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1 Lewis’s Principle of Chance Deference

1. Lewis (1980) defended the following principle of chance deference:1,2

Lewis’s Principle of Chance Deference
For any thought ‘p’, any number n%, and any time t,

C(p | Cht(p) = n%) != n% (LCD)

(so long as you lack any time t inadmissible information)

(a) As I use the term, thoughts are the arguments of your credence function

(b) For Lewis (1980), information is time t inadmissible iff it is about times
after t

2. I’ll argue here that Lewis’s principle LCD faces two kinds of difficulties:

(a) In the first place, it faces difficulties with a priori knowable contingen-
cies. (This difficulty has been discussed by Hawthorne & Lasonen-
Aarnio (2009), Salmón (2019), and Nolan (2016), among others.)

(b) In the second place, it faces difficulties in cases where you’ve lost track
of the time. (To my knowledge, I am the first to note these difficulties.)
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1 LCD isn’t the same as Lewis’s Principal Principle, though it follows from the Principal Principle

given the updating rule of conditionalization, which Lewis accepted (see his 1999, e.g.).
2 Notation: I place an exclamation mark above an equals sign to say that the equality should hold,

not that it does hold.

3. Problem #1: suppose that we are about to flip a coin, but before we do so, we
introduce the name ‘Uppy’ by saying: “Let’s call whichever side of the coin
actually lands up ‘Uppy’.”

(a) Let ‘u’ be the thought that the coin lands with Uppy facing up.
(b) Then, if we set p equal to u and we set n equal to 50, LCD tells us that

C(u | Cht(u) = 50%) != 50%

(c) But you know for sure that the chance of u is 50%. Uppy is either heads
or tails. If Uppy is heads, then the chance of the coin landing on Uppy is
50%. And if Uppy is tails, then the chance of the coin landing on Uppy
is 50%. So, either way, the chance of the coin landing on Uppy is 50%.
So C(Cht(u) = 50%) = 100%.

(d) If C(q) = 100%, then C(p | q) = C(p). So LCD implies that your cre-
dence in ‘u’ should be 50%.

(e) But it is a priori knowable that the coin lands onUppy (so long as it lands
on anything at all). So your credence in ‘u’ should be close to 100%, and
not down around 50%.

4. Problem #2: suppose that you don’t know whether it is Tuesday or Wednes-
day. You think it’s 50% likely to be Tuesday and that it’s 50% likely to be
Wednesday. But you know for sure that today’s chance of Mudskipper win-
ning (‘m’) is 75%, and yesterday’s chance of Mudskipper winning was 25%.

(a) If we set p equal to m, t equal to tues, and n equal to 25 and 75, respec-
tively, LCD tells us that

C(m | Chtues(m) = 25%) != 25%
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and C(m | Chtues(m) = 75%) != 75%

Since you know for sure that Chtues(m) = 25% iff it is Wednesday, and
you know for sure that Chtues(m) = 75% iff it is Tuesday, this implies
that

C(m | weds) != 25%

and C(m | tues) != 75%

(b) Since you are 50% sure that it is Tuesday and 50% sure that it is Wednes-
day, this implies that your credence in ‘m’ should be 50%,3

C(m) != C(m | tues) ·C(tues) + C(m | weds) ·C(weds)
= 75% · 50% + 25% · 50%
= 50%

(c) But this is implausible. You know for sure that today’s chance of Mud-
skipperwinning is 75%. Given that, your credence thatMudskipperwins
should be 75%, and not 50%.

2 A Two-Dimensional, De Se Principle of Chance Deference

5. Principle of chance deference are just one species of a broader genus of prin-
ciples of expert deference. In general, a principle of expert deference says:
given that the expert is n% confident in ‘p’, you should be n% confident in ‘p’,
too.

6. But principles like these face difficulties when it comes to de se thoughts
(thoughts which are in part about who you are and where you are located in
space and time).

(a) For instance, let the relevant expert be my doctor, and set ‘p’ equal to
the de se thought ‘I am sick’. Then, the principle will tell me:

3 So long, that is, as your credence function is a probability (I’ll take for granted here that it should
be).

Given that my doctor is n% confident in ‘I am sick’, I should be
n% confident in ‘I am sick’.

But this is terrible advice. My doctor’s thought ‘I am sick’ has the truth-
conditional content that she is sick, not that I am sick.

(b) I shouldn’t defer tomy doctor by settingmy credence in ‘I am sick’ equal
to her credence in that same de se thought. Instead, I should defer to
her by setting my credence in ‘I am sick’ equal to her credence in some
appropriately chosen de dicto surrogate of that de se thought. In this case,
the appropriate surrogate is ‘Dmitri is sick’.

To introduce the surrogate I think you should use in general when deferring
to an expert, let me introduce the notion of a location.

2.1 Locations and De-Dicto Surrogates

7. A purely de se thought is a thought which only says something about who
you are, or when and where you are located in time and space. And it does
not say anything stronger.

(a) E.g., ‘Today isMonday’ and ‘I amBeyoncé’ are both purely de se thoughts

8. A location is a thought which is strong enough to settle the truth-value of all
of your purely de se thoughts—andnomore. (It can of course settle the truth-
values of thoughtswhich logically follow fromyour purely de se thoughts, but
it can’t settle the truth-values of any thoughts other than those.)

(a) In other words: a location says who you are, where you are, and what
time it is in as rich a detail as your thoughts will permit (and it doesn’t
say anything more than this).

(b) As a notational convention, I’ll use lowercase Greek letters for locations.

9. Now, take any thought, ‘p’, and any location, ‘λ’. Then, the de dicto λ-
surrogate of ‘p’—which I will write ‘pλ’—is a thought which is true so long
as ‘p’ is true when entertained at the location λ.

(a) That is: ‘pλ’ says that the thought ‘p’ expresses a truth when it is enter-
tained at λ.
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(b) For instance, if ‘δ’ is my location, and ‘s’ is the de se thought ‘I am sick’,
then the de dicto δ-surrogate of ‘s’—‘sδ’—says that ‘I am sick’ is true
when entertained at Dmitri’s location. That is: ‘sδ’ says that Dmitri is
sick.

10. Introducing de dicto surrogates is enough to solve our first problem for LCD.
Recall: ‘u’ says that the coin lands on Uppy, where ‘Uppy’ is a name for
whichever side the coin actually lands on. Let ‘λ’ be your (known) loca-
tion. Then, the proposal is that you shouldn’t defer to chance about whether
the coin lands on Uppy. Instead, you should defer to chance about whether
your thought ‘u’ expresses a truth. That is: you should satisfy:

C(u | Cht = Cht)
!= Cht(uλ)

Even though there’s only a 50% chance that the coin will land on Uppy, there
is a 100% chance that your thought ‘the coin lands on Uppy’ will express a
truth. If the coin lands heads, then your thought ‘the coin lands on Uppy’
will say that the coin lands on heads, and this will be true. On the other
hand, if the coin lands tails, then your thought ‘the coin lands on Uppy’ will
say that the coin lands on tails, and this will be true. So your thought will be
true no matter how the coin lands. So the principle will say that

C(u | Cht = Cht)
!= 100%

And since it will say this for every potential chance function Cht , the prin-
ciple will imply that your (unconditional) credence in ‘u’ should be 100%.

11. This works well so long as you know for sure what your location is. But what
if you are uncertain about your location? Suppose, for instance, that I want
to defer to my doctor about whether I’m sick, but I don’t know whether I am
Dmitri or Beyoncé.

(a) Then, I think we should say this: given that I am Dmitri and my doctor
is n% sure that Dmitri is sick, I should be n% sure that I am sick. And,
given that I am Beyoncé and my doctor is n% confident that Beyoncé is
sick, I should be n% sure that I am sick.

(b) That is, ‘δ’ is Dmitri’s location, ‘β’ is Beyoncé’s location, ‘D’ is the definite
description ‘my doctor’s credence function’, and ‘D ’ is any probability

function, then my credence function should satisfy:

C(s |D =D ∧ δ) !=D(sδ)

and C(s |D =D ∧ β) !=D(sβ)

12. More generally, I think you should defer to an expert, E , as described below:

Two-Dimensional De Se Deference
Given that the expert E ’s probability function is E, and given that
you are located atλ, your credence in ‘p’ should beE’s probability
in the de dicto λ-surrogate of ‘p’, ‘pλ’.

C(p | E = E ∧λ) = E(pλ)

In a slogan: you should defer to the expert about whether your thoughts are
true, given the location at which you are entertaining them.

2.2 Chance Deference

13. In the case of chance, then, we should say this:

Two-Dimensional De Se Chance Deference
So long as you lack any time t inadmissible information, your
credence in ‘p’, given that the time t objective chance function
is Cht , and given that you are located at λ, should be equal to
Cht(pλ).

C(p | Cht = Cht ∧λ) = Cht(pλ)

In a slogan: you should defer to chance about whether your thoughts are
true, given the location at which you are entertaining them.

14. The principle above only applies in cases where you lack inadmissible infor-
mation. However, if we assume ur-prior conditionalization, it tells us exactly
what your credences should be, even if you have inadmissible information.
To see why, suppose that your total evidence is ‘e’, which may or may not
be inadmissible. Then, ur-prior conditionalization says that there’s some ur-
prior credence function C0 such that your current credence ought to be C0
conditioned on ‘e’. So:

C(p | Cht = Cht ∧λ)
!= C0(p | Cht = Cht ∧λ∧ e)
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=
C0(p∧ e | Cht = Cht ∧λ)
C0(e | Cht = Cht ∧λ)

Now, we may apply the principle of chance deference to both the numerator
and the denominator of the fraction above. After all, the ur-prior credence
functionC0 doesn’t have any inadmissible evidence—it doesn’t have any ev-
idence at all! So:

C(p | Cht = Cht ∧λ)
!=
Cht(pλ ∧ eλ)

Cht(eλ)

= Cht(pλ | eλ)

(a) This implies that, if your total evidence is time t admissible, then, for
any potential time t chance function Cht , Cht(eλ) = 100%.

(b) I propose strengthening this necessary condition on admissibility into a
criterion of inadmissibility. That is, I propose:

Inadmissible Information
e is inadmissible for the time t chances iff, for some potential
location λ and some potential time t chance function Cht ,

Cht(eλ) < 100%

◃ Here, a location is a potential location iff your credence that it is
your location is greater than 0%. Likewise, a chance function Cht
is a potential time t chance function iff your credence in Cht = Cht
is greater than 0%.

In a slogan: e is inadmissible just in case itmight be news to the objective
chances.

15. Given this criterion for inadmissibility, we can give a fully general principle
of chance deference, which applies even in caseswhere youhave inadmissible
information:

Two-Dimensional De Se Chance Deference (v2)
If ‘e’ is your time t inadmissible information, then your credence
in ‘p’, given that the time t objective chance function is Cht and
given that you are located at λ, should be equal to Cht(pλ | eλ).

C(p | Cht = Cht ∧λ) = Cht(pλ | eλ) (CD)

16. This principle allows us to solve Problem #2 (Losing Track of the Time).

(a) Recall, in the problem case, you are 50% sure that it is Tuesday, 50% sure
that it is Wednesday, and you know for sure that today the chance of
Mudskipper winning (‘m’) is 75%, and that yesterday the chance of m
was 25%.

(b) Let ‘τ ’ be the location ‘it is Tuesday’ and let ‘ω’ be the location ‘it is
Wednesday’

(c) Then, notice that the information ‘Chtoday(m) = 75%’ is inadmissible
for the Tuesday chances. For ω is a potential location, and the de dicto
ω-surrogate of ‘Chtoday(m) = 75%’ (namely: the wednesday chance of
m is 75%) might be news to the Tuesday chances (if it’s Wednesday, then
the Tuesday chances don’t know for sure that the Wednesday chance of
‘m’ is 75%).

(d) There are two relevant kinds of potential Tuesday chance functions:
those according to which the chance ofm is 75%, and those according to
which the chance ofm is 25%. Take an arbitrary function of the first kind
and call it ‘Ch75%’. Take an arbitrary function of the second kind and
call it ‘Ch25%’. You know for sure that Chtues = Ch75% iff it is Tuesday,
and you know for sure that Chtues = Ch25% iff it is Wednesday. Then,
CD implies that:

C(m | Chtues = Ch75% ∧ τ) != Ch75%(m | Chtoday(m) = 75%τ )

= Ch75%(m | Chtues(m) = 75%)

and C(m | Chtues = Ch25% ∧ω) != Ch25%(m | Chtoday(m) = 75%ω)

= Ch25%(m | Chweds(m) = 75%)

(e) Assuming that the chance function knows its own values,
Ch75%(Chtues(m) = 75%) = 100%, so the first constraint above
implies that

C(m | Chtues = Ch75% ∧ τ) != Ch75%(m) = 75%

And, assuming that the objective chances satisfy the principle of reflec-
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tion,4 the second constraint above implies that

C(m | Chtues = Ch25% ∧ω) != 75%

Since this will apply to any functions Ch75% and Ch25%, conglomer-
ability implies that your unconditional credence in ‘m’ should be 75%,
and Problem #2 is resolved.

3 Sleeping Beauty

17. The principle of chance deference I’ve defended here has a surprising conse-
quence for Elga (2000)’s Sleeping Beauty puzzle.

18. In this puzzle, we suppose that, on Sunday, you will be put to sleep with a
powerful sedative and awoken on Monday morning. On Monday evening,
you will be put back to sleep and a fair coin will be flipped. If this coin lands
heads, then you will be kept asleep throughout Tuesday, and you not be awo-
ken again until Wednesday. If, on the other hand, the coin lands tails, then
your memories of Monday will be erased, and you will be awoken again on
Tuesday. Also, just by the way: you are beautiful.

19. When you awake on Monday morning, you will know for sure that, if it is
Tuesday, then the coin flip on Monday landed tails. However, you won’t
know for sure whether it is Monday or Tuesday. (For all you know for sure,
it is Tuesday and your memories of being awoken on Monday have been
erased.) The central debate over Sleeping Beauty is how confident you should
be that Monday’s coin flip lands heads (‘h’)

◃ So-called thirders say that your credence in ‘h’ should be 1/3rd. They
advocate the credence distribution shown in figure 1a.

◃ So-called halfers are unhappy with this distribution, in part because it
means that your credence in ‘h’ departs from the known chance of ‘h’.
They say that your credence in ‘h’ should be 1/2. They advocate the cre-
dence distribution shown in figure 1b.

4 Theprinciple of reflection, applied to the objective chances, says that, for any times t, t∗ such that
t < t∗, Cht(p | Cht∗ (p) = x) = x. Cf. van Fraassen (1984)

(a) (b)

Figure 1: The thirder thinks you should have the credence distribution in figure
1a, whereas the halfer thinks you should have the credence distribution in figure
1b.

20. Let’s use ‘µ’ and ‘τ ’ for the locations ‘It is Monday’ and ‘It is Tuesday’, re-
spectively. Let ‘Ch’ be an arbitrary objective chance function such that
Ch(h) = 50%. And let ‘a’ be the thought ‘I am awake’.

◃ Importantly, ‘a’ is information you have when you awake on Monday—
this is the information which allows you to rule out that it is Tuesday
and Monday’s flip landed heads.

◃ Moreover, this information is inadmissible for the Monday chances,
since τ is a potential location, and ‘aτ ’ (‘I am awake on Tuesday’) is
news to theMonday chances. (Of course, ‘aµ’ is not news to theMonday
chances—the Monday chances know that you are awake on Monday.)

21. Then, CD implies that, for any potential chance function Ch,

C(h | Chmon = Ch∧µ) != Ch(hµ | aµ)

But the Monday chances are already certain that aµ, and the de dicto µ-
surrogate of ‘hµ’ is just ‘h’, so this reduces to

C(h | Chmon = Ch∧µ) != Ch(h) = 50%

Moreover, since this will hold for any potentialMonday chance functionCh,
conglomerability implies that

C(h | µ) != 50%
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This is a powerful constraint. It is incompatible with the halfer’s distribution.
(Though it is compatible with the thirder’s.)

22. So, if we accept the principle of chance deference CD, then it is the thirder,
and not the halfer, who properly defers to the known chances.

(a) It’s true that the thirder’s credence in ‘h’ does not equal the known chance
of ‘h’. But, if we accept Inadmissibility, then the thirder has an excuse:
their credence in ‘h’ departs from the known chance of heads because
they have the inadmissible information that they are awake. This infor-
mation isn’t about times after Monday. But, nonetheless, it is informa-
tion which might be news to the Monday chances. And, given that they
have this inadmissible information, they are correctly showing defer-
ence to the objective chances.
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