >

∑
𝑤∈𝒲

ℂ(𝑤 | 𝐵) · 𝒱 (𝑤)

According to the evidentialists, you should one-box because one-boxing
maximizes expected evidential value.

According to the second dominant decision theory, causal decision
theory, we should generalize Dominance and Maximize Expected Value
in this way:

Causal Dominance If 𝒦 is a partition of states which are causally
independent of how you choose, and one option, 𝐴, is better
than another, 𝐵, in every state in 𝒦—that is, if the value of 𝐴𝐾
is greater than the value of 𝐵𝑆, 𝒱(𝐴𝐾) > 𝒱(𝐵𝐾), for every 𝐾 ∈
𝒦—then 𝐵 is irrational.

Maximize Causal Expected Value 𝐴 is a more rational choice than 𝐵
whenever∑

𝑤∈𝒲
ℂ(𝐴� 𝑤) · 𝒱 (𝑤) >

∑
𝑤∈𝒲

ℂ(𝐵� 𝑤) · 𝒱 (𝑤)

The definition of Maximize Causal Ex-
pected Value in the body presupposes
that, for any antecedent 𝐴, there is some
world𝑤 such that𝐴� 𝑤 is true. If you
deny this, then the definition will have
to be generalized. I won’t bother with
the details here.
One fact that will be helpful in the

next subsection: Skyrms’ thesis says that
ℂ(𝐴� 𝑤) should be equal to 𝔼[𝒞ℎ(𝑤 |
𝐴)]. If we accept Skyrms’ thesis, then
we can say that causal expected value
is your expectation of chance’s expecta-
tion of𝒱, conditional on 𝐴. Andwe can
say that the evidential expected value is
your conditional expectation of chance’s
expectation of 𝒱.

6.4.2 Epistemic Consequentialism and Act-State Dependence

Hilary Greaves raises some interesting and troubling cases for the the- See Greaves, Hilary (2013). “Epistemic
Decision Theory”. Mind 122 (488): 915-
952.
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sis of epistemic consequentialism. All of these cases are ones that in-
volve act-state dependence, in the sense that how accurate your cre-
dences arewill depend uponwhich plans for updating your credences
you adopt.

In Promotion, both evidential and causal
forms of epistemic consequentialism
recommend 𝑥 = 1/2.

Promotion You are up for promotion, but your boss is insecure and
will only promote you if you lack confidence. If your credence in
“I will get the promotion” is 𝑥, then the objective chance that you’ll
get the promotion will be 1 − 𝑥.

Leap You stand on one side of a chasm, about to leap. You are form- In Leap, both evidential and causal
forms of epistemic consequentialism
recommend 𝑥 = 1 or 0.

ing a credence in the proposition “I will make it to the other side”.
Confidence makes you more likely to succeed, so that, if your cre-
dence in this proposition is 𝑥, the objective chance that you make it
to the other side is 𝑥.

Embezzlement Youhave conclusive evidence that your colleagueChar- In Embezzlement, for 𝑛 > 4, eviden-
tial epistemic consequentialism recom-
mends that you be certain Charlie is not
guilty and certain in the propositions
𝐴1 , . . . , 𝐴𝑛 . And causal epistemic con-
sequentialism recommends that you are
certain that Charlie is guilty and have
a credence of one half in each of the
propositions 𝐴1 , . . . , 𝐴𝑛 .

lie has embezzled funds, and you have access to 𝑛 files attesting to
the propositions 𝐴1 , 𝐴2 , . . . , 𝐴𝑛 . Yesterday, Charlie made a very re-
liable prediction about what credence you would have in ‘Charlie
embezzled funds’. If he predicted a credence of 𝑥, then with prob-
ability 𝑥 he altered the contents of the files (randomizing them so
that their conclusions are as likely to be true as false). If he pre-
dicted a credence of 𝑥, then the objective chance of a proposition in
the file being true is 1 − 𝑥/2.

Imps You are walking through the garden of epistemic imps. Before In Imps, for 𝑛 > 4, both the eviden-
tial and the causal versions of epistemic
consequentialism recommend that you
have a credence of 𝑥 = 0 that there is a
child in front of you.

you is a child. In a nearby summerhouse are 𝑛 invisible imps who
are able to read your mind. If your credence that there’s a child
before you is 𝑥, then they will come out to play with a chance of
1 − 𝑥/2.

According to Greaves, the correct answers for these cases are as fol-
lows: In Promotion, you should have a credence of 1/2 that you’ll get
the promotion. In Leap, you should have a credence of either 0 or 1
that you’ll make it to the other side. In Embezzlement, you should have
a credence of 1 that Charlie is guilty and a credence of 1/2 in each of
the propositions 𝐴1 . . . 𝐴𝑛 . And, in Imps, you should have a credence
of 1 that there’s a child before you and a credence of 1/2 that each of
the imps has come out to play.

The trouble is that there’s no version of epistemic consequential-
ism which delivers these verdicts. The evidential version of the the-
ory gets both Embezzlement and Imps wrong. And the causal version
of the theory gets Imps wrong. It says that you should be willing to
pay an epistemic bribe, sacrificing accuracy with a known proposition
to raise your accuracy with other, unrelated propositions. Insofar as
you think it’s irrational to pay this kind of epistemic bribe, you might
want to reject the underlying epistemic consequentialism and (there-
fore) reject the justifications of conditionalization we offered above.

Jason Konek and Ben Levinstein have offered a response to these See Konek, Jason & Levinstein, Ben
(2019). “The Foundations of Epistemic
Decision Theory”. Mind 128 (509): 69-
107.

worries. According to them, we should be causal decision theorists
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when it comes to action, but not when it comes to belief.3 The rea- 3 At least, Levinstein is willing to grant
this for the purposes of this argument
that we should be causal decision theo-
rists. In other work he defends a differ-
ent decision theory.

son has to do with the differences between epistemic and practical
value. According to them, therewasn’t really anythingwrongwith the
basic imperative to maximize expected value—instead, the problem
lay with the kind of value whose expectation was being maximized.
Epistemic value has a mind-to-world direction of fit, whereas practi-
cal value has a world-to-mind direction of fit. In the case of practical
decision theory, the value of an act lies in what that act would do to
the world But in the case of epistemic decision theory, the value of a
credence is not what the credence would do to the world, but rather
how well the credence would reflect what’s actually the case.

So they endorse the following general theory of instrumental ratio-
nality:

Maximize Expected Value 𝐴 is a more rational option than 𝐵 iff 𝐴’s
expected value is greater than 𝐵’s expected value

Practical Value The practical value of 𝐴 is given by the final value
of the world that would result, were you to perform 𝐴

Epistemic Value The epistemic value of a credence function is given
by how accurately that credence function describes the actual
world.

Without going through all of the mathematical details, the first two
theses give you causal decision theory for acts. But the final thesis
gives you something different for credences. In particular, you get all
of the recommendations Greaves endorses for Promotion, Leap, Embez-
zlement, and Imps.

Review Questions

1. What doesConditionalization say? What doesReflection say? Use the
MontyHall puzzle to illustrate why, if the set of propositionswhich
youmight learn, E , does not form a partition, Conditionalization and
Reflection can give contradictory advice.

2. What is a Dutch strategy? Suppose that, over a period of time, I
successfully sell you a combination of bets which are guaranteed to
lose you money no matter what. Is this enough to show that you
were susceptible to a Dutch strategy? Why or why not?

3. What is the Dutch Strategy Theorem, and how could it be used to
argue for Conditionalization?

4. What is the Accuracy Dominance Avoidance argument for Condition-
alization?

5. What is Greaves & Wallace’s Expected Accuracy Maximization argu-
ment for Conditionalization?
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6. What is the thesis of epistemic consequentialism, and what role
does it play in Greaves & Wallace’s argument for conditionaliza-
tion? Describe Greaves’ Imps case and explain why it poses a prob-
lem for epistemic consequentialism.



7
Alternatives to Conditionalization

7.1 Conditionalization and Certainty

Notice that conditionalization tells us that youmust be certain of your
evidence, since

ℂ(𝐸 | 𝐸) = ℂ(𝐸 ∧ 𝐸) ÷ℂ(𝐸) = ℂ(𝐸) ÷ℂ(𝐸) = 1

Moreover, conditionalization makes certainty permanent. Condition-
alization can lower a proposition’s credence from 1 − 𝜖 to 𝜖. But once
you are certain that 𝐸, conditionalizationwill never lower 𝐸’s credence
from 1. That’s because, if ℂ(𝐸) = 1, then ℂ(𝐸 ∧ 𝐹) = ℂ(𝐹). So, if If ℂ(𝐸) = 1, then ℂ(¬𝐸) = 0 by additiv-

ity. Then, ℂ(¬𝐸 ∧ 𝐹) = 0 by monotonic-
ity. By additivity again, ℂ(𝐹) = 𝐶(𝐸 ∧
𝐹)+ℂ(¬𝐸∧𝐹) = ℂ(𝐸∧𝐹)+0 = ℂ(𝐸∧𝐹).

ℂ(𝐸) = 1, then

ℂ(𝐸 | 𝐹) = ℂ(𝐸 ∧ 𝐹) ÷ℂ(𝐹) = ℂ(𝐹) ÷ℂ(𝐹) = 1

So conditionalization says both that you must be certain of whatever
your evidence tells you, and that you must remain certain of whatever
your evidence tells you, no matter what. But consider cases like the
following:

Example 15 (Observation by Candlelight (Jeffrey, 1965)). The agent in-
spects a piece of cloth by candlelight, and gets the impression that it is green,
although he concedes that it might be blue or even (but very improbably) vio-
let. If 𝐺, 𝐵, and𝑉 are the propositions that the cloth is green, blue, and violet,
respectively, then the outcome of the observation might be that, whereas orig-
inally his degrees of belief in 𝐺, 𝐵, and 𝑉 were .30, .30, and .40, his degrees
of belief in those same propositions after the observation are .70, .25, and .05.

Example 16 (UndercuttingDefeat). You look at a red wall in normal light-
ing conditions, and thereby come to learn that the wall is red. However, after-
wards, you are informed by a reliable (but in this case, incorrect) informant
that the wall is actually white, and bathed in red lighting.

In the first example, fromRichard Jeffrey, your credences in various
propositions change, but it does not seem that there is any proposition
which is learnt with certainty. Even if there is some proposition which
exactly describes the precise visual experience you have undergone,
this proposition needn’t be in the algebra over which your credences
are defined. So there’s no proposition (in your algebra, at least) which

Even if there is such a proposition, we
might think that you haven’t learned
that proposition. Consider, for instance,
Ayer’s “speckled hen”: you look at a
speckled hen. Perhaps your experience
contains some precise number of speck-
les, but it doesn’t seem that you should
be certain about how many speckles the
hen has, given that you can’t reliably dis-
criminate the number of speckles on a
hen without careful counting.
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is learnt with certainty. But it looks like you should still revise your
credences in some way. So Jeffrey concludes that conditionalization
does not always apply. There are some cases in which you should
revise your credences in someway other than by conditioning onwhat
you’ve learnt.

In the second example, introduced as a problem for conditional-
ization by Jonathan Weisberg,1 we can identify a proposition which 1 Weisberg, Jonathan (2009). “Commu-

tativity or Holism? A Dilemma for Con-
ditionalizers”. British Journal for the Phi-
losophy of Science 60 (4): 793-812.

is learnt—this is the proposition “the wall is red”. But we want to
say that your credence in this proposition should start out high and
then, after hearing from your informant, it should become low. But
as we’ve seen, conditionalization can never lower a proposition’s cre-
dence from 100%. So if you update by conditioning on the proposi-
tion “the wall is red”, then your credence in this proposition will rise
to 100% and it will not fall when you hear from the informant.

Youmight think that there is a different proposition which is learnt
in example 2: perhaps what you learn is just that the wall seems red.
Weisberg contends that this just moves the bump in the carpet. Sup-
pose that the wall in fact seems red, but that later a reliable (but in
this case, incorrect) informant tells you that you’ve recently ingested
a drug that makes you make mistakes about how things seem to you.
This drug would make you falsely think that things seem red when
in fact they seem green. In that case, Weisberg thinks that your cre-
dence in “the wall seems red” should fall, but it will not fall if you’ve
conditioned on this proposition.

7.2 Jeffrey Conditionalization

In response to the first kind of case, Jeffrey proposed a generalization
of conditionalization. To understand what this generalization says,
think about how an arbitrary proposition, 𝐴, can be broken down,
into the parts of it that overlap the cells of the partition {𝐺, 𝐵,𝑉}:2 2 We can assume that you knew for sure

that the cloth would be either green,
blue, or violet, so that {𝐺, 𝐵,𝑉} parti-
tions your credal state.ℂ(𝐴) = ℂ(𝐴 ∧ 𝐺) +ℂ(𝐴 ∧ 𝐵) +ℂ(𝐴 ∧𝑉)

Or, equivalently, using the definition of conditional probability,

ℂ(𝐴) = ℂ(𝐴 | 𝐺) · ℂ(𝐺) +ℂ(𝐴 | 𝐵) · ℂ(𝐵) +ℂ(𝐴 | 𝑉) · ℂ(𝑉)

Jeffrey’s idea is that, if your credences are directly affected along the
partition {𝐺, 𝐵,𝑉}, then you should adjust your probabilities for 𝐺, 𝐵,
and 𝑉 , but you should keep the conditional probabilities ℂ(𝐴 | 𝐺),ℂ(𝐴 |
𝐵), and ℂ(𝐴 | 𝑉) fixed. So your posterior, after learning, should be

ℂ+(𝐴) = ℂ(𝐴 | 𝐺) · 0.7 +ℂ(𝐴 | 𝐵) · 0.25 +ℂ(𝐴 | 𝑉) · 0.05
You can visualize this with figure 7.1, where credence corresponds to
area, and the cell𝐺 has been ‘stretched out’, having its overall credence
raised, and 𝐵 and 𝑉 have both been ‘smushed in’, having their overall
credence lowered. The proposition 𝐴 goes along for the ride, getting
stretched or smushed in each cell in proportion to its area in that cell.

In general, Jeffrey assumes that you will have your credences di-
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(a) Your Prior, before observation (b) Your Posterior, after Jeffrey Conditioning Figure 7.1: Jeffrey Conditioning on
the weighted partition, or ‘Jeffrey shift’,
{(𝐺, .7), (𝐵, .25), (𝑉, .05)}

rectly affected along some partition {𝐸1 , 𝐸2 , . . . , 𝐸𝑁}, making it ratio-
nal for you to adopt the new posterior credences 𝑞1 , 𝑞2 , . . . , 𝑞𝑁 , re-
spectively, in each cell of this partition. We can represent this with a
‘weighted partition’,

{(𝐸1 , 𝑞1), (𝐸2 , 𝑞2), . . . , (𝐸𝑁 , 𝑞𝑁 )}

which is to be interpreted as follows: it is now rational for you to have a
credence of 𝑞𝑖 in the proposition 𝐸𝑖 (for each 𝑖). Notice that, assuming
probabilism, this means that the ‘weights’ in a weighted partition will
have to sum to 1. I’ll call the experience whose evidential import gets
representedwith aweighted partition like this a Jeffrey shift. And then,
Jeffrey says that, if you undergo a Jeffrey shift like this, you should
adopt the new posterior

ℂ+(𝐴) = ℂ(𝐴 | 𝐸1) · 𝑞1 +ℂ(𝐴 | 𝐸2) · 𝑞𝑛 + · · · + ℂ(𝐴 | 𝐸𝑁 ) · 𝑞𝑁
Jeffrey Conditionalization If your prior credence function is ℂ, and

you undergo a Jeffrey shift making it rational to have a posterior
credence of 𝑞𝑖 in cell 𝐸𝑖 of the partition {𝐸1 , 𝐸2 , . . . , 𝐸𝑁}, then
your posterior credence in any proposition, 𝐴, should be

ℂ+(𝐴) =
𝑁∑
𝑖=1

ℂ(𝐴 | 𝐸𝑖) · 𝑞𝑖
A small bookkeeping point: if ℂ(𝐴 ∧
𝐸𝑖) = 0, then we can say by convention
thatℂ(𝐴 | 𝐸𝑖) = 0, too, to make sure that
each term will be well-defined.

Notice that Jeffrey conditionalization has regular conditionaliza-
tion as a special case. Ifwe let theweightedpartition be {(𝐸, 1), (¬𝐸, 0)},
then Jeffrey conditionalization says that your posterior should be

ℂ+(𝐴) = ℂ(𝐴 | 𝐸) · 1 +ℂ(𝐴 | ¬𝐸) · 0 = ℂ(𝐴 | 𝐸)

7.2.1 Arguments for Jeffrey Conditionalization?

Brian Skyrms And Brad Armendt have given two (importantly differ-
ent) Dutch strategy arguments for Jeffrey conditionalization. There
is an attempted expected accuracy maximization argument for Jeffrey
conditionalization given by Ben Levinstein, but this argument only
works given a measure of inaccuracy which isn’t strictly proper—so,
to my knowledge, there is no expected accuracy maximization argu-
ment for Jeffrey conditionalization.

See Levinstein, Benjamin Anders (2012).
“Leitgeb and Pettigrew onAccuracy and
Updating.” Philosophy of Science 79
(3):413-424. For the criticism, see Gal-
low, J. Dmitri (2019). “Learning and
Value Change”. Philosophers’ Imprint
19:1–22.
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7.2.2 Objection to Jeffrey Conditionalization: Non-commutativity

Suppose you take one look at the cloth, and you get the Jeffrey shift
{(𝐺, .7), (𝐵, .25), (𝑉, .05)}. Then, you take another look and get the
second Jeffrey shift {(𝐺, .5), (𝐵, .25), (𝑉, .25)}. You will first stretch
out the 𝐺 cell to a credence of 70%, and next shrink it back down to
a credence of 50%. You’ll likewise shrink 𝑉 to 5% and then stretch it
back out to 25%. Then, consider your friend, you looks at the cloth
and first gets the Jeffrey shift {(𝐺, .5), (𝐵, .25), (𝑉, .25)}, and then gets
the Jeffrey shift {(𝐺, .7), (𝐵, .25), (𝑉, .05)}. This friend will first stretch
𝐺 out to 50%, and then stretch it out even further to 70%. They’ll first
shrink𝑉 to 25%, and then shrink it even further, down to 5%. So even
if you and your friend started out with the same prior, you’ll end up
at a different posterior. You will have a credence of 0.5, 0.25, 0.25 in
𝐺, 𝐵, and 𝑉 , respectively, whereas your friend will have a credence of
0.7, 0.25, 0.05 in 𝐺, 𝐵, and 𝑉 .

But both you and your friend had exactly the same experiences—just in a
different order! Surely the order inwhich evidence is acquired shouldn’t
make a difference to what it’s rational to believe after all the evidence
is in.

Commutativity If you learn two things,𝔈 and𝔉, then the rational thing
to believe, after learning both of these things, shouldn’t depend
upon the order you learnt them in. So, if we use ‘ℂ𝔈’ for your cre-
dences updated on 𝔈, then we should have

ℂ𝔈𝔉 = ℂ𝔉𝔈

ℂ ℂ𝔈

ℂ𝔉 ℂ𝔉𝔈 = ℂ𝔈𝔉

𝔈

𝔉 𝔉

𝔈

It looks like Jeffrey conditionalization is non-commutative. But since
commutativity looks like a rational constraint on any plausible learn-
ing procedure, this seems like a problem for Jeffrey conditionaliza-
tion.3 3 Versions of this complaint are found

in Domotor, Zoltan (1980). “Probability
kinematics and representation of belief
change”. Philosophy of Science 47 (3):384-
403, Skyrms, Brian (1966). Choice and
chance. Belmont, Calif.,: Dickenson Pub.
Co., and Van Fraassen, Bas C. (1989).
Laws and symmetry. New York: Oxford
University Press.

One response to this problem, articulated by Marc Lange,4 is that

4 Lange, Marc (2000). Is Jeffrey Condi-
tionalization Defective By Virtue of Be-
ing Non-Commutative? Remarks on the
Sameness of Sensory Experiences. Syn-
these 123 (3):393-403.

we need to be more careful about how we understand the things in
the definition of commutativity. In the context of Jeffrey conditional-
ization, we can think of the weighted partition, or the Jeffrey shift, as
the evidence acquired. But Lange says that, if we think of things this
way, then we shouldn’t want commutativity of evidence, since what
evidence we receive might depend upon our background beliefs. In

As Field puts the point:

...it is clear that the probabil-
ity 𝑞 which I attached to an
observation sentence 𝐸 after I
have been subjected to s sen-
sory stimulation will depend
not only on the sensory stim-
ulation but also on the prob-
ability I attached to 𝐸 before
the stimulation.

particular, how confident we should be that the cloth is violet after
our glimpse through candlelight might depend upon how confident
we were beforehand that the cloth was violet. So the Jeffrey shift is go-
ing to include both information about what happened in experience
and information about your prior degrees of belief. Instead of com-
mutativity of Jeffrey shifts, what we should want is commutativity of
learning experiences.

So Lange suggests that, if you and your friend receive those same
Jeffrey shifts, in those two different orders, then you and your friend
couldn’t have undergone the same experiences. After all, for you, the
second experience disconfirmed 𝐺; whereas, for your friend, the first
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experience confirmed 𝐺.

7.3 Field Conditionalization

This kind of position can be buttressed by considering an alternative
way of understanding and representing Jeffrey conditionalization, of-
fered by Hartry Field,5 Instead of taking the input to an update rule to 5 See Field, Hartry (1978). “A note on

Jeffrey conditionalization”. Philosophy of
Science 45 (3):361-367.be the posterior credences that are rationalized after your experience,

Field takes the input to be the degree to which the experience has confirmed
any given cell of the partition {𝐸1 , 𝐸2 , . . . , 𝐸𝑁}. Let’s represent the de-
grees of confirmation given to cell 𝐸𝑖 with ‘𝛼’. If 𝛼𝑖 > 1, then 𝐸𝑖 has
been confirmed. If 𝛼𝑖 < 1, then 𝐸𝑖 has been disconfirmed. If 𝛼𝑖 = 0,
then 𝐸𝑖 has been neither confirmed nor disconfirmed.

I’ll represent the input to Field’s rule a Field shift. It will be repre-
sented with a differently-weighted partition,

{(𝐸1 , 𝛼1), (𝐸2 , 𝛼2), . . . , (𝐸𝑁 , 𝛼𝑁 )}

In the case of a Jeffrey shift, we assumed that
∑
𝑖 𝑞𝑖 = 1. In the case of

a Field shift, we should assume that any confirmation one proposition
receives is balanced out with disconfirmation somewhere else, so that∏

𝑖 𝛼𝑖 = 1.
Then, Field says that your posterior should be given by taking each

cell of the partition𝐸𝑖 , stretching or smushing it by the factor 𝛼𝑖 , taking
every part of the proposition 𝐴 lying inside that cell ‘along for the
ride’, and then (finally) re-normalizing so that everything sums back
to 100%. More carefully, we should have

ℂ+(𝐴) = ℂ(𝐴 | 𝐸1) · ℂ(𝐸1) · 𝛼1 + · · · + ℂ(𝐴 | 𝐸𝑁 ) · 𝐶(𝐸𝑁 ) · 𝛼𝑁
ℂ(𝐸1) · 𝛼1 + . . .ℂ(𝐸𝑁 ) · 𝛼𝑁

Or, equivalently, since ℂ(𝐴 | 𝐸𝑖) · ℂ(𝐸𝑖) = ℂ(𝐴𝐸𝑖),

ℂ+(𝐴) = ℂ(𝐴𝐸1) · 𝛼1 + · · · + ℂ(𝐴𝐸𝑁 ) · 𝛼𝑁
ℂ(𝐸1) · 𝛼1 + . . .ℂ(𝐸𝑁 ) · 𝛼𝑁

Field Conditionalization If your prior credence function is ℂ and
you undergo a Field shift confirming cell 𝐸𝑖 of the partition
{𝐸1 , 𝐸2 , . . . , 𝐸𝑁} to degree 𝛼𝑖 , then your posterior credence in
any proposition 𝐴 should be

ℂ+(𝐴) =
∑𝑁
𝑖=1 ℂ(𝐴𝐸𝑖) · 𝛼𝑖∑𝑁
𝑖=1 ℂ(𝐸𝑖) · 𝛼𝑖

Now, notice that, while Jeffrey conditionalization does not commute on
Jeffrey shifts, Field conditionalization does commute on Field shifts.

To see that Field Conditionalization
commutes on Field shifts, let 𝔈 =
{(𝐸1 , 𝛼1), . . . , (𝐸𝑁 , 𝛼𝑁 )}, and let 𝔉 =
{(𝐹1 , 𝛽1), . . . , (𝐹𝑀 , 𝛽𝑀 )}. Then,

ℂ𝔈𝔉(𝐴) =
∑𝑀
𝑗=1 ℂ𝔈(𝐴𝐹𝑗) · 𝛽 𝑗∑𝑀
𝑗=1 ℂ𝔈(𝐹𝑗) · 𝛽 𝑗

=

∑𝑀
𝑗=1

∑𝑁
𝑖=1 ℂ(𝐴𝐸𝑖𝐹𝑗 )·𝛼𝑖∑𝑁
𝑖=1 ℂ(𝐸𝑖 )·𝛼𝑖

𝛽 𝑗∑𝑀
𝑗=1

∑𝑁
𝑖=1 ℂ(𝐹𝑗𝐸𝑖 )·𝛼𝑖∑𝑁
𝑖=1 ℂ(𝐸𝑖 )·𝛼𝑖

· 𝛽 𝑗

=

∑𝑀
𝑗=1

∑𝑁
𝑖=1 ℂ(𝐴𝐸𝑖𝐹𝑗) · 𝛼𝑖 · 𝛽 𝑗∑𝑀

𝑗=1
∑𝑁
𝑖=1 ℂ(𝐹𝑗𝐸𝑖) · 𝛼𝑖 · 𝛽 𝑗

And this is precisely the same function
you’ll get if you first update on 𝔉 and
next update on 𝔈. (You can see this by
noting the symmetry in the above equa-
tion.)

7.3.1 Objections to Field Conditionalization

Daniel Garber objects to Field conditionalization by considering situ-
ations in which you look at the cloth in candlelight repeatedly. Sup-
pose you take one glance at the cloth, and get the Field shift 𝔈 =
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{(𝐺, 2), (¬𝐺, 1/2)}—we can suppose that you know that the cloth is ei-
ther green or not green. This experience confirms that the cloth is
green.. If your prior credence in 𝐺 was 50%, your posterior credence
in 𝐺 will be

ℂ𝔈(𝐺) = ℂ(𝐺) · 2
ℂ(𝐺) · 2 +ℂ(¬𝐺) · 1/2

=
0.5 · 2

0.5 · 2 + 0.5 · 1/2

=
1

1.25
= 0.8

Likewise, your But then suppose you undergo exactly the same expe-
rience. If we think that the same experience should lead to the same
Field shift, then this second experiencewill also provide the very same
Field shift, 𝔈 = {(𝐺, 2), (¬𝐺, 1/2)}. So your new credence in 𝐺 will be

ℂ𝔈𝔈(𝐺) = ℂ𝔈(𝐺) · 2
ℂ𝔈(𝐺) · 2 +ℂ𝔈(¬𝐺) · 1/2

=
0.8 · 2

0.8 · 2 + 0.2 · 1/2

=
1.6
1.7

≈ 0.94

So your credence that the cloth is green will jump again to 94%. Gar-
ber points out that by simply looking again and again at the cloth in
candlelight—an experience which only very weakly confirms that the
cloth is green—you can end up arbitrarily confident that the cloth is
green. This looks like the wrong result.

7.4 The Partitionality Assumption

Recall that, when we were justifying the rule of conditionalization,
we frequently had to assume that you were going to learn that one of
a partition of propositions was true. In particular, this was assumed
in the the Dutch Strategy argument for conditionalization and it was
assumed in the Greaves & Wallace accuracy maximization argument
for conditionalization.

It turns out that this assumption is closely related to the following
theses about the nature of evidence:

Factivity If you learn that 𝐸, then 𝐸 is true

Positive Introspection If you learn that 𝐸, then you will learn that you
have learnt that 𝐸

Negative Introspection If you don’t learn that 𝐸, then youwill learn that
you haven’t learnt that 𝐸

To appreciate how these assumptions are related to the assumption
that E—the set of propositions which you might learn—forms a par-
tition, consider a Kripke model for evidence, where we introduce a
binary relation, 𝑅, which one world bears to another, 𝑤𝑅𝑤∗, iff 𝑤∗ is
consistent with everything that you’ve learnt at 𝑤. Write ‘□𝐸’ iff 𝐸
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is true at every world consistent with everything you’ve learnt. And
write ‘^𝐸’ iff 𝐸 is true at someworld consistent with everything you’ve
learnt. Then, □𝐸 means that you’ve learnt that 𝐸, and ^𝐸 means that
you’ve not learnt ¬𝐸—or, equivalently, that 𝐸 is true for all you’ve
learnt.6 With this modal semantics in the background, we can render 6 In general, to use a Kripke semantics

like this, you should check that □ satis-
fies the 𝐾-axiom, □(𝜙 → 𝜓) → (□𝜙 →
□𝜓) and the rule of necessitation: if ⊢ 𝜙,
then ⊢ □𝜙. But these assumptions seem
plausible if we interpret □𝜙 as meaning
that you’ve learnt that 𝜙, and we’re will-
ing to assume logical omniscience.

the three assumptions above as:

Factivity □𝐸 → 𝐸

Positive Introspection □𝐸 → □□𝐸 (Equivalently: ^^𝐸 → ^𝐸)

Negative Introspection ¬□𝐸 → □¬□𝐸 (Equivalently: ^□𝐸 → □𝐸)

Then, Factivity will require that this binary relation is reflexive.
Why? Suppose that ¬𝑤𝑅𝑤. Then, 𝑤 is not consistent with everything
you’ve learnt at𝑤. So you’ve learnt something inconsistent with𝑤. So
you’ve learnt something false. And Positive Introspection will require
that the binary relation 𝑅 is transitive. Why? Suppose you had a fail-
ure of transitivity: 𝑤1𝑅𝑤2 and 𝑤2𝑅𝑤3, yet ¬𝑤1𝑅𝑤3. Then, at 𝑤2, 𝑤3

is true for all you’ve learnt, ^𝑤3. So, at 𝑤1, for all you’ve learnt, 𝑤3 is
true for all you’ve learnt, ^^𝑤3. But at𝑤1, 𝑤3 is not true for all you’ve
learnt, since you’ve learnt ¬𝑤3. So you violate Positive Introspection
at𝑤1. And finally, Negative Introspectionwill require this binary rela-
tion to be Euclidean.7 Why? Suppose you have a failure of Euclidean- 7 A binary relation is Euclidean iff when-

ever 𝑎𝑅𝑏 and 𝑎𝑅𝑐, 𝑏𝑅𝑐.ness: 𝑤1𝑅𝑤2 and 𝑤1𝑅𝑤3, yet ¬𝑤2𝑅𝑤3. Then, at 𝑤1, you’ve not learnt
that ¬𝑤3, ¬□¬𝑤3. Yet you haven’t learnt that you’ve not learnt that.
For, at 𝑤2 (which is consistent with everything you’ve learnt at 𝑤1),
you have learnt that ¬𝑤3. So there’s something you haven’t learnt that
you haven’t learnt you’ve not learnt. So Negative Introspection fails.

In general, any binary relation which is reflexive, transitive, and
Euclidean will be what’s known as an equivalence relation.8 And any 8 An equivalence relation is often de-

fined as a relation that’s reflexive, sym-
metric, and transitive. Try to convince
yourself that any relation that’s reflex-
ive, transitive, andEuclideanwill also be
symmetric; and try to convince yourself
that any relation that’s reflexive, sym-
metric and transitive will also be Eu-
clidean.

equivalence relation can be used to partition the set of things it’s de-
fined over. Given an equivalence relation 𝑅, let [𝑤]𝑅 be the equivalence
class of 𝑤 under 𝑅: [𝑤]𝑅 = {𝑤∗ | 𝑤𝑅𝑤∗}. Then, you can show that the
equivalence classes of an equivalence relation 𝑅 will form a partition.

So if we accept Factivity and Positive and Negative Introspection,
thenwe can assume that the set of propositions thatmight be your total
evidence, E , will form a partition. And there is no loss of generality in
making this assumption in the Dutch Strategy and Expected Accuracy
Maximization arguments for Conditionalization.

However, if either Positive Introspection or Negative Introspection
fail, then the set of possible evidence partitions will not form a parti-
tion. Let’s see two simple examples of how that could happen.

Good Case/Bad Case In the good case, you look at a red wall in white
lighting. In the bad case, you look at a white wall bathed in red
lighting. In the good case, you learn that the wall is red. In the bad
case, you don’t learn anything about the wall’s color.

𝑤𝑏 𝑤𝑔

In this case, there is a failure of Negative Introspection. In the bad
case, you don’t learn that you’re in the good case (you don’t learn that
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the wall is red). However, neither do you learn that you’re in the bad
case. So it’s consistent with everything you learn that you’re in fact in
the good case, where you’ve learnt that you’re in the good case. So you
don’t learn something (that the wall is red), but you also don’t learn
that you haven’t learnt that thing.

You could object that, in both the good and the bad case, you learn
the same thing—namely, that it seems that the wall is red. This is a
kind of evidence internalism, according to which, anytime you have
the same experience, you’ll have the same evidence. Some, persuaded
by authors like McDowell and Williamson, have come to reject this
picture and instead favor a form of evidence externalism, according to
which two people identical from the skin in can have different evi-
dence. (They use this position to respond to various traditional skep-
tical arguments.)

Imperfect Vision The tree in the distance is either 14, 15, or 16 meters
tall, and you’re about to take a look at it. Your vision is only good
enough to discriminate between heights of 1 meter or more. So, if
the tree is 14meters tall, you’ll learn that it’s not 16meters tall. And,
if the tree is 16 meters tall, then you’ll learn that it’s not 14 meters
tall. But, if it’s 15 meters tall, you won’t learn anything at all.

𝑤14 𝑤15 𝑤16

In this case, we have a failure of Positive Introspection. When the tree
is 14 meters tall, for all you’ve learnt, it’s 15 meters tall. And, if it’s
15 meters tall, then for all you’ve learnt, it’s 16 meters tall. So, for
all you’ve learnt, for all you’ve learnt, it’s 16 meters tall, ^^𝑤16. Yet
you’ve learnt that it’s not 16 meters tall, so it’s not the case that, for all
you’ve learnt, it’s 16 meters tall, ¬^𝑤16. Positive Introspection fails.

You could defend Positive Introspection from this argument by in-
troducing some additional proposition which is learnt—for instance,
suppose that when you look at the tree, you make a guess as to its
height. And you know that your guesses are never more than 1 meter
off. Then, we canmodel this situationwith a partitional update where
you’re simply going to learn what your guess is. (In the first row in the
margin, your guess was 14; in the second, your guess was 15; and in
the third, your guess was 16.)

𝑤14 𝑤15

𝑤∗
14 𝑤∗

15 𝑤∗
16

𝑤∗∗
15 𝑤∗∗

16

7.5 Schoenfield Conditionalization

Suppose that you are persuaded that there are failures of Positive or
Negative Introspection. What should you do then? Miriam Schoen-
field makes a suggestion and gives an expected accuracy maximiza-
tion argument for it.

Tofirst understand the rule she proposes, let’s use ‘T𝐸’ for the propo-
sition that 𝐸 is your total evidence—that is to say, T𝐸 says that you
learnt 𝐸, and you didn’t learn anything stronger than 𝐸—anything
other than 𝐸 you learnt is entailed by 𝐸. For instance, inGood Case/Bad
Case, your total evidence in the bad case is {𝑤𝑏 , 𝑤𝑔}. So T{𝑤𝑏 , 𝑤𝑔} is
true at𝑤𝑏 . And your total evidence in the good case is {𝑤𝑔}. So T{𝑤𝑔}
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is true at 𝑤𝑔 . As this example demonstrates, even if your potential evi-
dence E doesn’t form a partition, TE = {T𝐸1 ,T𝐸2 , . . . ,T𝐸𝑁} will form
a partition. (Can you say why?)

Then, Schoenfield proposes that, if your total evidence is 𝐸, you
should condition not on 𝐸, but rather on the proposition that 𝐸 is your
total evidence, T𝐸.9 9 See Schoenfield, Miriam (2017). “Con-

ditionalization Does Not (In General)
Maximize Expected Accuracy”. Mind
126 (504):1155-1187.
Schoenfield’s suggestion was made

earlier (and independently) by Matthias
Hild. See Hild, Matthias (1998). “Auto-
epistemology and updating”. Philosoph-
ical Studies 92 (3):321-361.

Schoenfield Conditionalization If ℂ is your prior credence function
and you learn that 𝐸 (and nothing stronger), then your posterior
credence in any proposition 𝐴 should be

ℂ+(𝐴) = ℂ(𝐴 | T𝐸)

And she gives an expected accuracymaximization argument to sup-
port this update rule. Her argument builds on the framework ofGreaves
& Wallace we talked about earlier. Recall:

Update Plans An update plan, 𝒰 , is a function from worlds in 𝒲 to
probability functions over 𝒜. 𝒰𝑤 is the posterior probability func-
tion the update plan prescribes adopting in the world 𝑤.

Greaves & Wallace made the following assumption about which up-
date plans were available,

Available Update Plans (Greaves & Wallace) If you are going to learn the
true member of the (finite) partition E = {𝐸1 , 𝐸2 , . . . , 𝐸𝑁}, then
an update plan is available iff, for any 𝐸 ∈ E , and any two worlds
𝑤, 𝑤∗ ∈ 𝐸, 𝒰𝑤 = 𝒰𝑤∗ .

But what about if the set of propositions that might be your total
evidence, E , does not form a partition? In that case, the definition of
‘available’ update plans looks overly restrictive. For instance, take the
simplemodel of imperfect vision (the one onwhich Positive Introspec-
tion fails). In that case, suppose we say that an update plan is available
iff, for any 𝐸 ∈ E and any 𝑤, 𝑤∗ ∈ 𝐸, 𝒰𝑤 = 𝒰𝑤∗ . Then, we would say
that your update plan must be constant—it must be the same in each
of 𝑤14 , 𝑤15 , and 𝑤16.

So Schoenfield tightens the definition of available update plan to
make more plans available. She says that a plan is available iff it gives
the same advice in any two worlds where you get the same evidence:

Available Update Plans (Schoenfield) If you are going to learn the true
member of E = {𝐸1 , 𝐸2 , . . . , 𝐸𝑁}, then an update plan is available
iff, for any 𝐸 ∈ E , and any two worlds 𝑤, 𝑤∗ ∈ T𝐸, 𝒰𝑤 = 𝒰𝑤∗ .

Then, Schoenfield proves the following theorem:

Theorem (Schoenfield) If inaccuracy is measured with a strictly proper
measure, andyou stand to learn some truemember ofE = {𝐸1 , 𝐸2 , . . . , 𝐸𝑁},
then the available update plan which minimizes expected inaccu-
racy is the plan to Schoenfield conditionalize on your evidence.
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Review Questions

1. Explain why conditionalization requires certainty about your evi-
dence, and why Jeffrey conditionalization does not. Explain why
Jeffrey conditionalization is a generalization of conditionalization
(that is: why Jeffrey conditionalization has conditionalization as an
instance).

2. What is commutativity? Explainwhy Jeffrey conditionalization ap-
pears to be non-commutative. How does Lange argue that Jeffrey
conditionalization is in fact commutative? What is Field condition-
alization? What is the relationship between Jeffrey and Field con-
ditionalization? And how can Field conditionalization be used to
buttress Lange’s defense of Jeffrey conditionalization’s commuta-
tivity?

3. What is the partionality assumption, andwhydoes Shoenfield think
we should reject conditionalization if the partitionality assumption
is fails? Describe two situations in which you might think that the
partitionality assumption fails.



8
Self-Locating Credence and Memory Loss

8.1 De Se and De Dicto Propositions

Let’s start off by distinguishing two different kinds of contents (or
objects of belief/credence): de dicto and de se.1 De dicto propositions 1 See John Perry’s The Problem of the Es-

sential Indexical and David Lewis’s Atti-
tudes De Dicto and De Se.say something about what the world is like. We can model de dicto

propositions with sets of possible worlds (as we have throughout this
course). De se propositions say something about who you are, where
you are, or when it is. These kinds of propositions cannot be modeled
with sets of possible worlds.

A classic example: Rudolph Lingens sits in the library in Stanford,
and Ludolph Ringens sits in an identical library in Princeton. Neither
ever sets foot outside of the library, and both read all the same books,
in the same order. The library is comprehensive enough that both
Rudolph and Ludolph come to know every possible fact about what
the world is like: they know precisely which world is actual, down to
the least detail. But still, there is a respect inwhich they are ignorant—
for each of Rudolph and Ludolph know of the other’s existence, and
neither knows which they are. They know that there is someone with
their experience on the East Coast, and they know that there is some-
one with their experience on the West Coast, but they do not know
which they are. Can we solve this problem by intro-

ducing haecceities? This would al-
low us to have two worlds where be-
fore we had just one—the one where
Rudolph’s haecceity sits on Rudolph
and Ludolph’s haecceity sits on Ludoph,
and the onewhere the two are swapped.
Even so, Rudolph could come to know
precisely where each haecceity sits but
still fail to know which haecceity is his.

Think of it like this: a possible world gives you a complete map
of reality. But the map does not contain a “you are here” sticker.
Even once you have the full map of reality, you can remain ignorant of
where you are in reality. The lesson is that de se, or self-locating, infor-
mation goes beyondmerely de dicto, or non-self-locating, information.

Lewis introduced amodel for representing de se contents which has
become widespread, and which we will adopt here. On this model,
the contents of belief and credence are—not sets ofworlds, but instead—
sets of centeredworlds. A centered world is a full map of reality, along
with the corresponding ‘you are here’ sticker, which we’ll call a ‘cen-
ter’. Now, just as we can have uncertainty about what the world is Formally, a center is a triple of a person,

place, and time, 𝑐 = (𝑝, 𝑥, 𝑡). And a cen-
tered world is a pair of a possible world
and a center, (𝑤, 𝑐)—where that person
exists at that place and that time in that
world.

like, we can also have uncertainty about where in the world we are.
And, if we are Bayesians, we will want to represent that uncertainty
with a subjective probability distribution. So the subjective probabil-
ity distribution will be over sets of centeredworlds, and not just sets of
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worlds.
With this Lewisianmodel of de se content, we candistinguish propo-

sitions which are de dicto from those which are de se in a simple way.
A de dicto proposition is one which does not distinguish between cen-
ters within a world. Picturesquely, it is a map of reality which doesn’t
tell you anything about where you are in the map. And a de se propo- Formally, a de dicto proposition, 𝐴, is

a set of centered worlds with the fol-
lowing property: for any two centered
worlds which share a world member,
(𝑤, 𝑐) and (𝑤, 𝑐∗), (𝑤, 𝑐) ∈ 𝐴 iff (𝑤, 𝑐∗) ∈
𝐴.

sition is one which does distinguish between centers within a world.
Picturesquely, it is a map of reality which tells you something (though
not necessarily everything) about where you are in the map.

Formally, a de se proposition, 𝐴, is a
set of centered worlds with the follow-
ing property: there are two centered
worlds sharing a world member, (𝑤, 𝑐)
and (𝑤, 𝑐∗), such that (𝑤, 𝑐) ∈ 𝐴 and
(𝑤, 𝑐∗) ∉ 𝐴.

There’s another way of modeling things that’s worth mentioning.
You might think that the de se content “I am Lingans” is not impor-
tantly different from the de dicto content “Hesperus is Phosphorus”.
The set of worlds in which Hesperus is Phosphorus is just the set of
all worlds (given the necessity of identity), but you can still be igno-
rant of this identity. And similarly (youmay think) the set of worlds in
which the proposition denoted by “I am Lingans” (in Lingan’smouth)
is true is just the set of all worlds, but Lingans can still be ignorant of
this identity. Perhaps the puzzles of de se content are just Frege puz-
zles.

In that case, you might think that what’s going on when you’re ig-
norant of whether you are Lingans is just what’s going on in other
Frege’s puzzles. There are tons of proposed solutions to Frege’s puz-
zle, but let’s focus on one particular one here: on this view, we should
distinguish between the object of belief/credence—the thing in which
you have belief/credence—and the state of believing or having cre-
dence in that proposition. The object of belief is the proposition, whereas
the belief state is the way in which you become related to that proposi-
tion. And there aremultipleways of being related to one and the same
proposition. Youmight be related to the proposition that Lingans is in
Stanford in oneway (the one corresponding to the sentence ‘Lingans is
in Stanford’) without being related to that proposition in another way
(the one corresponding to the sentence ‘I am in Stanford’). Call the
ways of being belief-or-credence-like related to a proposition a guise.
Then, the alternative approach would say that the arguments of your
credence function aren’t sets of centered possible worlds, but rather
guises which (together with facts about your situation) determine sets
of possible worlds.

A nice example to bring out the contrast between these two ap-
proaches: Hume believes that he is Hume, and Heimson in the insane
asylum believes that he is Hume. On the Lewisian proposal, both
Hume and Heimson have the same object of belief—they both self-
ascribe the property of being Hume. On the guisey proposal, Hume
and Heimson believe different propositions. Hume believes the neces-
sarily true proposition that Hume is Hume, andHeimson believes the
necessarily false proposition that Heimson is Hume. But they believe
these two different propositions in the same way—that is to say, under
the same guise.

If we adopt the Lewisianmodel, then it is easy to reformulate prob-
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abilism. We simply swap out sets ofworlds for sets of centeredworlds,
we understand contents as simply sets of centered worlds, and we use
the very same axioms of probability with this change made. But if we For the Lewisian model: Let 𝒞 be a set

of centered possible worlds, and 𝒜 an
algebra of subsets of 𝒞. Then, (finitely
additive) probabilism requires that:
1. ℂ(𝒞) = 1

2. For any 𝐴 ∈ 𝒜 , ℂ(𝐴) ⩾ 0

3. For any 𝐴, 𝐵 ∈ 𝒜 such that 𝐴𝐵 = ∅,
ℂ(𝐴 ∪ 𝐵) = ℂ(𝐴) +ℂ(𝐵).

adopt the guiseymodel, it’s less clear what probabilism demands. For
Heimson, the guise ‘I amHume’ determines a necessarily false propo-
sition. Should we take probabilism to say that ‘I am Hume’ must be
given a credence of zero? Presumably not. So, if we are using the
guisey model of self-locating probability, then we should presumably
take the probability axioms to first-and-foremost govern guises, and
not the propositions so determined.

8.2 Counterexamples to Conditionalization and Reflection

Oncewe’ve acknowledged that there are de se contents of credence, we
will have to give up on the unrestricted principles of conditionaliza-
tion and reflection. Consider the following case:

Time’s Passing Your current credence in the de se proposition “today
is Monday” is 100%. Tonight, you will go to sleep and tomorrow,
you will learn that you have woken up. Upon learning that you’ve
awoken, you plan to be 100% sure in the de se proposition “today is
Tuesday”, and have a credence of 0% in “today is Monday”.

Conditionalization can never raise a proposition’s probability from
zero, nor lower a proposition’s probability from 1. So you cannot be
updating your subjective probabilities by conditioning. And you are
very, very confident that youwill awake tomorrow (and learn that you
have), so your expectation of tomorrow’s credence in ‘today is Mon-
day’ is very, very low. So your expectation of your updated credence
in ‘today is Monday’ does not match your current credence in ‘today
is Monday’, in violation of the principle of Reflection.2 2 Recall, the principle of reflection says

that 𝔼[ℂE (𝐴)] = ℂ(𝐴).Notice that we have assumed here that the content that you are
currently certain of is the same one that you will be certain is false
tomorrow. This will follow given Lewis’s model. On the Lewisian
model, the object of belief is the set of centered worlds whose centers
are Monday. However, on the guisey model, the content that you are
currently certain of is not the same one that you will be certain is false
tomorrow—though that content will be believed in the same way, or
under the same guise. If we adopt the second model, we will still have
a counterexample to conditionalition and reflection for guises. Your
credence in a guise can rise from 0% and fall from 100%, and your
expectation of your future credence in a guise can fail to match your
current credence in that guise. Recall that, on the guisey model, we
should want the probability axioms to govern the guises and not the
propositions determined by those guises. So it’s natural to expect con-
ditionalization and reflection to also apply to the guises, and not the
propositions determined by those guises. But so understood, exam-
ples like Time’s Passing will be counterexamples to conditionalization
and reflection.
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8.2.1 The De Se Irrelevance Theses

Anatural first thought after encountering this problem is that perhaps
conditionalization and reflection break down for de se contents, but
they are still fine when it comes to de dicto contents. The idea is that
we can factor out the de dicto from the de se, and that, so factored, the
latter are irrelevant to the former. There’s a couple of different ways
you could try to make sense of this irrelevance thesis. On the first,
which is relatively uncontroversial, so long as you’re only learning de
dicto things, you can use conditionalization and reflection as before,
even if you have credences in various de se propositions, too.

Weak De Se Irrelevance Thesis If you only stand to learn de dicto infor- That is: if 𝐴 is a de dicto proposition,
and E is a partition of de dicto proposi-
tions, then 𝔼[ℂE (𝐴)] = ℂ(𝐴), and you
should be disposed, for any 𝐸 ∈ E , to
have ℂ𝐸(𝐴) = ℂ(𝐴 | 𝐸).

mation, then your de dicto credences will satisfy Conditionalization
and Reflection, even if your de se credences do not.

On the second way of making sense of the irrelevance idea, which is
very controversial and rejected by most Bayesian epistemologists, the
de se is irrelevant to the de dicto even if you’re learning de se information.
Your de dicto credences should still satisfy reflection, and you should
still update your de dicto credences by conditioning on the strongest de
dicto proposition learnt.

That is: if 𝐴 is a de dicto proposition,
and E is anypartition of propositions (de
dicto or de se), then 𝔼[ℂE (𝐴)] = ℂ(𝐴),
and you should be disposed, for any 𝐸 ∈
E , to have ℂ𝐸(𝐴) = ℂ(𝐴 | 𝐸†), where 𝐸†
is the strongest de dicto proposition en-
tailed by 𝐸.

Strong De Se Irrelevance Thesis Nomatterwhat you stand to learn, your
de dicto credenceswill satisfyConditionalization andReflection, even
if your de se credences do not.

Here is a possible counterexample to the strong version of the irrel-
evance thesis. See Arntzenius, Frank (2003). Some

Problems forConditionalization andRe-
flection. Journal of Philosophy 100
(7):356-370.

The Prisoner You are scheduled to be executed tomorrow, unless par-
doned. The governor flips a coin to decide all pardons. So if the
coin landed tails, then you will be pardoned; heads, and you will
not. The prison guard will know the outcome, but is not able to
communicate with you—but if the coin landed tails, then they will
leave the lights on aftermidnight to let you knowyour fate. It is cur-
rently 6:00pm. As time passes, you will learn that some time has
passed, but you won’t know exactly how much time has passed.

Consider what will happen at 11:59pm. At 11:59, your de se credences
will have evolved, and you will be somewhat confident that it is cur-
rently after midnight. Just for illustration, suppose that, at 11:59, you
will be 50% sure that it is after midnight. But the lights will be on. So
your credence that you have been pardoned, 𝑃, will be:

ℂ(𝑃) = ℂ(𝑃 | before midnight) · 50% +ℂ(𝑃 | after midnight) · 50%

= 50% · 50% + 1 · 50%

= 25% + 50%

= 75%

As you get closer and closer to midnight, you will get more and more
confident that it is in fact after midnight; and so you’ll get more and
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more confident that you’ve beenpardoned. This change in your beliefs
seems to be entirely rational. But it’s also entirely predictable. So your
belief-revision plans seem to violate the principle of Reflection. So the
strong de se irrelevance thesis is false.

Here’s a related puzzle from Jessica Collins:

Collins’ Prisoner Everything is as in The Prisoner, except that there are
two clocks in the room, exactly one of which is correct. The first
clock, 𝐴, currently reads 6:00pm. The second clock, 𝐵, currently
reads 7:00pm.

(a)

(b)
Figure 8.1: Your prior credences (fig-
ure 8.1a) and your posterior credences at
11:30, if clock 𝐴 is correct (figure 8.1b) in
Collins’ Prisoner.

Currently, you have the credence distribution shown in figure 8.1a.
But think about what will happen when it is in fact 11:30pm. If clock
𝐴 is the correct one, then you will have eliminated the possibility that
𝐵 is correct and the coin landed heads. So you’ll have raised your
credence in tails from 1/2 to 2/3 (figure 8.1b). But if clock 𝐵 is the
correct one, then youwill know for sure that it is not yetmidnight, and
so you’ll retain the prior distribution from 8.1a. So your expectation
of your 11:30pm credence in heads is

𝔼[ℂ11:30(𝐻)] = ℂ(𝐴) · 2/3 +ℂ(𝐵) · 1/2

= 1/2 · 2/3 + 1/2 · 1/2

= 1/3 + 1/4

= 7/12

which is greater than your current credence in heads (6/12). So, if
you’re just sitting around watching time pass, you will violate the
principle of reflection.

8.2.2 Conditionalization, Reflection, and (Possible) Memory Loss

There’s another kind of case that causes trouble for principles of con-
ditionalization and reflection: memory loss. Let’s start simply, with a
counterexample to Reflection from Talbott.3 3 See Talbott, William (1991). “Two prin-

ciples of bayesian epistemology”. Philo-
sophical Studies 62 (2):135-150.Forgotten Lunch Today, you are certain that you ate spaghetti for lunch.

This time next year, you will have no idea what you ate for lunch
today.

In this case, you have violated the principle of Reflection; your expec-
tation of your future credence in a proposition is not equal to your cur-
rent credence in that proposition. (Be careful here: Reflection does not
say that you should lower your current credence that you ate spaghetti
for lunch. It says instead that your future self should be certain that
you ate spaghetti for lunch; it says that the memory loss was irra-
tional.)

A case from FrankArntzenius teaches us that you can cause trouble
for Reflection even without losing your memory—it is enough that the
memory loss is possible.4 4 See Arntzenius, Frank (2003). Some

Problems forConditionalization andRe-
flection. Journal of Philosophy 100
(7):356-370.

Two Roads to Shangri La Youare traveling to Shangri La, but thosewho
enter Shangri La cannot know how they enter. So a fair coin will be
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tossed. If it lands heads, youwill take themountain pass. If it lands
tails, youwill travel by sea. If you go by themountain pass, nomore
steps will be taken. However, if you go by the sea, then upon ar-
riving in Shangri La, your memories will be erased and replaced
by (non-veridical) memories of having taken the moutain pass. In
fact, the coin lands heads, and you find yourself looking out at the
mountains on your way to Shangri La.

Currently, you should be certain that you are taking the mountain
pass, and you should be certain that the coin landed heads. However,
upon arriving in Shangri La, you should only have a credence of 50%
that the coin landed heads. So you should not conditionalize in this
case, and you should violate the principle of Reflection—you should
be certain that the coin landed heads, and you should know for sure
that, upon arriving in Shangri La, you’ll have a credence of 50% that
the coin landed heads.

Notice, though, that in this case, you do not actually lose any mem-
ory. It is enough that the memory loss is possible. It needn’t be actual.

8.3 The Sleeping Beauty Puzzle

The following case from Adam Elga5 has been a lightning rod for de- 5 See Elga, Adam (2000). “Self-locating
belief and the sleeping beauty prob-
lem”. Analysis 60 (2):143–147.bate about de se credence.

Sleeping Beauty Know all the following: on Sunday, you will be put
to sleep. Monday morning, you will be awoken in a room without
a calendar. Monday evening, you will be informed that it is Mon-
day, and Monday night, a fair coin will be flipped. If the coin lands
heads, you will be put back to sleep and kept asleep all through
Tuesday. You will be awoken outside of the room. If, however, the
coin lands tails, then you will be put back to sleep and all of your
memories of having been awoken on Monday will be erased. You
will then awaken on Tuesday, and have experiences indistinguish-
able from the experiences you had on Monday.

(a)

(b)
Figure 8.2: In figure 8.2a, the credence
distribution recommended by the halfer
for Monday morning. In figure 8.2b, the
credence distribution recommended by
the thirder for Monday morning.

There are two questions we can ask about your credence in Sleeping
Beauty:

Q1 On Monday morning, how confident should you be that the coin
flipped on Monday night lands heads?

Q2 On Monday evening, after you learn that it is Monday, how con-
fident should be you that the coin flipped on Monday night lands
heads?

The most natural and straightforward answer to question 1 is ‘one
half’. This answer also seems to follow from the principal principle,
since you do not appear to have any inadmissible information (after
all—it is in fact Monday morning, and the coin is yet to be flipped;
there’s no funny business involving time travel, so how could you have
any inadmissible information?) The answer ‘one half’ to question 1
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also follows from the strong de se irrelevance thesis. Those who give
the answer ‘one half’ are known as ‘halfers’.

But here are two arguments from Elga that, in fact, the correct an-
swer to the Sleeping Beauty puzzle is one third. (Those who give the
answer ‘one third’ to question 1 are known as ‘thirders’.) The first ar-
gument appeals to a connection between rational credence and long-
run frequency: suppose that youwere to run this experiment over and
over again. In the long-run, as the number of trials of the experiment
got larger and larger, the proportion of heads wakings (wakings on a
run of the experiment in which the coin landed heads) would be one
third. Since all you know upon waking is that you’re awakening in a
run of the experiment, your credence that it’s a heads waking should
be one third.

Second argument: if the coin landed tails, then it is just as likely
that today is Monday as it is that today is Tuesday. So, conditional on
the coin landing tails, your credence in “today is Monday” should be
one half. Moreover, the answer to the second question should be one
half—once you know that it is Monday and that the coin is about to be
flipped, your credence that the coin lands heads should be one half.
So—by conditionalization—your prior credence that the coin lands
heads, given that it is Monday, should be one half.

P1) ℂ(Monday | tails) = 1/2

∴ C1) ℂ(Monday ∧ tails) = ℂ(Tuesday ∧ tails)
P2) ℂ(heads | Monday) = 1/2

∴ C2) ℂ(Monday ∧ heads) = ℂ(Monday ∧ tails)
∴ C3) ℂ(Monday ∧ heads) = ℂ(Monday ∧ tails) = ℂ(Tuesday ∧ tails)
∴ C4) ℂ(heads) = 1/3

Elga’s second argument for the answer ‘one third’ to question 1 ap-
pealed to a certain answer to question 2. The thirder is happy to say
that, upon learning that it is Monday, you should have a credence of
one half that the coin will land heads. But David Lewis, for one, dis-
agreed. His answer to Q1 was ‘one half’, but he thought that, upon
learning that it was Monday, you should condition on this informa-
tion, and arrive at the distribution shown in figure 8.3b. So Lewis’s
answer to Q2 was ‘two thirds’.

(a)

(b)
Figure 8.3: In figure 8.3a, the credence
distribution recommended by the ‘dou-
ble halfer’ (and the thirder) for Mon-
day evening. In figure 8.2b, the cre-
dence distribution recommended by the
‘Lewisian halfer’ for Monday evening.

Those who give this answer to Q2 are known as ‘Lewisian halfers’.
On the other hand, some have thought that we should give the an-
swer ‘one half’ to bothQ1 and Q2. These people are known as ‘double
halfers’.

The Lewisian halfer seems to be violating the principal principle.
Given that this was Lewis’s main reason for giving the answer ‘one
half’ to Q1, how can he decide to answer ‘two thirds’ to Q2? Here is
what Lewis says: “when Beauty is told during herMonday awakening
that it’s Monday...she is getting evidence—centered evidence—about
the future: namely that she is not now in it.” I leave you to ponder
how plausible this story is.
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The double halfer has a challenge: if we are not to learn by con-
ditionalization, then how are we to learn? An answer has been sug-
gested by Joe Halpern, Mark Tuttle, and Christopher Meacham. Their
proposal is called ‘Compartmentalized Conditionalization’. To appre-
ciate this rule, some notation: if 𝐸 is a set of centered worlds, then let
𝐸† be the set ofworlds compatiblewith𝐸—that is, it is the set ofworlds
𝑤 such that, for some center 𝑐, (𝑤, 𝑐) ∈ 𝐸. Then, compartmentalized
conditionalization says

Compartmentalized Conditionalization Ifℂ is your prior, and you’ve gained
the evidence 𝐸 (where 𝐸 is a set of centered worlds), then your pos-
terior credence in each world should be given by conditioning on
𝐸†,

ℂ𝐸(𝑤) = ℂ(𝑤 | 𝐸†)
and, within each world, your credences should be distributed uni-
formly over every center compatible with 𝐸:

ℂ𝐸(𝑤, 𝑐) =
{

0 if (𝑤, 𝑐) ∉ 𝐸
ℂ𝐸(𝑤)

#{𝑐|(𝑤,𝑐)∈𝐸} if (𝑤, 𝑐) ∈ 𝐸

Applied to the Sleeping Beauty case, this rule will give us the Double
Halfer result.

Sowe have three possible positions on Sleeping Beauty: the thirder,
the Lewisian halfer, and the double halfer position. Since the halfer
position is the most initially attractive position, I want to spend the re-
mainder of this lesson explaining why the majority of Bayesian epis-
temologists have nonetheless decided that the thirder is correct.6 6 According to the 2020 PhilPapers sur-

vey, 53% of Decision Theorists accept
or lean towards one third, compared to
only 18% of Decision Theorists accept-
ing or leaning towards one half. (The
remaining either accept an alternative
view or else are undecided.) Thirding
also comes out the most popular answer
amongst all respondants, and if you fil-
ter by Epistemologists.

8.3.1 Chance Deference and the De Se

One of the central arguments in favor of halfing is that it follows from
a principle of chance deference like the onewe called ‘the current prin-
ciple’. But it’s worth noting that, once we have de se beliefs in the mix,
that principle faces clear counterexamples. For instance, consider the
following:

De Se Chance Evidence You don’t know whether it is Monday or Tues-
day, and you think it’s as likely to be Monday as it is to be Tuesday.
And you know for sure that today’s chance of Mudskipper winning
is 75% and that yesterday’s chance of Mudskipper winning is 25%.
(In fact, today is Monday.) How confident should you be that Mud-
skipper wins the race?

Given that today is Monday, it doesn’t look like you have anyMonday
inadmissible evidence—how could you? There’s no funny business
about time travelers from the future, and it’s actually Monday, so how
could you have any evidence about times after Monday?

If that’s right, then it looks like, by applying a principle of chance
deference to theMonday chances, we are told the following (‘𝑊 ’ is the
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proposition that Mudskipper wins):

ℂ(𝑊 | ⟨𝒞 ℎ𝑚𝑜𝑛(𝑊) = 25%⟩) = 25%

and ℂ(𝑊 | ⟨𝒞 ℎ𝑚𝑜𝑛(𝑊) = 75%⟩) = 75%

But, of course, you know for sure that theMonday chance of𝑊 is 25%
iff today is Tuesday, and you know for sure that the Monday chance
of𝑊 is 75% iff today is Monday. So:

ℂ(𝑊 | today’s Tuesday) = 25%

and ℂ(𝑊 | today’s Monday) = 75%

Andyour credence that today isMonday is equal to your credence that
today is Tuesday, which is 50%. So, by the law of total probability:

ℂ(𝑊) = ℂ(𝑊 | today’s Tuesday) · 50% +ℂ(𝑊 | today’s Monday) · 50%

= 25% · 50% + 75% · 50%

= 50%

So, once you have de se uncertainty, the principle of chance deference
says that you should be merely 50% confident that Mudskipper wins
the race, despite knowing for sure that today’s chance of Mudskipper
winning is 75%. This seems to suggest that, once we have de se cre-
dences in the mix, we will need to generalize the principle of chance
deference we accept. I’ve defended a generalization of the principle
of chance deference to handle cases like this, and this generalization
implies the thirder’s answers in Sleeping Beauty.7 7 See Gallow, J. Dmitri (forthcoming).

“Two-Dimensional De Se Chance Defer-
ence.” Australasian Journal of Philosophy.

8.3.2 Embarrassments for Double Halfers

I’ll put aside the Lewisian halfer’s position for now, and let’s just con-
sider the position of the double halfer. While compartmentalized con-
ditionalization and double halfing can seem initially very attractive,
the position starts to lose some of its luster when you subject it to
scrutiny.

Embarassment #1: Firstly, you might have hoped that compart-
mentalized conditionalization would help vindicate the irrelevance of
the de se to the de dicto, but this isn’t how things work out in general.
Consider, for instance, the following case:8 8 See David Manley, “On Being a Ran-

dom Sample”, manuscript.
Sleeping Beauty with Some Lights Everything is as inSleeping Beauty, ex-

cept that there are now two indistinguishable rooms. On Monday,
youwill be inside room #1; and on Tuesday, youwill be inside room
#2 (perhaps asleep, if the coin landed heads). Independent of how
your coin landed, each room has an independent 50% chance of its
lights turning on at noon.

We canmodel this situationwith 8 possibleworlds: theworld inwhich
the coin lands heads and both rooms are lit at noon, ℎ𝑙𝑙, the world
in which the coin lands heads and room one is lit while room two is
dark, ℎ𝑙𝑑, the world in which the coin lands heads and room one is
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dark while room two is lit, ℎ𝑑𝑙, and so on. Presumably, the double
halfer will want to say that you have the following credence distribu-
tion before noon:

World: ℎ𝑙𝑙 ℎ𝑙𝑑 ℎ𝑑𝑙 ℎ𝑑𝑑 𝑡𝑙𝑙 𝑡 𝑙𝑑 𝑡𝑑𝑙 𝑡𝑑𝑑

Room:
1 2/16 2/16 2/16 2/16 1/16 1/16 1/16 1/16
2 0 0 0 0 1/16 1/16 1/16 1/16

Then, one of two things could happen: it could be that you learn that
your room is lit. If you update on this information by compartmental-
ized conditionalization, it will eliminate the worlds ℎ𝑑𝑙, ℎ𝑑𝑑, and 𝑡𝑑𝑑,
and remove the unlit centers in other worlds, and you’ll be left with
the following posterior credence distribution:

World: ℎ𝑙𝑙 ℎ𝑙𝑑 ℎ𝑑𝑙 ℎ𝑑𝑑 𝑡𝑙𝑙 𝑡 𝑙𝑑 𝑡𝑑𝑙 𝑡𝑑𝑑

Room:
1 2/10 2/10 0 0 1/10 2/10 0 0
2 0 0 0 0 1/0 0 2/10 0

Having updated with compartmentalized conditionalization on the
centered information that your room is lit, your new credence that the
coin landed heads will be 2/5ths.

On the other hand, you might instead learn that your room is dark
after noon. That information is incompatible with the worlds ℎ𝑙𝑙, ℎ𝑙𝑑,
and 𝑡𝑙𝑙, so you’ll end up with this posterior credence distribution:

World: ℎ𝑙𝑙 ℎ𝑙𝑑 ℎ𝑑𝑙 ℎ𝑑𝑑 𝑡𝑙𝑙 𝑡 𝑙𝑑 𝑡𝑑𝑙 𝑡𝑑𝑑

Room:
1 0 0 2/10 2/10 0 0 2/10 1/10
2 0 0 0 0 0 2/10 0 1/10

Again, having updated on the de se information that your room is dark
with compartmentalized conditionalization, you will end up with a
credence of 2/5ths that the coin landed heads.

This is embarassing on its own for double halfers, since their lodestar
is the thought that de se info can’t lead your credence in ‘a flipped
coin landed heads’ to deviant from one half. But it also shows that
compartmentalized conditionalization doesn’t secure the principle of
reflection. In Sleeping Beauty with Some Lights, the compartmentalized
conditionalizerwill violate reflection, since nomatter what they learn,
their credence that the coin lands heads will drop from 1/2 to 2/5ths.

Embarassment #2: Secondly, consider the following version of Sleep-
ing Beauty,9 9 See Titelbaum, Michael G. (2012). “An

Embarrassment for Double-Halfers”.
Thought: A Journal of Philosophy 1
(2):146-151.This coin lands heads Everything is as in Sleeping Beauty, except that

you are no longer told what day it is before the coin is flipped. On
bothMonday and Tuesday (if you’re awake), you are allowed to flip
a coin. The coin you flip on Monday is the one which determines
whether you are awoken again on Tuesday.

Now, consider the proposition “this coin lands heads”, where the demon-
strative ‘this’ is picking out the coin that you hold in your hands. This
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proposition is true if it is Monday and Monday’s coin lands heads or
if it is Tuesday and Tuesday’s coin lands heads. Since it can’t be both
Monday and Tuesday, your credence in ‘this coin lands heads’must be
the sum of your credence in ‘It is Monday and Monday’s coin lands
heads’ and your credence in ‘It is Tuesday and Tuesday’s coin lands
heads. If you’re a double halfer, then your credence in ‘It is Monday
and Monday’s coin lands heads’ must be one half. But that means
that, unless you’re certain that Tuesday’s coin won’t be flipped and
land heads, your credence in ‘this coin lands heads’ will have to be
greater than one half.

For instance, if you have the halfer’s distribution from figure 8.4a,
then your credence that this coin lands heads will be 1/2 + 1/8 = 5/8.

(a)

(b)
Figure 8.4: In 8.4a, the halfer’s credence
distribution when there’s a second coin
flip on Tuesday. In 8.4b, the thirder’s
credence distribution when there’s a
second coin flip on Tuesday.

On the other hand, if you have the thirder’s distribution fromfigure
8.4b, then your credence that this coin lands heads will be 1/3 + 1/6
= 1/2.

8.4 Why Does it Matter?

SleepingBeauty can seem like a philosopher’s puzzle that doesn’tmatter—
but I think that impression is mistaken. See Titelbaum’s “Ten Reasons
to Care about the Sleeping Beauty Puzzle” for a thorough tour of all of
the puzzle’s importance. For here, let me just mention one important
upshot: your situation in Sleeping Beauty is not unlike the following
situation:

Splitting Beauty? You have prepared an electron in a superposition of
50% 𝑥-spin up and 50% 𝑥-spin down.10 You are about to take a 10 More carefully, the spin state of the

electron is

1/√2 |↑𝑥⟩ + 1/√2 |↓𝑥⟩
measurement of the electron’s 𝑥-spin. If the Everettian (or ‘many
worlds’) interpretation of quantummechanics is correct, then upon
this observation being made, the world will split in two, and there
will be one version of you (retaining all your current memories)
who sees the electron with 𝑥-spin up, and another version of you
(retaining all your current memories) who sees the electron with
𝑥-spin down. If, however, the GRW (or ‘collapse’) interpretation
of quantum mechanics is correct, then there is a 50% chance that
you’ll see an electron with 𝑥-spin up and a 50% chance that you’ll
see an electron with 𝑥-spin down.

Let’s suppose that you have performed this experiment, but you’ve
not yet observed the result. And suppose that you’re 50% sure that
GRW is correct, and 50% sure that Everett is correct (in which case,
there will be two versions of you, one which will see ↑𝑥 and onewhich
will see ↓𝑥 . Then, you’ll have the credence distribution shown below.

World: GRW & ↑𝑥 GRW & ↓𝑥 Everett

Center:
you see ↑𝑥 1/4 0 1/4
you see ↓𝑥 0 1/4 1/4

Whenyouopen your eyes, you are going to learn some de se information—
you won’t just learn that there is an electron with 𝑥-spin up (e.g.), since
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this is true even at the centered world in which Everettian QM is cor-
rect and the electron in front of you has 𝑥-spin down. You will instead
learn the stronger de se information that the electron in front of you has
𝑥-spin up.

If conditionalization is the correct rule, then learning whether the
electron is 𝑥-spin up or down won’t confirm or disconfirm Everettian
quantum mechanics over GRW. But, if compartmentalized condition-
alization is correct, then Everett will be confirmed no matter what. The
situation here is exactly the situationwe facedwith the situation Sleep-
ing Beauty with Some Lights above. Learning that the electron in front
of us has 𝑥-spin up will eliminate the world GRW & ↓𝑥 . Condition-
alizing on the purely de dicto information that this world is ruled out
(as compartmentalized conditionalization would have us do), we will
end up 2/3 confident in Everettian quantummechanics, and only 1/3
confident in GRW.

World: GRW & ↑𝑥 GRW & ↓𝑥 Everett

Center:
you see ↑𝑥 1/3 0 2/3
you see ↓𝑥 0 0 0

And the same thingwill happen ifwe instead learn that the electron
in front of us has 𝑥-spin down:

World: GRW & ↑𝑥 GRW & ↓𝑥 Everett

Center:
you see ↑𝑥 0 0 0
you see ↓𝑥 0 1/3 2/3

There are a lot of other kinds of cases to consider when thinking
about how well Everettian QM fares according to the Bayesian the-
ory of confirmation with various de se update rules, but the important
thing to emphasize here is just that the de se makes a difference to how
well confirmed different fundamental physical theories are (not just
in the case of interpretations of quantum mechanics, but also with
respect to other cosmological theories, since those theories will also
make a difference to how likely our de se information is).

8.5 Dutch Strategy Arguments

Here’s a simple Dutch strategy argument against the thirder: on Sun-
day, before they go to sleep, buy bet #1 off of them. After they awake

Bet #1
$30 if the coin lands tails
$0 else

price: $15

on Monday, sell them bet #2. The combination of these two bets will

Bet #2
$30 if the coin lands tails
$0 else

price: $20

lose them money no matter what (the table shows the thirder’s net
profit):

the coin lands heads the coin lands tails
Net profit from selling bet 1 $15 −$15
Net profit from buying bet 2 −$20 $10
Overall net profit −$5 −$5
As Christopher Hitchcock points out,11 this Dutch strategy argu- 11 See Hitchcock, Christopher (2004).

“Beauty and the bets”. Synthese 139
(3):405 - 420.
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ment is fallacious—for it relies upon you (the person selling the bets)
having information which the thirder does not. In particular, it re-
quires you knowing what day of the week it is. This de se knowledge
is what allows you to only sell bet #2 once (on Monday), and not sell it
again on Tuesday.

To appreciate this, suppose that you are forced to undergo the same
experiment as the thirder (being put to sleep and having yourmemory
erased if the coin lands tails). Then, you would end up selling the
thirder bet #2 twice if the coin lands tails, and only once if the coin
lands heads. So the thirder’s net profit would be the following:

the coin lands heads the coin lands tails
Net profit from selling bet 1 $15 −$15
Net profit from buying bet 2 −$20 (× 1) $10 (× 2)
Overall net profit −$5 $5

This is not a guaranteed loss—in fact, the combination of these bets
has an expected payout of $0 (that is to say, this combination of bets is
fair).

Hitchcock points out, however, that if we force you (the bookie sell-
ing the bets) to go through the experiment along with the halfer, then
they will buy bet #1 off of you beforehand, on Sunday. And they will
buy bet #3 off of you once if the coin lands heads, but twice if the coin
lands tails:

Bet #3
$20 if the coin lands heads
$0 else

price: $10the coin lands heads the coin lands tails
Net profit from buying bet 1 −$15 $15
Net profit from buying bet 3 $10 (× 1) −$10 (× 2)
Overall net profit −$5 −$5

So, Hitchcock alleges, it is in fact the halfer who is susceptible to a
Dutch strategy, and not the thirder.

R.A. Briggs has an interesting response to this argument: they sug-
gest that it relies upon an implicit committment to causal decision theory
(as opposed to evidential decision theory). Why? Because there is a
non-causal correlation between how you act on Monday and how you
act on Tuesday (if you awake on Tuesday). Since you will awake on
Tuesday in exactly the state you previously awoke on Monday, you
will behave in exactly the same way on Tuesday that you behaved on
Monday—not because how you behave on Monday causes your be-
havior on Tuesday, but rather because your behavior on Monday and
your behavior on Tuesday have a common cause: your mental states on
Sunday.

Let’s see how this makes a difference to how causalists and eviden-
tialists will evaluate the instrumental value of taking bet #3 on Mon-
day. A causalist will reason as follows: whether I take bet #3 today
doesn’t make any causal difference to whether I will take bet #3 on
any other day. If the coin lands tails and there are two wakings, then,
if I in fact take bet #3 on the other waking, then I would still take bet
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#3 on that other waking if I were to refuse it today. And if I in fact
refuse bet #3 on the other waking, then I would still refuse bet #3 on
the other waking.

Let’s go through that carefully, just to see how the calculation of
the expectation works out. Suppose that the halfer is a causal deci-
sion theorist, and they’ve bought bet #1 on Sunday. Today, they find
themselves offered bet #3. There are at that point 3 different possible
outcomes, if they were to buy bet #3: it could be that the coin lands
heads, in which case they’d net −$5. It could be that the coin lands
tails and they buy bet #3 on the other waking, in which case they’d net
−$5, and it could be that they do not buy bet #3 on the other waking,
in which case they’d net $5. So the causal expected utility of buying
bet #3 is given by:

𝐶𝐸𝑈(buy) =
∑
𝑜∈𝒪

ℂ(buy� 𝑜) · 𝒱 (𝑜)

= ℂ(buy� −$5) · 𝒱 (−$5) +ℂ(buy� $5) · 𝒱 ($5)
= ℂ(heads ∨ tails & bought) · 𝒱 (−$5) +ℂ(tails & ¬bought) · 𝒱 ($5)
= [(1 + 𝛽)/2] · −5 + [(1 − 𝛽)/2] · 5

= −5𝛽

(where ‘bought’ is the proposition that they have or will buy bet #3 on
the other waking, and I’m using ‘𝛽’ for their credence that they will
buy bet #3 now.)

On the other hand, there are 2 different possible outcomes if they
reject bet #3: it could be that the coin lands heads, in which case they
lose $15. It could be that the coin lands tails and they buy bet #3 on the
other waking, in which case they net $5. And it could be that the coin
lands tails and they don’t buy bet #3 on the other waking, in which
case they net $15. So the causal expected utility of not buying bet #3
is:

𝐶𝐸𝑈(¬buy) =
∑
𝑜∈𝒪

ℂ(¬buy� 𝑜) · 𝒱 (𝑜)

= ℂ(¬buy� −$15) · 𝒱 (−$15) +ℂ(¬buy� $5) · 𝒱 ($5) +ℂ(¬buy� $15) · 𝒱 ($15)
= ℂ(heads) · 𝒱 (−$15) +ℂ(tails & bought) · 𝒱 ($5) +ℂ(tails &¬bought) · 𝒱 ($15)
= 1/2 · (−15) + 1/2 · 𝛽 · 5 + 1/2 · (1 − 𝛽) · 15

= −15/2 + 5/2 + 15/2 − 15𝛽/2

= −10𝛽/2

= −5𝛽

So the causal decision theorist will consider taking bet #3 fair—it has
exactly the same causal expected utility as not buying bet #3. So the
causalist halfer is subject to Hitchcock’s Dutch strategy.

On the other hand, suppose that the halfer is an evidentialist. Then,
they will not fall prey to the Dutch strategy, for they will see bet #3
as a loser. To calculate the evidential expected utility of buying bet #3,
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recall, they will use the expectation:

𝐸𝐸𝑈(buy) =
∑
𝑜∈𝒪

ℂ(𝑜 | buy) · 𝒱 (𝑜)

= 𝒱(−$5 | buy) · 𝒱 (−$5) + 𝒱 ($5 | buy) · 𝒱 ($5)
= ℂ(heads ∨ tails & bought | buy) · 𝒱 (−$5) +ℂ(tails & ¬bought | buy) · 𝒱 ($5)
= 1 · (−5) + 0 · 5

= −5

And to calculate the evidential expected utility of not buying, theywill
use the expectation:

𝐸𝐸𝑈(¬buy) =
∑
𝑜∈𝒪

ℂ(𝑜 | ¬buy) · 𝒱 (𝑜)

= ℂ(−$15 | ¬buy) · 𝒱 (−$15) +ℂ($5 | ¬buy) · 𝒱 ($5) +ℂ($15 | ¬buy) · 𝒱 ($15)
= ℂ(heads | ¬buy) · 𝒱 (−$15) +ℂ(tails & bought | ¬buy) · 𝒱 ($5) +ℂ(tails &¬bought | ¬buy) · 𝒱 ($15)
= 1/2 · (−15) + 0 · 5 + 1/2 · 15

= −15/2 + 15/2

= 0

So the evidentialisthalferwill not fall prey toHithcock’sDutch strategy.
Moreover, Briggs shows that an evidentialist thirderwill fall prey to

a Dutch strategy. Again, they will sell you bet #1 on Sunday (netting
them $15 if the coin lands heads and losing them $15 if the coin lands
tails). And, on every waking event, they will buy from you bet #4.
First, let’s convince ourselves that this constitutes a Dutch strategy.

Bet #4
$25 if the coin lands tails
$0 else

price: $20

And later, we’ll verify that the evidentialist thirder will purchase bet
#4 whenever it’s offered. Here are the possible payouts for the eviden-
tialist thirder from this combination of bets:

the coin lands heads the coin lands tails
Net profit from selling bet 1 $15 −$15
Net profit from buying bet 4 −$20 (× 1) $5 (× 2)
Overall net profit −$5 −$5

So, if the evidentialist thirder will buy bet #4 whenever it’s offered,
then they will be susceptible to Briggs’ Dutch strategy. But why think
theywill buy this betwhenever it’s offered? Because theywill evaluate
the bet by paying attention to the non-causal correlations, as follows:

𝐸𝐸𝑈(buy) =
∑
𝑜∈𝒪

ℂ(𝑜 | buy) · 𝒱 (𝑜)

= ℂ(−$5 | buy) · 𝒱 (−$5) +ℂ(−$10 | buy) · 𝒱 (−$10) +ℂ(−$5 | buy) · 𝒱 (−$5)
= ℂ(heads ∨ tails & bought | buy) · 𝒱 (−$5) +ℂ(tails &¬bought) · 𝒱 (−$10)
= 1 · (−5) + 0 · (−10)
= −5
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whereas they’ll evaluate not buying the bet with:

𝐸𝐸𝑈(¬buy) =
∑
𝑜∈𝒪

ℂ(𝑜 | buy) · 𝒱 (𝑜)

= ℂ($15 | ¬buy) · 𝒱 ($15) +ℂ(−$15 | ¬buy) · 𝒱 (−$15)
= 1/3 · 15 − 2/3 · 15

= −5

So they will see taking bet #4 as fair. So the evidentialist thirder is sub-
ject to Briggs’ Dutch strategy.

Briggs goes on to show something stronger: the evidentialist halfer
is immune to Dutch strategies. There is no Dutch strategy against the
evidentialist halfer. And the causalist thirder is likewise immune to
Dutch strategies.

We can summarize this as follows: if you’re an evidential decision
theorist, then there is a Dutch strategy argument for being a halfer.
And, if you are a causal decision theorist, then there is a Dutch strat-
egy argument for being a thirder. So Dutch strategies cannot be used
on their own to settle whether to be a halfer or a thirder. We will also
need to settle cases of act-state dependence like Newcomb’s problem.
But, oncewe’re decided about the right solution to decisions likeNew-
comb’s problem, we will have a Dutch strategy argument for one an-
swer or another to Sleeping Beauty.

8.6 Expected Inaccuracy Arguments

What about considerations of expected inaccuracy? Can we use them
to settle the SleepingBeauty puzzle? Again,matters are complicated.12 12 See Kierland, Brian & Monton,

Bradley (2005). “Minimizing In-
accuracy for Self-Locating Beliefs”.
Philosophy and Phenomenological Research
70 (2): 384-395.

The issue is that there are two ways of calculating expected inaccu-
racy of your update plans in the case: you could care about your to-
tal inaccuracy—adding up the inaccuracy the update plans upon each
awakening—or you could instead care about your average inaccuracy—
adding up the inaccuracy of the update plans on each awakening, and
dividing through by the total number of awakenings.

Let’s see how this goes with the Quadratic (or ‘Brier’) measure.
Suppose that you care about total inaccuracy. Then, the expected total
inaccuracy of a plan to have credence 𝑥 in the proposition that the coin
lands heads will be given by:

ℂ(heads) · (1 − 𝑥)2 +ℂ(tails) · [𝑥2 + 𝑥2] = (1 − 𝑥)2
2

+ 𝑥2

This expected inaccuracy is minimized at 𝑥 = 1/3.13 So, if you care 13 To appreciate this, take the first-order
condition:

−(1 − 𝑥) + 2𝑥 = 0
3𝑥 = 1
𝑥 = 1/3

You should still check the second-order
and boundary conditions, but those do
work out, and this is the unique global
minimum.

about minimizing your total expected inaccuracy, then you will be a
thirder.

However, suppose that you instead care about average inaccuracy.
Then, the expected inaccuracy of aplan to have credence 𝑥 in the propo-
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sition that the coin lands heads will be given by

ℂ(heads) · (1 − 𝑥)2 +ℂ(tails) · [𝑥
2 + 𝑥2]

2
=

(1 − 𝑥)2
2

+ 𝑥2

2

And this expected inaccuracy is minimized at 𝑥 = 1/2.14 14 To appreciate this, take the first-order
condition:

−(1 − 𝑥) + 𝑥 = 0
2𝑥 = 1
𝑥 = 1/2

Again, you should verify that the sec-
ond derivative is positive and check the
boundary conditions, but this is the
global minimum.

So it looks like we again have an argument for both conclusions—
it depends upon whether we should care about minimizing our total
inaccuracy or whether we should instead care about minimizing our
average inaccuracy. The former option gives us an argument for third-
ing, whereas the latter option gives us an argument for halfing.

Review Questions

1. What is the Sleeping Beauty puzzle? Describe three answers to the
Sleeping Beauty puzzle.

2. What is Compartmentalized Conditionalization say, andwhich answer
to the Sleeping Beauty puzzle does it imply? Raise two objections
to Compartmentalized Conditionalization.

3. Suppose you think that, if you are susceptible to a Dutch strategy,
then you are irrational. Then, explain why your answer to New-
comb’s Problem is going to constrain your answer to the Sleeping
Beauty problem.

4. Explainwhy expected accuracy arguments don’t settle the Sleeping
Beauty problem.


	Interpretations of Probability
	Objective and A Priori Interpretations
	Objective and A Posteriori Interpretations
	Subjective Interpretations

	Theories of Probability
	Probability as Measure
	Conditional Probability and Independence
	Regularity
	Infinite Additivity
	Additivity and Measurability
	Conglomerability
	Random Variables

	Subjective and Objective Probability
	Two Kinds of Probability
	The Principal Principle
	Reformulation
	Consequences of the Principal Principle
	Another Reformulation
	The Principal Principle and Humean Supervenience
	The New Principle

	The Philosophy of Statistics
	Fischer's Test of Significance
	Bayesian Critiques of Fischer's Test of Significance
	Bayesian Statistics
	The Problem of the Priors
	Likelihoodism

	Arguments for Probabilism
	Probabilism and Its Detractors
	The Dutch Book Argument
	Accuracy Arguments for Probabilism

	Arguments for Conditionalization
	What does Conditionalization say?
	The Dutch Strategy Argument for Conditionalization
	The Accuracy Arguments for Conditionalization
	Objections to Epistemic Consequentialism

	Alternatives to Conditionalization
	Conditionalization and Certainty
	Jeffrey Conditionalization
	Field Conditionalization
	The Partitionality Assumption
	Schoenfield Conditionalization

	Self-Locating Credence and Memory Loss
	De Se and De Dicto Propositions
	Counterexamples to Conditionalization and Reflection
	The Sleeping Beauty Puzzle
	Why Does it Matter?
	Dutch Strategy Arguments
	Expected Inaccuracy Arguments


