
Causation as Production and Dependence
or, A Model-Invariant Theory of Causation

J. Dmitri Gallow

University of Pittsburgh, Center for the Philosophy of Science · February 13, 2018

1 Causal Models

1. We will represent causal determination structure with a causal model, or a structural equations model,

Causal Models
A causal modelM = (U, u⃗,V,E,D) is a 5-tuple of

(a) A vector, U = (U1,U2, . . . ,UM ), of exogenous variables;

(b) An assignment of values, u⃗ = (u1, u2, . . . , uM ), to U;
(c) A vector V = (V1,V2, . . . ,VN ), of endogenous variables;

(d) A vector E = (ϕV1
,ϕV2

, . . . ,ϕVN
) of structural equations, one for each Vi ∈V; and

(e) A specification, D, of which variable values are default and which are deviant.

B U : (A,C )

u⃗ : (1,1)

V : (B ,D ,E )

E :
 E := B ∨D

D := C
B := A∧¬C


Figure 1: Preemptive Overdetermination. (For all variables, the value 0 is default, and the value 1 is deviant.)

(a) Given a neuron diagram, let the canonical model be the one that has, for each neuron, a binary
variable taking the value 1 if the neuron fires and the value 0 if it doesn’t fire (where not firing is
default, firing deviant), and a true system of equations describing how the values of those variables
are causally determined by each other. I’ll assume throughout that the canonical model of a neuron
diagram is correct.

2. Given a causal modelM, and an assignment v of values to the variables inV, we can define a counterfactual
model M[V→ v].

Counterfactual Causal Models
Given a causal modelM = (U, u⃗,V,E), including the variables V, and given the assignment
of values v to V, the counterfactual model M[V → v] = (U[V→ v], u⃗[V→ v],V[V→ v],
E[V→ v], D[V→ v]) is the model such that:
(a) U[V→ v] =U∪V
(b) u⃗[V→ v] = u⃗ ∪ v
(c) V[V→ v] =V−V
(d) E[V→ v] = E− (ϕVi

|Vi ∈ V)
(e) D[V→ v] =D
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3. Using counterfactual models, we may provide a semantics for causal counterfactuals:

Causal Counterfactuals
In a causal modelM, containing the variables in V, the causal counterfactual V = v �→ψ is
true iff ψ is true in the counterfactual modelM[V→ v],

M |= V = v �→ψ ⇐⇒ M[V→ v] |=ψ

2 Model Invariance

4. Ideally, a theory of causation would satisfy the following principle:

Model Invariance Given any two causal models, M and M†, which both contain the variables C and
E , if bothM andM† are correct, then C = c caused E = e inM iff C = c caused E = e inM†.

5. In general, if M = (U, u⃗,V,E,D) is a causal model with U ∈ U, then let M−U be the model that you
get by:

(a) Removing U from U
(b) Removing U ’s value from u⃗
(c) Exogenizing any variables in V whose only parent was U
(d) Replacing U for its value in every structural equation in E
(e) Removing default information about U from D.

6. If every equation inM−U is surjective, then say thatU is an inessential variable. Then, we should endorse
the following principle:

Exogenous Reduction If a causal modelM = (U, u⃗,V,E,D) is correct, and U ∈ U is inessential, then
M−U is also correct.

7. In general, ifM = (U, u⃗,V,E,D) is a causal model with V ∈V, then letM−V be the model that you get
by:

(a) Leaving U alone
(b) Leaving u⃗ alone
(c) Removing V from V
(d) RemovingϕV fromE, and replacingV withϕV (PA(V ))whereverV appears on the right-hand-side

of an equation in E1

(e) Removing default information about V from D
8. (a) If V has a single parent, Pa, and a single child, C h , and if Pa is not also a parent of C h , then say

that V is an interpolated variable.
. . .Pa→V → C h . . .

(b) If V is interpolated and all the equations inM−V are surjective, then say that V is inessential.
(c) Then, we should accept the following principle:

Endogenous Reduction If a causal modelM = (U, u⃗,V,E,D) is correct, andV ∈V is an inessential
variable, thenM−V is also correct.

9. Though there isn’t the space to show it here, the accounts of Hitchcock (2001, 2007), Halpern & Pearl
(2001, 2005), Woodward (2003), Halpern (2008), and Weslake (forthcoming) are all inconsistent with
Model Invariance, Exogenous Reduction, and Endogenous Reduction.

1 PA(E ) are E ’s causal parents in the model—those variables which appear on the right-hand-side of E ’s structural equation ϕE .
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B U : (A,C )

u⃗ : (1,1)

V : (B ,E )

E :
�

E := B ∨C
B := A∧¬C
�

Figure 2: Preemptive Overdetermination

3 A Model Invariant Theory of Causation

10. I will present a theory of causation, formulated within the framework of structural equations models,
which is consistent with Endogenous Reduction, Exogenous Reduction, and Model Invariance.

(a) I’ll build up the theory by progressing through some familiar cases from the literature.

3.1 Preemptive Overdetermination

11. (a) In the canonical model, M2, of Preemptive Overdetermination shown in figure 2, E = 1 does not
counterfactually depend upon C = 1.

(b) However, if we just look at E ’s structural equation E := B ∨C , and B and C ’s actual values, then
E = 1 does counterfactually depend upon C = 1. Call this submodel ofM2 the local model at E .

12. In general, we can define the local model at E as follows.

Local Causal Model
Given a causal modelM = (U, u⃗,V,E,D), with E ∈ V, the local model at E ,M((E )), is the
causal model in which
(a) The exogenous variables are just the parents of E , PA(E ), in the original modelM;
(b) The exogenous variables PA(E ) are assigned the values they take on inM;
(c) The sole endogenous variable is E ;
(d) The sole structural equation is E ’s structural equation inM, ϕE ; and
(e) The defaults for E and PA(E ) are the same as inM.

13. Say that E = e locally counterfactually depends upon C = c iff, in the local model at E , M((E )), there’s
some c ∗, e ∗ such that

M((E )) |= C = c ∗ �→ E = e ∗

14. A (preliminary) proposal, then, is that either local or global counterfactual dependence suffices for cau-
sation.

(a) While this helps with the case of preemptive overdetermination in figure 2, it does nothing to help
with the neuron diagram from figure 1.

(b) It would be nice to handle that case by appealing to the transitivity of causation.

(c) Unfortunately, there are a number of counterexamples to the transitivity of causation.

3.2 Counterexamples to Transitivity

15. Sometimes, we can trace out of sequence of causal relations and conclude that the event at the start of
the chain caused the one at the end. If that’s so, then I’ll call the chain transitive.
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B

(a)

A

C

B

(b)

Figure 3: Tampering (cf. Paul & Hall 2013). The octogonal neurons can either fire weakly (light grey) or
strongly (dark grey). If C fires, this diminishes the strength with which B fires. In figure 3(a), C ’s firing
caused B to fire weakly. And B ’s firing weakly caused E to fire. But C ’s firing didn’t cause E to fire.

(a) Lewis thought that causal chains were always transitive, but this has unpalatable consequences. Chris
smokes, contracts cancer, undergoes chemo, and survives. The smoking causes the cancer; the cancer
causes the chemo; and the chemo causes the survival—so Lewis is forced to say that the smoking
causes the survival.

(b) The right thing to say is that causal chains are sometimes, but not always, transitive. The difficulty
is working out just when.

16. The plan: I’ll attempt to give conditions specifying when a directed path, P, running from the variable
V1 to the variable VN ,

P =V1→V2→V3→ ·· · →VN

permits the inference that V1 = v1 caused VN = vN . When it does, I’ll call the path a transitive path.

17. One kind of counterexample to transitivity is illustrated by the neuron diagram in figure 3. C ’s firing
caused B to fire weakly (rather than strongly); B ’s firing weakly (rather than not) caused E to fire. But
C ’s firing didn’t cause E to fire.2

(a) The solution: adopt a contrastivist theory of causation, and require that the contrasts in our causal
chain match up.3

(b) Note: once we go contrastivist, we will be theorizing in terms of a 4-place causal relation

Cause(C = c ,C = c ∗,E = e ,E = e ∗)

From this, we may recover a familiar 2-place causal relation:

Cause(C = c ,E = e ) ⇐⇒ ∃c ∗∃e ∗Cause(C = c ,C = c ∗,E = e ,E = e ∗)

18. For two other counterexamples to transitivity, consider the neuron diagrams in figure 4.

(a) In both cases, either the start or the end of the causal chain involves a default variable value.

(b) This suggests the hypothesis: in order for a directed path to be a transitive path, the variable values
at the start and end of that path must both be deviant (and, though I won’t be motivating this
requirement here, their contrasts must also be default).

19. In general, this will be our account of which a directed path in a causal model is transitive:

2 Cf. McDermott (1995)’s Dog Bite example and the counterexamples to transitivity discussed in Paul (2004).
3 cf. Schaffer (2005).
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(a)

B E

(b)

Figure 4: In figure 4(a), C ’s failure to fire causes B to fire. B ’s firing causes E to fire. But C ’s failure to fire
doesn’t cause E to fire. In figure 4(b), C ’s firing causes D to fire. D ’s firing causes E to remain dormant.
But C ’s firing does not cause E to remain dormant.

Figure 5: Short Circuit, again. C ’s firing didn’t cause F to fire, but without condition (c) of Transitive
Path, we would have to say that it did.

Transitive Path
In a causal modelM, a directed path running from V1 to VN

P =V1→V2→V3→ ·· · →VN

is a transitive path iff:
(a) For each variable Vi along P, there is a pair (vi , v∗i ) of Vi ’s actual value vi in M, and a

contrast value v∗i ,

(v1, v
∗
1 )→ (v2, v∗2 )→ (v3, v∗3 )→ ·· · → (vN , v∗N )

such that: for all j between 1 and N − 1, V j ’s taking on the value v j , rather than v∗j ,
caused V j+1 to take on the value v j+1, rather than v∗j+1;

(b) Both V1’s and VN ’s actual values are deviant, their contrast values default ; and
(c) Every departure variable along P causes each of its return variables along P.4

(a) To see the reason for this final condition, consider the neuron diagram in figure 5.

3.3 Prevention and Omission without Dependence?

20. So far, we’ve only looked at causal relations where both the cause and effect variables take on deviant
values. But default variable values can also be causes and effects.

(a) Because counterfactual dependence suffices for causation, cases of prevention (figure 6) and omission
(figure 7) involve default effects and causes, respectively.

4 For any variables D ,R along the path (unless (D ,R) = (V1,VN )), D is a departure variable, and R is one of its return variables iff
there is a path, O = D→O1→O2→ ·· · → R , such that D and R are the only variables from P on O.
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Figure 6: Prevention

C

Figure 7: Omission
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E
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B
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(c)

Figure 8: Prevention without Dependence?

21. When C = c and E = e were deviant variable values, we said that local counterfactual dependence was
sufficient for causation. Should we say the same thing when C = c or E = e is a default variable value?

(a) This question turns out to be closely related to cases of Preemptive Prevention (or, cases of prevention
without dependence) like the one shown in figure 8.

(b) If we say that local counterfactual dependence suffices for causation, then, in the canonical model of
the neuron diagram in figure 8(a), we will say that C ’s firing caused E to not fire.

(c) However, we would not be able to say the same thing about the neuron diagram in figure 8(b). For,
in the canonical model of that neuron diagram, E = 0 does not locally counterfactually depend upon
C = 1, since C isn’t even in the local model at E . Moreover, since E ’s remaining dormant is a default
state of that neuron, we would not be able to appeal to the transitivity condition to say that C ’s firing
prevented E from firing.

(d) So, we should say that, in the case where the cause or effect variable value is default, local counter-
factual dependence is not sufficient for causation, and therefore, in the cases shown in figure 8, C ’s
firing doesn’t prevent E from firing all by itself.5

22. We can further support this treatment by noting that, if we want a model-invariant account of causation,
then we are forced to say, in figure 8(c), that C ’s firing prevented E from firing iff D ’s firing also prevented
E from firing.

(a) Beginning with the canonical causal model of figure 8(c), Exogenous Reduction allows us to remove
the inessential exogenous variable A from our model. Then, Endogenous Reduction allows us to
remove the inessential interpolated variable B . We end up with a causal model containing the sole
structural equation E := ¬C ∧¬D . But this equation treats C and D symmetrically, and both C
and D take on the same value. So, any account of causation will say that, in this model, C = 1
caused E = 0 iff D = 1 caused E = 0. Since D = 1 clearly did not cause E = 1, any model-invariant
account of causation should say that C = 1 didn’t caused E = 0 either.

23. So there is no prevention without dependence. Can there be omission without dependence? For parallel
reasons, it does not appear so. Consider the neuron diagrams from figure 9.

5 We can still say that the disjunction of A’s firing and C ’s firing caused E to remain dormant.
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Figure 9: Omission without Dependence?

(a) Suppose we said that local dependence sufficed for C = 0 causing E = 1 in figure 9(a). Then, we
should say the same thing about figure 9(b). However, in the canonical model of figure 9(b), there is
no local dependence between E = 1 and C = 0. Moreover, there can be no transitive path running
from C to E in that canonical model, since C ’s actual value is default.

24. Exactly similar issues arise when we consider cases of local dependence where both C and E ’s values are
default (left as an exercise). So we should conclude that local dependence suffices for causation only when
C and E both have deviant values (and default contrasts).

3.4 Causation as Production and Dependence

25. In summary, we have arrived at the following account of causation:

Causation as Production and Dependence
In a causal modelM, C ’s taking on the value c , rather than c ∗, caused E to take on the value
e , rather than e ∗, iff either (Prod) or (Dep).
(Prod) Both c and e are deviant variable values, the contrasts c ∗ and e ∗ defaults, and either:

i. In the local model at E ,M((E )), had C taken on the value c ∗, E would have taken
on the value e ∗,

M ((E )) |= C = c ∗ �→ E = e ∗

or
ii. InM, there is a transitive path leading from C to E .

(Dep) InM, had C taken on the value c ∗, E would have taken on the value e ∗,

M |= C = c ∗ �→ E = e ∗

26. This account is consistent with Model Invariance, Exogenous Reduction, and Endogenous Reduc-
tion. Suppose that we have a correct modelM = (U, u⃗,V,E,D), with U ∈U and V ∈V. And suppose
that neither U nor V are C or E , and both U and V are inessential. Then:

(a) If C = c caused E = e inM, then C = c caused E = e inM−U ;
(b) If C = c caused E = e inM, then C = c caused E = e inM−V ;
(c) If C = c didn’t cause E = e inM, then C = c didn’t cause E = e inM−U ; and
(d) If C = c didn’t cause E = e inM, then C = c didn’t cause E = e inM−V .

27. (a) The clause (Prod), taken in isolation, does a reasonably good job of capturing a notion of causal
production. According to it, production involves the local, uninterrupted propagation of deviant,
non-inertial states of affairs (rather than default, inertial states of affairs).
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Figure 10: Double Prevention without Dependence. Figure 10(b) shows what would have happened, had C
not fired, in figure 10(a).

(b) A hypothesis: the notion of causal production encapsulated in the Production clause of this account
represents the core of our concept of causation. Those causal judgments which are licensed by the
Production clause alone are far more intuitive, natural, and widespread than those which are only
licensed with the addition of the Dependence clause.

i. For instance, the Production clause is all that is required to show that C ’s firing caused E to
fire in cases of Preemptive Overdetermination. And the judgment that C caused E in this case is
widespread and uncontested.

ii. In contrast, in order to establish causation in cases of prevention, omission, omissive prevention,
double prevention, and so on, we will need to appeal to the Dependence clause. And these
judgments are all less uniform and more controversial.

(c) However, if we accept the Production clause, then the full strength of the Dependence clause is re-
quired, if we are to satisfy Model Invariance, Exogenous Reduction, and Endogenous Reduction.

i. Consider, for instance, the neuron diagram shown in figure 10(a). I take it that it is far from clear
what to say about whether C ’s firing caused E to fire in figure 10(a). But, by removing inessential
variables, this neuron diagram may be reduced to the model of preemptive overdetermination
from figure 1.

ii. In the case of preemptive overdetermination, we must say that C = 1 caused E = 1 (by Prod).
So, if we wish our account to be model-invariant, then we must say that C = 1 caused E = 1 in
the canonical model of figure 10(a).

iii. But in order to conclude this with the transitivity clause, we must have C = 1 cause D = 0,
D = 0 cause H = 0, and H = 0 cause E = 1.

iv. So, we must count as causal cases of prevention, omission, and omissive prevention. We must
appeal to the full strength of Dependence.
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